高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖泊细粒沉积岩纹层特征与形成机制研究进展及展望

王铭乾 张元元 朱如凯 郭召杰 李志扬 王俊峰

王铭乾, 张元元, 朱如凯, 郭召杰, 李志扬, 王俊峰. 湖泊细粒沉积岩纹层特征与形成机制研究进展及展望[J]. 沉积学报, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080
引用本文: 王铭乾, 张元元, 朱如凯, 郭召杰, 李志扬, 王俊峰. 湖泊细粒沉积岩纹层特征与形成机制研究进展及展望[J]. 沉积学报, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080
WANG MingQian, ZHANG YuanYuan, ZHU RuKai, GUO ZhaoJie, LI ZhiYang, WANG JunFeng. Progress and Perspective on the Characteristics and Formation Mechanism of Laminae in Lacustrine Fine-grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080
Citation: WANG MingQian, ZHANG YuanYuan, ZHU RuKai, GUO ZhaoJie, LI ZhiYang, WANG JunFeng. Progress and Perspective on the Characteristics and Formation Mechanism of Laminae in Lacustrine Fine-grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080

湖泊细粒沉积岩纹层特征与形成机制研究进展及展望

doi: 10.14027/j.issn.1000-0550.2024.080
基金项目: 

国家自然科学基金项目 42090021

详细信息

Progress and Perspective on the Characteristics and Formation Mechanism of Laminae in Lacustrine Fine-grained Sedimentary Rocks

  • 摘要: 意义 作为古气候还原及非常规油气勘探的重要载体,细粒沉积岩纹层近年来备受学者关注。然而,目前学术界对湖泊细粒沉积岩中纹层的形成机制及相应识别特征的研究尚不明确。 【进展】 对湖泊中细粒沉积岩纹层的形成机制、沉积特征及控制因素进行了系统总结。悬浮沉降、重力流远端稀释、底流、火山热液及微生物作用等方式,均可在湖泊环境中形成细粒沉积岩纹层。尽管不同沉积过程可能形成成分、层厚、粒度及形态相似的纹层,但它们在纹层组合、生物扰动以及其他沉积构造特征等方面存在较大差别。这些纹层的形成和分布受古气候和古地理两大类因素控制,古气候通过温度、降水、盐度和风场等要素对纹层进行控制,作用广泛且复杂,古地理通过水深、构造特征和物质来源等要素控制纹层分布格局。 展望 从理论发展和实际应用来看,目前湖泊细粒沉积岩纹层研究仍存在一些问题,未来应在查明纹层形成机制的基础上,发展科学的分类方案和有效的纹层信息提取手段,整合纹层空间尺度的变化,面向非常规油气重大需求,聚焦古气候还原、碳埋藏、生命演化及火星沉积学等前沿问题开展研究。
  • 图  1  细粒沉积岩纹层研究进展

    Figure  1.  Progress in research on laminae of fine⁃grained sedimentary rocks

    图  2  低密度浊流序列与经典浊流序列对比与划分(据文献[2425]修改)

    Figure  2.  Comparison and division of low⁃density turbidity sequence and classical turbidity sequence (modified from references [24⁃25])

    图  3  季节性纹泥沉积特征

    (a) clastic⁃rich varve, Patagonian glacial lake (modified from reference [45]) ; (b) clay⁃rich varve, Qingshankou Formation, Songliao Basin (modified from reference [46]); (c) diatom⁃rich varve, Kusalin Lake, Thailand (modified from reference [47]); (d) calcareous⁃organic varve, Shahejie Formation, Shulu Sag (modified from reference [48])

    Figure  3.  Photographs and schematics of sedimentary varve types

    Fig.3

    图  4  沉积物羽流成因纹层沉积特征

    (a, b) laminated and thin⁃bedded sediment plume deposits in Eocene Castigaleu Group, south⁃central Pyrenées, with starved ripple at the base(modified from reference [61]); (c) laminated and thin⁃bedded sediment plume deposits in Los Molles Formation, Neuquén Basin, Argentina; (d) slight sedimentary deformation; (e) interbedded plant debris (modified from reference [30])

    Figure  4.  Sedimentary characteristics of laminae induced by sediment plumes

    Fig.4

    图  5  垮塌浊流成因纹层沉积特征

    (a, b) deep⁃water turbidity flow⁃related laminae combination, Lucaogou Formation, Junggar Basin; (c) low⁃density turbidity flow⁃related laminae combination (T2⁃T5), Shahejie Formation, Shulu Sag, with calcite⁃rich laminae in the upper⁃middle part, lenticular laminae in the lower⁃middle part, low amplitude cross⁃laminae combination at the base (modified from reference [48]); (d) quartz⁃rich, ostracoda⁃rich and clay⁃rich laminae formed by turbidity flow sedimentation and sorting, Qingshankou Formation, Songliao Basin (modified from reference [46]); (e, f) turbidity flow⁃related laminated mudstone, Ferron Notom Delta, Utah(modified from reference [64])

    Figure  5.  Sedimentary characteristics of laminae induced by collapsed turbidity flows

    Fig.5

    图  6  异重流成因纹层沉积特征

    (a) hyperpycnal flow⁃related laminae combination, Karoo Basin, South Africa; (b) type I normal graded laminae, thickness 0.05⁃1.00 cm; arrow indicates plant debris; (c) type II inverse⁃normal indicating flood waxing and waning, thickness 0.05⁃0.40 cm (modified from reference [69]); (d) sedimentary characteristics and division of prodelta hyperpycnal flow deposits, Geneseo Formation, New York; (e) hyperpycnal flow⁃induced inverse⁃normal graded laminae; arrows indicate internal scouring; (f) ripple laminae induced by hyperpycnal flow (modified from reference [10])

    Figure  6.  Sedimentary characteristics of muddy hyperpycnal flow⁃related laminae

    Fig.6

    图  7  浪控沉积物重力流成因纹层沉积特征

    (a) schematic of wave⁃enhanced sediment gravity flow; (b⁃d) wave⁃enhanced sediment gravity⁃flow related laminae, Shahejie Formation, Bohai Sag; Unit i is low⁃angle/ripple laminae combination; Unit ii is clay⁃rich/silt⁃ich planar laminae combination; Unit iii is bioturbated laminae (modified from reference [34])

