高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化

解启来 陈多福 漆亮 陈先沛

解启来, 陈多福, 漆亮, 陈先沛. 贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化[J]. 沉积学报, 2003, 21(4): 627-633.
引用本文: 解启来, 陈多福, 漆亮, 陈先沛. 贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化[J]. 沉积学报, 2003, 21(4): 627-633.
XIE Qi lai, CHEN Duo fu, QI Liang, CHEN Xian pei. REEs Geochemistry of Doushantuo Phosphorites and Modification during Post Sedimentary Stages in Weng'an Area, South China[J]. Acta Sedimentologica Sinica, 2003, 21(4): 627-633.
Citation: XIE Qi lai, CHEN Duo fu, QI Liang, CHEN Xian pei. REEs Geochemistry of Doushantuo Phosphorites and Modification during Post Sedimentary Stages in Weng'an Area, South China[J]. Acta Sedimentologica Sinica, 2003, 21(4): 627-633.

贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化

基金项目: 国家重点基金(批准号:49833002)、国家自然科学基金(批准号:40273032)及中国科学院广州地球化学研究所知识创新项目(GIGCX-03-04)资助
详细信息
    作者简介:

    解启来 男 1964年出生 副研究员 博士 盆地热史 地球化学 沉积学

  • 中图分类号: P595

REEs Geochemistry of Doushantuo Phosphorites and Modification during Post Sedimentary Stages in Weng'an Area, South China

  • 摘要: 贵州瓮安陡山沱组磷块岩保存了可能是全球最早的后生动物化石 (瓮安动物群 ),对于瓮安动物群出现过程中的古海洋环境重建具有重要科学意义。但必须对成岩后生作用对磷块岩中的稀土元素改造进行评估。通过对贵州瓮安陡山沱组磷块岩的磷质碎屑、磷质和白云质胶结物、磷条带和泥条带等的稀土元素地球化学特征研究,确定沉积期后变化对稀土元素的改造影响不大。上矿层磷块岩沉积期形成的磷质碎屑、成岩期形成的白云质和磷质胶结物具相同的稀土元素配分模式,暗示了沉积期后的改造作用对瓮安陡山沱组磷块岩保存的原生沉积信息影响不大。瓮安陡山沱组磷块岩具有显著的重稀土亏损特征。磷块岩的磷质和白云质胶结物、伴生磷质碎屑、强风化磷块岩相近的ErN/LuN 比值,表明沉积期后的改造作用不是重稀土元素亏损的主要原因。磷块岩的ErN/LuN、LaN/NdN 与Ce/Ce 间的相关性,表明越氧化的沉积环境中,轻和重稀土元素亏损越强。
  • [1] Piper D Z. Rare earth elements in the sedimentary cycle: a summary[J]. Chemical Geology, 1974, 14: 285~304
    [2] Fleet A J. Aqueous and sedimentary geochemistry of the rare earth elements[A]. In: Henderson P ed. Rare Earth Element Geochemisrty[C]. Amsterdam: Elsevier, 1984. 343~373
    [3] Wright J, Seymour R S, Shaw H F. REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment[A]. In: Clark D L ed. Conodont Biofacies and Provinciales[C]. Geol Soc Am Spec Paper, 1984, 196: 325~340
    [4] Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51: 637~644
    [5] Grandjean P, Cappetta H, Albarede F. The rare earth and (Nd of 40~70 Ma old fish debris from the West African platform[J]. Geophysica Research Letter, 1988,15:389~392
    [6] Grandjean P, Cappetta H, Michard A, et al. The assessment of REEs patterns and 143 Nd/144Nd ratios in fish remains[J]. Earth Planet Science Letter, 1987, 84:181~196
    [7] Bertram C J, Elderfield H, Aldridge R J, et al. 87 Sr/86Sr, 143 Nd/144Nd and REEs in Silurian phosphatic fossils[J]. Earth Planet Science Letter, 1992,113: 239~249
    [8] Jarvis I, Burnett W, Nathan Y, et al. Phosphorite geochemistry: state-of-the-art and environment concerns[J]. Eclogae Geol Helv, 1994,87: 643~700
    [9] Bellanca A, Masetti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetioan region, northern Italy): assessing REE sensitivity to environmental changes[J]. Chemical Geology, 1997,41: 141~152
    [10] Ilyin A V. Rare-earth geochemistry of 'old' phosphorites and probability of syngenetic precipitation and accumulation of phosphate[J]. Chemical Geology,1998,144: 243~256
    [11] Yang J, Sun W, Wang Z, et al. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater?[J] Precambrian Research, 1999,93: 215~233
    [12] Mazumdar A, Banerjee D M, Schidlowski M, et al. Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (lesser Himalaya, India)[J]. Chemical Geology, 1999, 156: 275~297
    [13] Elderfield H, Pagett R. Rare Earth elements in Ichthyoliths: variations with redox conditions and depositional environment[A]. In: Riley J P ed. Science of the Total Environment[C]. Amsterdam: Elsevier, 1986. 175~197
    [14] Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing nearshore sediments[J]. Earth Planet Science Letter, 1987,82: 280~288
    [15] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules[J]. Paleoceanography, 1990,5: 823~833
    [16] Murray R W, Buchholtz M R, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediments: assessing the influence of chemical fractionation during diagenesis[J]. Geochimica et Cosmochimica Acta, 1992,56: 2 657~2 671
    [17] Reynard B, Lecuyer C, Grandjean P. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions[J]. Chemical Geology, 1999,155: 233~241
    [18] Shields G, Stille, P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175:29~48
    [19] McArthur J M, Walsh J N. Rare-earth geochemistry of phosphorites[J]. Chemical Geology, 1984, 47:191~220
    [20] Bonnoit-Courtois C, Flicoteaux R. Distribution of rare-earth and some trace elements in Tertiary phophorites from the Senegal Basin and their weathering products[J]. Chemical Geology, 1989, 75: 311~328
    [21] Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: weathering of phosphatic minerals[J]. Chemical Geology, 2001,175:495~508
    [22] Bertrand-Sarfati J, Flicoteaux R, Moussine-Pouchkine A, et al. Lower Cambrian apatitic stromatolites and phosphorites related to the glacio-eustatic cratonic rebound (Sahara, Algeria)[J]. Journal of Sedimentaary Research, 1997, 67: 957~974
    [23] Tricca A, Stille P, Steinmann M, et al. Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater[J]. Chemical Geology, 1999, 160: 139~158
    [24] Picard S, Lecuyer C, Barrat J, et al. Rare earth element contents of Jurassic fish and reptile teeth and their potential