    Figure  7.  Sedimentary characteristics of laminae induced by wave⁃enhanced sediment gravity flow

    Fig.7

    图  8  混合事件成因纹层沉积特征

    (a) hybrid flow⁃related laminae, Yanchang Formation, Ordos Basin; turbulent flow⁃induced low⁃angle cross⁃laminae combination, laminar flow⁃induced planar laminae (modified from reference [73]); (b, c) turbulent current⁃related laminae (brown and yellow) with abundant silt and clay aggregates; laminar flow⁃related laminae with coarse mud⁃sized particles in fine mud matrix (modified from reference [49])

    Figure  8.  Sedimentary characteristics of laminae induced by hybrid flow

    Fig.8

    图  9  底流成因纹层沉积特征

    (a) low⁃angle cross⁃laminae combination, Yanchang Formation, Ordos Basin (modified from reference [80]); (b) low⁃angle cross⁃laminae combination, Lucaogou Formation, Junggar Basin (modified from reference [16]); (c) lenticular laminae combined with normal graded laminae from storm⁃related bottom current (modified from reference [81]); (d) lenticular laminae, the lower Third member of Shahejie Formation, Jiyang Sag (modified from reference [82]); (e) lenticular laminae, Green River Formation, Wyoming (modified from reference [37]); (f) lenticular laminae, Chang 7 member of Yanchang Formation, Tongchuan area (modified from reference [80])

    Figure  9.  Photomicrographs of laminae induced by bottom⁃currents

    Fig.9

    图  10  火山、热液及微生物成因纹层沉积特征

    (a) ostracoda⁃rich laminae in Qingshankou Formation, Songliao Basin (modified from reference [18]); (b, c) tuffaceous and organic laminae combination in Yanchang Formation, Ordos Basin (modified from reference [81]); (d) carbonate⁃rich laminae in exhalative sedimentary rock (modified from reference [89]); (e) analcime laminae caused by underwater volcanic eruption in Shahejie Formation, Liaohe Sag (modified from reference [46]); (f) microbial mat laminae in Green River Formation, Piceance Basin, Colorado (modified from reference [35])

    Figure  10.  Photomicrographs of laminae with volcanic, hydrothermal or microbial origins

    Fig.10

    图  11  湖泊细粒沉积岩纹层沉积机制分布

    Figure  11.  Sedimentary development mechanisms in lacustrine environments

    表  1  湖泊细粒沉积岩纹层成因机制分类及沉积特征

    Table  1.   Classification of formation mechanism and sedimentary characteristics of laminae in lacustrine fine⁃grained sedimentary rocks

    形成机制悬浮沉降重力流远端底流其他机制
    成因类型纹泥沉积物羽流垮塌浊流异重流浪控沉积物重力流混合事件层风场底流火山或热液微生物
    野外或岩心产出页岩、纹层状泥岩纹层—薄层状泥岩、页岩纹层—厚层状泥岩、单次事件从底至顶层厚变小泥岩、页岩页岩、纹层状泥岩叠层石、纹层—薄层状泥岩
    粒径中泥—细泥粗泥—细泥砂—细泥,单次事件从底到顶部粒径变细砂—细泥砂—细泥砂—细泥
    矿物组成黏土—粉砂、黏土—黄铁矿、钙质—有机质、生物残骸、盐类—黏土等黏土、粉砂或钙质—碎屑混积,取决于物质来源、搬运和混合过程火山成因矿物、有机质黏土、粉砂、有机质、生物残骸
    层厚几十微米—几厘米微米—几十厘米几十微米—几十厘米几十微米—几厘米几十微米—几厘米
    几何形态板状、平行、连续板状—波状—透镜状、平行—不平行、连续—不连续板状—波状—曲线状、平行—不平行、连续—不连续板状—透镜状、不平行、连续—不连续板状—透镜状、平行、连续—不连续刺状—针状—丘状—波状、平行—不平行、连续—断续
    沉积特征韵律年纹层组合,不同类型湖泊有差异层厚差别大的平行板状纹层或层、底部透镜状纹层、“云雾状”等软沉积变形、层间植物碎屑鲍马序列或Stow细粒浊流序列侵蚀基底、逆—正粒序、低角度交错纹层、板状纹层、顶部生物扰动、植物碎屑侵蚀基底、正粒序、低角度交错纹层、丘状纹层、下洼纹层、顶部生物扰动紊流成因低角度交错纹层和层流成因颗粒“悬浮”的板状纹层互层低角度交错纹层、内碎屑集合体纹层、正粒序火山成因矿物纹层—有机质纹层层偶、正粒序碳质纹层,偶尔被风暴打断、生物残骸聚集
    生物扰动0~10~30~50~30~30~50~50~10~5
    沉积环境深湖—半深湖浅湖—半深湖前三角洲、浅湖—深湖前三角洲、滨湖—深湖浅湖—深湖(可能)浅湖—深湖滨湖—深湖深湖滨湖—半深湖
    主控因素水深、构造、风场、水体性质、温度、降水物质来源、水体性质、风场构造、水深、物质来源降水、水体性质、水深、物质来源气候、构造、水深构造、水深、物质来源水深、风场、构造水深、构造、物质来源水深、物质来源
    下载: 导出CSV

    表  2  湖泊不同相带沉积环境、纹层类型及有机质富集关系

    Table  2.   Sedimentary environment, laminae types and organic matter enrichment relationships in different lacustrine facies

    湖泊类型地表—扩张湖滨湖浅湖半深湖—深湖有利甜点段
    过充填淡水—微咸水湖沉积环境沼泽、潟湖、砂—泥滩、泛滥平原、火山溢流湖滩、高能或低能台地、三角洲平原—前缘、火山溢流斜坡、高能或低能缓坡、前三角洲、火山重力流、河流底流悬浮沉降(陆源为主,内源及火山灰少)、浊流、异重流(河流或火山)、风场底流、水柱交换、重力流、湖底热液河流影响强烈、三角洲进积强,盐度低,水体分层差,高密度重力流发育,中到低TOC,植物和藻类有机质,沉积体横向变化截然
    细粒纹层潟湖中悬浮沉降纹层台地叠层石斜坡或前三角洲垮塌浊流纹层、缓坡叠层石、浅湖—半深湖悬浮沉降纹层、河流、风场或风暴纹层底流碎屑型、黏土型、钙质—有机混合(微咸水)及生物型纹泥、浊流、异重流远端及混合事件层纹层、水柱交换及风场底流纹层、沉凝灰及喷积纹层实例:青山口组、延长组七段非常规:半深湖—深湖钙质—有机质混合纹泥(微咸水湖)、部分凝灰岩及喷积岩纹层常规:深水浊流砂体或生物遗骸沉积、异重流砂体、滨浅湖碳酸盐或混积岩
    平衡充填微咸—咸水湖沉积环境碳酸盐浅滩、高能或低能台地、三角洲平原—前缘、火山溢流高能或低能缓坡;前三角洲、火山重力流内源或混源悬浮沉降为主、浊流、异重流、风场底流、水柱交换、火山悬浮或重力流、水下火山或热液低能深水为主、水体分层好,藻类有机质,中—低密度浊流易发育,中到高TOC,湖平面变化大,高水位横向连续性好
    细粒纹层浅滩或台地叠层石叠层石、河口羽状流纹层、异重流纹层、河流、风场或风暴底流、浅湖—半深湖悬浮沉降纹层钙质—有机质混合纹泥或蒸发盐纹泥、低密度浊流、混合事件层、浪控沉积物重力流及异重流(争议)纹层、微生物席纹层、底流纹层、沉凝灰及喷积岩纹层实例:芦草沟组、沙河街组三段非常规:浅湖—半深湖钙质—有机质混合纹泥、羽状流、部分凝灰岩及喷积岩纹层常规:深水生物遗骸沉积、滨浅湖碳酸盐、缓坡泥灰岩、重力流砂体
    欠充填咸—盐水湖沉积环境干泥滩、泛滥平原、河流、风成沙丘、潟湖、火山溢流盐沼、三角洲平原—前缘、风暴、火山溢流盐田、前三角洲、火山重力流多年生盐湖、季节性风场、水下火山或热液风场影响强烈、水体分层强,低密度浊流易发育,藻类有机质,低到高TOC,湖平面低且变化大,横向连续性差
    细粒纹层潟湖中悬浮沉降纹层、河流在泥滩表面水流纹层叠层石纹层、风暴在盐沼表面的水流纹层纹层—层状蒸发盐、悬浮沉降混源纹层、叠层石蒸发盐—黏土、钙质—有机质混源、季节性风场纹层或纹泥、浪控沉积物重力流(可能)、微生物席纹层、沉凝灰及喷积岩纹层实例:绿河组Wilkins Peak段、井井子沟组非常规:混源钙质—有机质纹泥、部分凝灰岩及喷积岩纹层常规:三角洲或河流席状粉砂—砂岩、滨浅碳酸盐
    下载: 导出CSV
  • [1] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. Berlin: Springer, 2005: 297.
    [2] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [3] 刘嘉麒,伍婧,储国强,等. 玛珥湖古气候环境研究进展[J]. 矿物岩石地球化学通报,2013,32(6):639-650.

    Liu Jiaqi, Wu Jing, Chu Guoqiang, et al. Progress of palaeoclimatic and palaeoenvironmental studies on maar lakes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 639-650.
    [4] Zolitschka B, Francus P, Ojala A E K, et al. Varves in lake sediments:A review[J]. Quaternary Science Reviews, 2015, 117: 1-41.
    [5] Bosak T, Knoll A H, Petroff A P. The meaning of stromatolites[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 21-44.
    [6] 田兴,高远,王成善. 湖泊年纹层研究进展与展望[J]. 沉积学报,2023,41(6):1645-1661.

    Tian Xing, Gao Yuan, Wang Chengshan. Progress and prospects of lacustrine varve research[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1645-1661.
    [7] Rapin W, Ehlmann B L, Dromart G, et al. An interval of high salinity in ancient Gale crater lake on Mars[J]. Nature Geoscience, 2019, 12(11): 889-895.
    [8] Schimmelmann A, Lange C B, Schieber J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246.
    [9] Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
    [10] Wilson R D, Schieber J. Muddy prodeltaic hyperpycnites in the Lower Genesee Group of central New York, USA: Implications for mud transport in epicontinental seas[J]. Journal of Sedimentary Research, 2014, 84(10): 866-874.
    [11] Lazar O R, Bohacs K M, Schieber J, et al. Mudstone primer: Lithofacies variations, diagnostic criteria, and sedimentologic-stratigraphic implications at lamina to bedset scale[M]. Tulsa: SEPM, 2015.
    [12] Macquaker J H S, Bentley S J, Bohacs K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
    [13] Macquaker J H S, Keller M A, Davies S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of sedimentary Research, 2010, 80(11): 934-942.
    [14] Schieber J. Mud re-distribution in epicontinental basins:Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.
    [15] Peng J W, Hu Z Q, Feng D J, et al. Sedimentology and sequence stratigraphy of lacustrine deep-water fine-grained sedimentary rocks: The Lower Jurassic Dongyuemiao Formation in the Sichuan Basin, western China[J]. Marine and Petroleum Geology, 2022, 146: 105933.
    [16] Zou C N, Qiu Z, Zhang J Q, et al. Unconventional petroleum sedimentology: A key to understanding unconventional hydrocarbon accumulation[J]. Engineering, 2022, 18: 62-78.
    [17] Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
    [18] 蔡毅,朱如凯,吴松涛,等. 泥岩与页岩特征辨析[J]. 地质科技通报,2022,41(3):96-107.