    relation to seawater composition (Anglo-Paris Basin, France and England)[J]. Chemical Geology, 2002, 186: 1~16
    [25] 安德鲁.诺尔, 肖书海. 论陡山沱组的年代[J]. 古生物学报, 1999,16(3):225~236 [Knoll, A. H., Xiao, S. H., 1999. On the age of the Doushantuo Formation[J]. Acta Micropalaeontologica Sinica, 1999, 16, 225~236]
    [26] 薛耀松,唐天福,俞丛流. 贵州晚震旦世陡山沱组具骨骼动物化石的发现及地质意义[J].古生物学报,1992, 31(5): 530~539[Xue Y, Tang T, Yu C. Discovery of oldest skeletal fossils from Upper Sinian Doushantuo Formation in Weng'an, Guizhou and its significance[J]. Acta Palaeontologica Sinica, 1992,31(5): 530~539]
    [27] Yin L M, Xue Y S. An extraordinary microfossil assemblage from terminal Proterozoic phosphate deposits in South China[J]. Chinese Journal Botany, 1993,5:168~175
    [28] Li C W, Chen J Y, Hua T E. Precambrian Sponges with Cellular Structures[J]. Science, 1998, 279: 879~882
    [29] Xiao S H, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite[J]. Nature, 1998, 391,553~558
    [30] Xiao S H, Yuan X L, Knoll A H. Eumetazoan fossils in terminal Proterozoic phosphorites?[J] Proc Natl Acad Sci USA, 2000a, 97: 13 684~13 689
    [31] Zhang Y, Yuan X L, Yin L M. Interpreting late Precambrian microfossils[J]. Science, 1998,282: 1783
    [32] Chen J Y, Oliveri P, Li C W, et al. Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China[J]. Proc Natl Acad Sci USA, 2000,97: 4 457~4 462
    [33] Yin C, Gao L. The microfossils in phosphate deposit in Doushantuo Sinian System, Weng'an, Guizhou Province[J]. Chinese Science Bulletin, 2000, 45: 279~284
    [34] Barfod G H, Albarede F, Knoll A H, et al. New Lu-Hf and Pb-Pb age onstraints on the earliest animal fossils[J]. Earth Planet Science Letter, 2002, 201: 203~212
    [35] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Boston: Blackwell, 1985.1~312
    [36] 王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社, 1989. 247~278[Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. Rare earth element geochemistry[M]. Beijing: Science Press, 1989. 247~278]
    [37] Lecuyer C, Grandjean P, Barrat J, et al. 18 O and REE contents of phosphatic brachiopods: A comparison between modern and lower Paleozoic populations[J]. Geochimica et Cosmochimica Acta, 1998, 62:2 429~2 436