    Cai Yi, Zhu Rukai, Wu Songtao, et al. Discussion on characteristics of mudstone and shale[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 96-107.
    [19] de Geer G.. Geochronology [J]. Antiquity, 1928, 2(7): 308-318.
    [20] Anderson R Y, Koopmans L H. Harmonic analysis of varve time series[J]. Journal of Geophysical Research, 1963, 68(3): 877-893.
    [21] Droppo I G, Leppard G G, Flannigan D T, et al. The freshwater floc: A functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties[C]//Proceedings of the 7th international symposium. Baveno: Springer, 1997: 43-53.
    [22] Tylmann W, Zolitschka B, Enters D, et al. Laminated lake sediments in northeast Poland: Distribution, preconditions for formation and potential for paleoenvironmental investigation[J]. Journal of Paleolimnology, 2013, 50(4): 487-503.
    [23] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
    [24] Piper D J W. Turbidite origin of some laminated mudstones[J]. Geological Magazine, 1972, 109(2): 115-126.
    [25] Stow D A V, Shanmugam G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42.
    [26] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
    [27] Lowe D R. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
    [28] Kong X X, Jiang Z X, Han C, et al. Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu Sag[J]. Journal of Earth Science, 2017, 28(6): 1047-1063.
    [29] Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162.
    [30] Zavala C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏,2018,30(1):1-18.

    Zavala C, Pan Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18.
    [31] Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47(1): 31-70.
    [32] Baas J H, Best J L, Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987.
    [33] Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits:Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
    [34] Bai C Y, Yu B S, Dong T Y, et al. Wave-Enhanced sediment-gravity flows in Bohai Bay lacustrine basin, eastern China[J]. Acta Geologica Sinica‐English Edition, 2018, 92(6): 2416-2431.
    [35] Schieber J, Bose P K, Eriksson P G, et al. Atlas of microbial mat features preserved within the siliciclastic rock record[M]. Amsterdam: Elsevier, 2007.
    [36] Schieber J, Southard J B, Kissling P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032.
    [37] Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds:Interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
    [38] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184.

    Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
    [39] 葸克来,李克,操应长,等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发,2020,47(6):1244-1255.

    Xi Kelai, Li Ke, Cao Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration & Development, 2020, 47(6): 1244-1255.
    [40] Frogner P, Gíslason S R, Óskarsson N. Fertilizing potential of volcanic ash in ocean surface water[J]. Geology, 2001, 29(6): 487-490.
    [41] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
    [42] Awramik S M, Buchheim H P. Giant stromatolites of the Eocene Green River Formation (Colorado, USA)[J]. Geology, 2015, 43(8): 691-694.
    [43] Liu C L, Wang P X. The role of algal blooms in the formation of lacustrine petroleum source rocks: Evidence from Jiyang Depression, Bohai Gulf Rift Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 15-22.
    [44] Ojala A E K, Francus P, Zolitschka B, et al. Characteristics of sedimentary varve chronologies:A review[J]. Quaternary Science Reviews, 2012, 43: 45-60.
    [45] Bendle J M, Palmer A P, Thorndycraft V R, et al. High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modeling[J]. Quaternary Science Reviews, 2017, 177: 314-339.
    [46] 张建国,姜在兴,刘鹏,等. 陆相超细粒页岩油储层沉积机制与地质评价[J]. 石油学报,2022,43(2):234-249.

    Zhang Jianguo, Jiang Zaixing, Liu Peng, et al. Deposition mechanism and geological assessment of continental ultrafine-grained shale oil reservoirs[J]. Acta Petrolei Sinica, 2022, 43(2): 234-249.
    [47] 陈钰,刘兴起,何利,等. 青藏高原北部可可西里库赛湖年纹层微区分析及形成机理[J]. 地质学报,2016,90(5):1006-1015.

    Chen Yu, Liu Xingqi, He Li, et al. Micro-area analysis and mechanism of varves from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau[J]. Acta Geologica Sinica, 2016, 90(5): 1006-1015.
    [48] 孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京:中国地质大学(北京),2020.

    Kong Xiangxin. Sedimentary characteristics, origin and hydrocarbon accumulation of lacustrine carbonate-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [49] Pavan K. Microfacies analysis of mudstone in a freshwater to marine transect: Upper Cretaceous Dunvegan and Kaskapau Formations, western Canada Foreland Basin[D]. London: The University of western Ontario (Canada), 2019.
    [50] Eichhorn L, Pirrung M, Zolitschka B, et al. Pleniglacial sedimentation process reconstruction on laminated lacustrine sediments from lava-dammed Paleolake Alf, West Eifel Volcanic Field (Germany)[J]. Quaternary Science Reviews, 2017, 172: 83-95.
    [51] Keller M A, Macquaker J H S. Arctic Alaska's Lower Cretaceous (Hauterivian and Barremian) mudstone succession:Linking lithofacies, texture, and geochemistry to marine processes[R]. Reston: US Geological Survey, 2015.
    [52] Nzekwe O P, Lapointe F, Francus P, et al. A new ~ 900-year varved record in Lake Walker, Québec North Shore, eastern Canada: Insight on Late Holocene climate mode of variability[J]. Journal of Paleolimnology, 2021, 67(1): 35-57.
    [53] Ebinghaus A, Jolley D W, Andrews S D, et al. Lake sedimentological and ecological response to hyperthermals: Boltysh impact crater, Ukraine[J]. Sedimentology, 2017, 64(6): 1465-1487.
    [54] 李维,朱筱敏,段宏亮,等. 苏北盆地高邮—金湖凹陷古近系阜宁组细粒沉积岩纹层特征与成因[J]. 古地理学报,2020,22(3):469-482.

    Li Wei, Zhu Xiaomin, Duan Hongliang, et al. Characteristics and forming mechanism of laminae fine-grained sedimentary rock of the Paleogene Funing Formation in Gaoyou and Jinhu Sags, Subei Basin[J]. Journal of Palaeogeography, 2020, 22(3): 469-482.
    [55] Kienel U, Schwab M J, Schettler G. Distinguishing climatic from direct anthropogenic influences during the past 400 years in varved sediments from Lake Holzmaar (Eifel, Germany)[J]. Journal of Paleolimnology, 2005, 33(3): 327-347.
    [56] 陈世悦,张顺,刘惠民,等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报,2017,19(2):271-284.

    Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of fine-grained sediments in lacustrine deep water[J]. Journal of Palaeogeography, 2017, 19(2): 271-284.
    [57] Kelts K, Hsü K J. Freshwater carbonate sedimentation[M]. New York: Springer, 1978: 295-323.
    [58] Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2010, 48(2): 465-478.
    [59] Hage S, Cartigny M J B, Sumner E J, et al. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes[J]. Geophysical Research Letters, 2019, 46(20): 11310-11320.
    [60] Mackiewicz N E, Powell R D, Carlson P R, et al. Interlaminated ice-proximal glacimarine sediments in Muir Inlet, Alaska[J]. Marine Geology, 1984, 57(1/2/3/4): 113-147.
    [61] Mutti E. Thin-bedded plumites: An overlooked deep-water deposit[J]. Journal of Mediterranean Earth Sciences, 2019, 11: 61-80.
    [62] Bhattacharya J P, Maceachern J A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America[J]. Journal of Sedimentary Research, 2009, 79(4): 184-209.
    [63] Heard T G. Ichnology and sedimentology of deep-marine clastic systems, Middle Eocene, Ainsa-Jaca Basin, Spanish Pyrenees[D]. London: University College London, 2008.
    [64] Li Z Y, Schieber J. Detailed facies analysis of the Upper Cretaceous Tununk Shale member, Henry Mountains region, Utah: Implications for mudstone depositional models in epicontinental seas[J]. Sedimentary Geology, 2018, 364: 141-159.
    [65] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[J]. AAPG Studies in Geology, 2012, 61: 1-30.
    [66] 孙浩南,谈明轩,姚鹏. 环形水槽物理模拟的沉积学应用与发展趋势[J]. 沉积学报,2025,43(3):797-812.

    Sun Haonan, Tan Mingxuan, Yao Peng. Progress and prospects in the sedimentological applications of a circular flume physical simulation[J]. Acta Sedimentologica Sinica, 2025, 43(3): 797-812.
    [67] Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
    [68] Praet N, van Daele M, Collart T, et al. Turbidite stratigraphy in proglacial lakes: Deciphering trigger mechanisms using a statistical approach[J]. Sedimentology, 2020, 67(5): 2332-2359.
    [69] Boulesteix K, Poyatos-Moré M, Flint S S, et al. Transport and deposition of mud in deep-water environments: Processes and stratigraphic implications[J]. Sedimentology, 2019, 66(7): 2894-2925.
    [70] Masterson K J. Hyperpycnal flow deposition and sequence stratigraphy of a Cretaceous near-shore mudstone unit: The Skull Creek Shale Formation, Colorado, USA[D]. Fort Collins: Colorado State University, 2015.
    [71] Plint A G. Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647.
    [72] Pierce C S, Haughton P D W, Shannon P M, et al. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, western Ireland[J]. Sedimentology, 2018, 65(3): 952-992.
    [73] Yang R C, Fan A P, Han Z Z, et al. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2017, 85: 194-219.
    [74] Peng J W. Sedimentology of the Upper Pennsylvanian organic-rich Cline Shale, Midland Basin: From gravity flows to pelagic suspension fallout[J]. Sedimentology, 2021, 68(2): 805-833.
    [75] Shanmugam G. Deep-water bottom currents and their deposits[J]. Developments in Sedimentology, 2008, 60: 59-81.
    [76] Nutz A, Schuster M, Ghienne J F, et al. Wind-driven bottom currents and related sedimentary bodies in Lake Saint-Jean (Québec, Canada)[J]. GSA Bulletin, 2015, 127(9/10): 1194-1208.
    [77] Cohen A S. Paleolimnology: The history and evolution of lake systems[M]. Oxford: Oxford University Press, 2003: 500.
    [78] Halfman J D, Dittman D E, Owens R W, et al. Storm-induced redistribution of deepwater sediments in Lake Ontario[J]. Journal of Great Lakes Research, 2006, 32(2): 348-360.
    [79] 潘树新,陈彬滔,刘华清,等. 陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J]. 天然气地球科学,2014,25(10):1577-1585.

    Pan Shuxin, Chen Bintao, Liu Hua-qing, et al. Deepwater bottom current rework sand (BCRS) in lacustrine basins: Sedimentary characteristics, identification criterion, formation mechanism and its significance for unconventional oil/gas exploration[J]. Natural Gas Geoscience, 2014, 25(10): 1577-1585.
    [80] 吴松涛,朱如凯,罗忠,等. 中国中西部盆地典型陆相页岩纹层结构与储层品质评价[J]. 中国石油勘探,2022,27(5):62-72.

    Wu Songtao, Zhu Rukai, Luo Zhong, et al. Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China[J]. China Petroleum Exploration, 2022, 27(5): 62-72.
    [81] Wang S Q, Zhang J G, Li C S, et al. Research progress and prospects of deep water episodically deposited mudstones[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2025, 47(1): 770-781.
    [82] 张建国. 济阳坳陷始新统沙三下亚段湖相细粒沉积岩成因机制研究[D]. 北京:中国地质大学(北京),2017.

    Zhang Jianguo. The formation mechanisms of lacustrine fine-grained sedimentary rocks in the Eocene lower Es3 strata, the Jiyang Depression[D]. Beijing: China University of Geosciences (Beijing), 2017.
    [83] 王鑫锐,孙雨,刘如昊,等. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报,2023,41(2):349-377.

    Wang Xinrui, Sun Yu, Liu Ruhao, et al. Research progress into fine-grained sedimentary rock characteristics and formation in a continental lake basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 349-377.
    [84] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada foreland basin[J]. Journal of Sedimentary Research, 2013, 82(11): 801-822.
    [85] Al-Mufti O. Sedimentology and stratigraphy of the Upper Cretaceous Puskwaskau Formation in North-Central Alberta, western Canada foreland basin[D]. London: The University of western Ontario, 2018.
    [86] Ayranci K, Harris N B, Dong T. Sedimentological and ichnological characterization of the Middle to Upper Devonian horn river group, British Columbia, Canada: Insights into mudstone depositional conditions and processes below storm wave base[J]. Journal of Sedimentary Research, 2018, 88(1): 1-23.
    [87] 林培贤,林春明,姚悦,等. 渤海湾盆地北塘凹陷古近系沙河街组三段白云岩中方沸石的特征及成因[J]. 古地理学报,2017,19(2):241-256.

    Lin Peixian, Lin Chunming, Yao Yue, et al. Characteristics and causes of analcime distributed in dolostone of the member 3 of Paleogene Shahejie Formation in Beitang Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2017, 19(2): 241-256.
    [88] 姜在兴,王运增,王力,等. 陆相细粒沉积岩物质来源、搬运—沉积机制及多源油气甜点[J]. 石油与天然气地质,2022,43(5):1039-1048.

    Jiang Zaixing, Wang Yunzeng, Wang Li, et al. Review on provenance, transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2022, 43(5): 1039-1048.
    [89] 柳益群,周鼎武,南云,等. 新疆北部地区二叠系幔源碳酸岩质喷积岩研究[J]. 古地理学报,2018,20(1):49-63.

    Liu Yiqun, Zhou Dingwu, Yun Nan, et al. Permian mantle-derived carbonatite originated exhalative sedimentary rocks in north Xinjiang[J]. Journal of Palaeogeography, 2018, 20(1): 49-63.
    [90] 王建功,杨少勇,李翔,等. 柴达木盆地西部地区咸化湖泊微生物岩特征与差异分布[J]. 中国矿业大学学报,2020,49(6):1111-1127.

    Wang Jiangong, Yang Shaoyong, Li Xiang, et al. The characteristics and differential distribution of microbial carbonates of saline lacustrine in the western Qaidam Basin[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1111-1127.
    [91] Hornby A J, Lavallée Y, Kendrick J E, et al. Phase partitioning during fragmentation revealed by QEMSCAN particle mineralo-gical analysis of volcanic ash[J]. Scientific Reports, 2019, 9(1): 126.
    [92] Zhu S F, Jia Y, Cui H, et al. Alteration and burial dolomitization of fine-grained, intermediate volcaniclastic rocks under saline-alkaline conditions: Bayindulan Sag in the Er'lian Basin, China[J]. Marine and Petroleum Geology, 2019, 110: 621-637.
    [93] Sarg J F, Suriamin, Tänavsuu-Milkeviciene K, et al. Lithofacies, stable isotopic composition, and stratigraphic evolution of microbial and associated carbonates, Green River Formation (Eocene), Piceance Basin, Colorado[J]. AAPG Bulletin, 2013, 97(11): 1937-1966.
    [94] James N P, Dalrymple R W. Facies models 4[M]. St. John's: Geological Association of Canada, 2010: 586.
    [95] Boehrer B, Schultze M. Stratification of lakes[J]. Reviews of Geophysics, 2008, 46(2): RG2005.
    [96] 王冠民,钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志,2004,23(1):43-48.

    Wang Guanmin, Zhong Jianhua. A review and the prospects of the researches on sedimentary mechanism of lacustrine laminae[J]. Acta Petrologica et Mineralogica, 2004, 23(1): 43-48.
    [97] Wetzel R G. Limnology: Lake and river ecosystems[M]. 3rd ed. San Diego: Academic Press, 2001.
    [98] Dor Y B, Neugebauer I, Enzel Y, et al. Varves of the Dead Sea sedimentary record[J]. Quaternary Science Reviews, 2019, 215: 173-184.
    [99] Zou C N, Zhu R K, Chen Z Q, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.
    [100] Anderson R Y, Dean D E, Bradbury J P, et al. Meromictic lakes and varved lake sediments in North America[R]. US Government Printing Office, 1985.
    [101] 刘惠民,杨怀宇,张鹏飞,等. 古湖泊水介质条件对混积岩相组合沉积的控制作用:以渤海湾盆地东营凹陷古近系沙河街组三段为例[J]. 石油与天然气地质,2022,43(2):297-306.

    Liu Huimin, Yang Huaiyu, Zhang Pengfei, et al. Control effect of paleolacustrine water conditions on mixed lithofacies assemblages: A case study of the Palaeogene Es 3, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(2): 297-306.
    [102] Tang Y, Cao J, He W J, et al. Discovery of shale oil in alkaline lacustrine basins: The Late Paleozoic Fengcheng Formation, Mahu Sag, Junggar Basin, China[J]. Petroleum Science, 2021, 18(5): 1281-1293.
    [103] Liu J P, Xian B Z, Ji Y L, et al. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: The Eocene Dongying Depression, Bohai Bay Basin, East China[J]. Marine and Petroleum Geology, 2020, 114: 104197.
    [104] Zavala C, Arcuri M, Meglio M D, et al. Deltas: A new classification expanding Bates's concepts[J]. Journal of Palaeogeography, 2021, 10: 23.
    [105] 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发,2020,47(6):1079-1089.

    Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089.
    [106] Jazi S D, Wells M G. Dynamics of settling-driven convection beneath a sediment-laden buoyant overflow: Implications for the length-scale of deposition in lakes and the coastal ocean[J]. Sedimentology, 2020, 67(1): 699-720.
    [107] 施振生,邱振,董大忠,等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发,2018,45(2):339-348.

    Shi Zhensheng, Qiu Zhen, Dong Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348.
    [108] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
    [109] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.

    Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.
    [110] 莱尔曼. 湖泊的化学地质学和物理学[M]. 王苏民,译. 北京:地质出版社,1989. [

    Lerman A. Chemical geology and physics of lakes[M]. Wang Sumin, trans. Beijing: Geological Publishing House, 1989.]
    [111] Halfar J, Ingle Jr J C, Godinez-Orta L. Modern non-tropical mixed carbonate-siliciclastic sediments and environments of the southwestern Gulf of California, Mexico[J]. Sedimentary Geology, 2004, 165(1/2): 93-115.
    [112] 余恩晓. 松辽盆地晚白垩世嫩江组一段细粒沉积物沉积环境及年际古气候特征[D]. 北京:中国地质大学(北京),2019.

    Yu Enxiao. Depositional environments and inter-annual paleoclimatic characteristics of the fine-grained sedimentary rocks of the First member of the Nenjiang Formation in the Late Cretaceous Songliao Basin[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [113] Carroll A R, Bohacs K M. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls[J]. Geology, 1999, 27(2): 99-102.
    [114] Smith M E, Carroll A R. Stratigraphy and paleolimnology of the Green River Formation, western USA[M]. Dordrecht: Springer, 2015: 1-355.
    [115] 王苗,陆建林,左宗鑫,等. 纹层状细粒沉积岩特征及主控因素分析:以渤海湾盆地东营凹陷沙四上—沙三下亚段为例[J]. 石油实验地质,2018,40(4):470-478.