    [38] 叶连俊.生物有机质成矿作用和成矿背景[M]. 北京: 科学出版社,1998. 1~462[Ye L J. Biomineralization and its geologic background[M]. Beijing: Science Press, 1998.1~462]
  • [1] 刘牧, 季长军, 黄元耕, 丁一, 陈荣庆, 陈明思, 杨钹, 陈代钊.  羌塘盆地索瓦组碳酸盐岩红层成因和环境意义 . 沉积学报, 2024, 42(3): 812-822. doi: 10.14027/j.issn.1000-0550.2023.062
    [2] 孙鹏, 杨海风, 王飞龙, 汤国民, 王广源, 唐友军.  生物降解作用对原油稀土元素的响应 . 沉积学报, 2024, 42(3): 912-927. doi: 10.14027/j.issn.1000-0550.2024.061
    [3] 张云望, 金鑫, 乔培军, 李滨兵, 洪彦哲, 陈俞超, 芦刚, 杜怡星, 时志强.  鄂尔多斯盆地东北部下侏罗统富县组沉积物源分析 . 沉积学报, 2023, 41(5): 1414-1429. doi: 10.14027/j.issn.1000-0550.2022.154
    [4] 储安心, 郑刘根, 刘梦, 程世贵, 周学年.  淮南深部山西组煤中稀土元素地球化学特征 . 沉积学报, 2020, 38(2): 257-265. doi: 10.14027/j.issn.1000-0550.2019.082
    [5] 梁飞, 黄文辉, 牛君.  鄂尔多斯盆地西南缘二叠系山西组山1段-下石盒子组盒8段物源分析 . 沉积学报, 2018, 36(1): 142-153. doi: 10.3969/j.issn.1000-0550.2018.016
    [6] 辽东湾东南部海域柱状沉积物稀土元素地球化学特征与物源识别 . 沉积学报, 2014, 32(4): 684-691.
    [7] 陈文彬.  羌塘盆地那底岗日地区布曲组碳酸盐岩烃源岩稀土元素分布特征及意义 . 沉积学报, 2011, 29(3): 529-536.
    [8] 龚玲兰.  湘江悬浮物的稀土元素地球化学研究 . 沉积学报, 2009, 27(3): 529-536.
    [9] 刘长江.  淄博煤田煤的稀土元素地球化学特征 . 沉积学报, 2008, 26(6): 1027-1034.
    [10] 刘建清.  羌塘盆地中央隆起带南侧隆额尼—昂达尔错布曲组古油藏白云岩稀土元素特征及成因意义 . 沉积学报, 2008, 26(1): 28-38.
    [11] 伊海生.  西藏高原沱沱河盆地渐新世—中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探 . 沉积学报, 2008, 26(1): 1-10.
    [12] 王 强.  贵州毕节地区煤层中稀土元素在含煤地层划分与对比中应用探讨 . 沉积学报, 2008, 26(1): 21-27.
    [13] 李 军.  渤海湾盆地石炭二叠系稀土元素特征及其地质意义 . 沉积学报, 2007, 25(4): 589-596.
    [14] 于炳松, 陈建强, 李兴武, 林畅松.  塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景 . 沉积学报, 2004, 22(1): 59-66.
    [15] 宋天锐, 和政军, 万渝生, 张巧大, 丁孝忠.  前寒武纪沉积岩中自生独居石的发现及其意义 . 沉积学报, 2003, 21(1): 118-124.
    [16] 梁华英, 王秀璋, 程景平.  粤北大沟谷热水沉积钠长石岩岩石化学及稀土元素 . 沉积学报, 2001, 19(3): 415-420.
    [17] 赵志根, 唐修义, 李宝芳.  淮南矿区煤的稀土元素地球化学 . 沉积学报, 2000, 18(3): 453-459.
    [18] 宋天锐.  大连地区前寒武纪沉积岩中发现自生独居石及其意义 . 沉积学报, 1999, 17(S1): 663-667.
    [19] 余素华, 郑洪汉.  宁夏中卫长流水剖面沉积物中稀土元素及其环境意义 . 沉积学报, 1999, 17(1): 149-155.
    [20] 赵一阳, 王金土, 秦朝阳, 陈毓蔚, 王贤觉, 吴明清.  中国大陆架海底沉积物中的稀土元素 . 沉积学报, 1990, 8(1): 35-43.
  • 加载中
计量
  • 文章访问数:  585
  • HTML全文浏览量:  20
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-05-20
  • 刊出日期:  2003-12-10

目录

    贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化

      基金项目:  国家重点基金(批准号:49833002)、国家自然科学基金(批准号:40273032)及中国科学院广州地球化学研究所知识创新项目(GIGCX-03-04)资助
      作者简介:

      解启来 男 1964年出生 副研究员 博士 盆地热史 地球化学 沉积学

    • 中图分类号: P595

    摘要: 贵州瓮安陡山沱组磷块岩保存了可能是全球最早的后生动物化石 (瓮安动物群 ),对于瓮安动物群出现过程中的古海洋环境重建具有重要科学意义。但必须对成岩后生作用对磷块岩中的稀土元素改造进行评估。通过对贵州瓮安陡山沱组磷块岩的磷质碎屑、磷质和白云质胶结物、磷条带和泥条带等的稀土元素地球化学特征研究,确定沉积期后变化对稀土元素的改造影响不大。上矿层磷块岩沉积期形成的磷质碎屑、成岩期形成的白云质和磷质胶结物具相同的稀土元素配分模式,暗示了沉积期后的改造作用对瓮安陡山沱组磷块岩保存的原生沉积信息影响不大。瓮安陡山沱组磷块岩具有显著的重稀土亏损特征。磷块岩的磷质和白云质胶结物、伴生磷质碎屑、强风化磷块岩相近的ErN/LuN 比值,表明沉积期后的改造作用不是重稀土元素亏损的主要原因。磷块岩的ErN/LuN、LaN/NdN 与Ce/Ce 间的相关性,表明越氧化的沉积环境中,轻和重稀土元素亏损越强。

    English Abstract

    解启来, 陈多福, 漆亮, 陈先沛. 贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化[J]. 沉积学报, 2003, 21(4): 627-633.
    引用本文: 解启来, 陈多福, 漆亮, 陈先沛. 贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化[J]. 沉积学报, 2003, 21(4): 627-633.
    XIE Qi lai, CHEN Duo fu, QI Liang, CHEN Xian pei. REEs Geochemistry of Doushantuo Phosphorites and Modification during Post Sedimentary Stages in Weng'an Area, South China[J]. Acta Sedimentologica Sinica, 2003, 21(4): 627-633.
    Citation: XIE Qi lai, CHEN Duo fu, QI Liang, CHEN Xian pei. REEs Geochemistry of Doushantuo Phosphorites and Modification during Post Sedimentary Stages in Weng'an Area, South China[J]. Acta Sedimentologica Sinica, 2003, 21(4): 627-633.
    参考文献 (38)

    目录

      /

      返回文章
      返回