    Wang Miao, Lu Jianlin, Zuo Zongxin, et al. Characteristics and dominating factors of lamellar fine-grained sedimentary rocks: A case study of the upper Es4 member-lower Es3 member, Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 470-478.
    [116] Chen P, Xian B Z, Li M J, et al. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China: Sedimentary processes and depositional architecture[J]. Sedimentology, 2021, 68(7): 3279-3306.
    [117] Yang R C, Jin Z J, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
    [118] Boulesteix K, Poyatos-Moré M, Hodgson D M, et al. Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout[J]. Journal of Sedimentary Research, 2020, 90(12): 1678-1705.
    [119] Li W W, Cao J, Zhi D M, et al. Controls on shale oil accumulation in alkaline lacustrine settings: Late Paleozoic Fengcheng Formation, northwestern Junggar Basin[J]. Marine and Petroleum Geology, 2021, 129: 105107.
    [120] Sun N L, Chen T Y, Zhong J H, et al. Petrographic and geochemical characteristics of deep-lacustrine organic-rich mudstone and shale of the Upper Triassic Chang 7 member in the southern Ordos Basin, northern China: Implications for shale oil exploration[J]. Journal of Asian Earth Sciences, 2022, 227: 105118.
    [121] Demicco R V, Lowenstein T K. When “evaporites” are not formed by evaporation: The role of temperature and pCO2 on saline deposits of the Eocene Green River Formation, Colorado, USA[J]. GSA Bulletin, 2020, 132(7/8): 1365-1380.
    [122] Schieber J, Shao X H. Detecting detrital carbonate in shale successions:Relevance for evaluation of depositional setting and sequence stratigraphic interpretation[J]. Marine and Petroleum Geology, 2021, 130: 105130.
    [123] Buchheim P, Biaggi R E, Cushman R A. Stratigraphy and interbasinal correlations between fossil and the Green River Basin, Wyoming[M]//Smith M E, Carroll A R. Stratigraphy and paleolimnology of the Green River Formation, western USA. Dordrecht: Springer, 2015: 127-151.
    [124] Stockhecke M, Sturm M, Brunner I, et al. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years[J]. Sedimentology, 2014, 61(6): 1830-1861.
    [125] Wang W W, Jiang Z X, Xie X Y, et al. Sedimentary character-istics and interactions among volcanic, terrigenous and marine processes in the Late Permian Kuishan member, eastern block of the North China Craton[J]. Sedimentary Geology, 2020, 407: 105741.
    [126] Li Z Y, Schieber J, Pedersen P K. On the origin and significance of composite particles in mudstones: Examples from the Cenomanian Dunvegan Formation[J]. Sedimentology, 2021, 68(2): 737-754.
    [127] Liang C, Cao Y C, Liu K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128.
    [128] 金之钧,朱如凯,梁新平,等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发,2021,48(6):1276-1287.

    Jin Zhijun, Zhu Rukai, Liang Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287.
    [129] 邹才能,马锋,潘松圻,等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘,2023,30(1):128-142.

    Zou Caineng, Ma Feng, Pan Songqi, et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023, 30(1): 128-142.
    [130] 吴科睿,孙雨,闫百泉,等. 纹层状湖盆细粒沉积岩储集物性及油气富集特征研究进展[J]. 沉积学报,2025,43(1):20-38.

    Wu Kerui, Sun Yu, Yan Baiquan, et al. Progress on the features of physical property and hydrocarbon accumulation of laminated lacustrine fine-grained sedimentary rocks[J]. Acta Sedimentologica Sinica, 2025, 43(1): 20-38.
    [131] Li M Y, Wu S T, Hu S Y, et al. Lamina variation and its relationship with sedimentary facies in alkaline lacustrine, Permian Fengcheng Formation, Junggar Basin, Northwest China[J]. ACS Omega, 2022, 8(1): 599-613.
    [132] 朱如凯,吴松涛,崔景伟,等. 油气储层中孔隙尺寸分级评价的讨论[J]. 地质科技通报,2016,35(3):133-144.

    Zhu Rukai, Wu Songtao, Cui Jingwei, et al. Classification and evaluation of pore size in oil & gas reservoir rocks[J]. Bulletin of Geological Science and Technology, 2016, 35(3): 133-144.
    [133] Gao Z Y, Duan L F, Jiang Z X, et al. Using laser scanning confocal microscopy combined with saturated oil experiment to investigate the pseudo in-situ occurrence mechanism of light and heavy components of shale oil in sub-micron scale[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111234.
    [134] Schieber J, Li Z Y, Yawar Z, et al. Kaolinite deposition from moving suspensions: The roles of flocculation, salinity, suspended sediment concentration and flow velocity/bed shear[J]. Sedimentology, 2023, 70(1): 121-144.
    [135] 朱如凯,李梦莹,杨静儒,等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质,2022,43(2):251-264.

    Zhu Rukai, Li Mengying, Yang Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264.
    [136] 张顺,刘惠民,陈世悦,等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨:以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报,2017,91(5):1108-1119.

    Zhang Shun, Liu Huimin, Chen Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J] Acta Geologica Sinica, 2017, 91(5): 1108-1119.
    [137] 赵建华,金之钧. 泥岩成岩作用研究进展与展望[J]. 沉积学报,2021,39(1):58-72.

    Zhao Jianhua, Jin Zhijun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1) 58-72.
    [138] Bohacs K M, Lazar O R, Demko T M. Parasequence types in shelfal mudstone strata-quantitative observations of lithofacies and stacking patterns, and conceptual link to modern depositional regimes[J]. Geology, 2014, 42(2): 131-134.
    [139] Wilson R D, Schieber J, Bohacs K M. Sequence stratigraphic reconstruction of the late Middle Devonian Geneseo Formation of NY, USA: Developing a genetic model for “Upper Devonian” unconventional targets in the northern Appalachian Basin[J]. Marine and Petroleum Geology, 2022, 138: 105547.
    [140] Kemp D B, Fraser W T, Izumi K. Stratigraphic completeness and resolution in an ancient mudrock succession[J]. Sedimentology, 2018, 65(6): 1875-1890.
    [141] Shi J Y, Jin Z J, Liu Q Y, et al. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China[J]. Global and Planetary Change, 2021, 205: 103614.
    [142] Lin M R, Xi K L, Cao Y C, et al. Periodic paleo-environment oscillation on multi-timescales in the Triassic and their significant implications for algal blooms: A case study on the lacustrine shales in Ordos Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 612: 111376.
    [143] Lin Q, Liu E F, Zhang E L, et al. Spatial variation of organic carbon sequestration in large lakes and implications for carbon stock quantification[J]. CATENA, 2022, 208: 105768.
    [144] Huang W T, Wu H C, Fang Q, et al. Orbitally forced organic matter accumulation recorded in an Early Permian mid-latitude palaeolake[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 606: 111259.
    [145] Jonk R, Bohacs K M, Davis J S. Evaluating top seals within a sequence-stratigraphic framework: Impact on geological carbon sequestration[J]. Marine and Petroleum Geology, 2022, 146: 105920.
    [146] 李威,张元元,倪敏婕,等. 准噶尔盆地玛湖凹陷下二叠统古老碱湖成因探究:来自全球碱湖沉积的启示[J]. 地质学报,2020,94(6):1839-1852.

    Li Wei, Zhang Yuanyuan, Ni Minjie, et al. Genesis of alkaline lacustrine deposits in the Lower Permian Fengcheng Formation of the Mahu Sag, northwestern Junggar Basin: Insights from a comparison with the worldwide alkaline lacustrine deposits[J]. Acta Geologica Sinica, 2020, 94(6): 1839-1852.
    [147] Joseph R G, Gibson C, Wolowski K, et al. Evolution of life in the oceans of Mars? Episodes of global warming, flooding, rivers, lakes, and chaotic orbital obliquity[J]. Journal of Astrobiology, 2022, 13: 14-126.
    [148] Brasier A T, Dennis P F, Still J, et al. Detecting ancient life: Investigating the nature and origin of possible stromatolites and associated calcite from a one billion year old lake[J]. Precambrian Research, 2019, 328: 309-320.
    [149] Schieber J, Bohacs K M, Coleman M, et al. Mars is a mirror:Understanding the Pahrump Hills mudstones from a perspective of Earth analogues[J]. Sedimentology, 2022, 69(6): 2371-2435.
  • [1] 吴科睿, 孙雨, 闫百泉, 杨佳奇, 马志强, 于利民, 王鑫锐.  纹层状湖盆细粒沉积岩储集物性及油气富集特征研究进展 . 沉积学报, 2025, 43(1): 20-38. doi: 10.14027/j.issn.1000-0550.2023.072
    [2] 白雪峰, 林铁锋, 刘鑫, 马生明, 李昕, 杨帆, 王国攀, 李玉寅, 高远.  松辽盆地嫩江组下部细粒沉积岩相组合与高有机质层富集机制——以齐家—古龙凹陷A34井为例 . 沉积学报, 2025, (): -. doi: 10.14027/j.issn.1000-0550.2025.057
    [3] 叶茂松, 解习农, 杜学斌, 赵珂, 吴峰.  “组分混合”沉积的储层非均质性及形成机理——以渤海海域古近系沙河街组一、二段为例 . 沉积学报, 2025, 43(2): 635-652. doi: 10.14027/j.issn.1000-0550.2023.030
    [4] 刘海, 徐耀辉, 李阳, 黄凌松, 吕奇奇, 刘忠保.  海陆过渡相三角洲沉积体系陆源有机质沉积特征及其影响因素的模拟实验研究 . 沉积学报, 2024, 42(1): 251-265. doi: 10.14027/j.issn.1000-0550.2023.047
    [5] 肖颖.  陆相富有机质页岩纹层特征及其储集性能 ——以鄂尔多斯盆地东南部延长组长7段为例 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.071
    [6] 吴科睿, 闫百泉, 孙雨, 于利民, 王鑫锐.  湖盆细粒沉积岩纹层形成机制及影响因素研究进展 . 沉积学报, 2024, 42(4): 1164-1184. doi: 10.14027/j.issn.1000-0550.2022.136
    [7] 彭思钟, 刘德勋, 张磊夫, 邱振, 王以城, 封从军, 孙萌思.  鄂尔多斯盆地东缘大宁—吉县地区山西组页岩岩相与沉积相特征 . 沉积学报, 2022, 40(1): 47-59. doi: 10.14027/j.issn.1000-0550.2021.058
    [8] 黄梓桑, 王兴志, 杨西燕, 朱如凯, 崔景伟, 卢远征, 李勇.  沉积环境对页岩中有机质富集的约束 . 沉积学报, 2021, 39(3): 631-644. doi: 10.14027/j.issn.1000-0550.2020.120
    [9] 李泉泉, 鲍志东, 肖毓祥, 陈建阳, 李忠诚, 王振军, 刘敏昭, 李卓伦, 许西挺, 操凡.  混合沉积研究进展与展望 . 沉积学报, 2021, 39(1): 153-167. doi: 10.14027/j.issn.1000-0550.2020.140
    [10] 李继岩.  多期构造裂缝发育充填特征及其主控因素——以济阳坳陷平南潜山为例 . 沉积学报, 2020, 38(2): 420-428. doi: 10.14027/j.issn.1000-0550.2019.117
    [11] 马立元, 胡才志, 邱桂强, 陈纯芳, 高金慧, 徐士林.  鄂尔多斯盆地镇泾地区长8段储层非均质性及其结构模式 . 沉积学报, 2020, 38(5): 1088-1098. doi: 10.14027/j.issn.1000-0550.2020.039
    [12] 郭望, 张卫刚, 李玉宏, 雷迅, 李永红, 陈刚, 张云鹏, 陈磊, 徐学敏.  柴北缘大煤沟组七段页岩地球化学特征——对中侏罗世晚期物源及风化作用的指示及意义 . 沉积学报, 2020, 38(3): 676-686. doi: 10.14027/j.issn.1000-0550.2019.103
    [13] 梁爽, 杜社宽.  准噶尔盆地中拐凸起侏罗系三工河组储层特征及控制因素 . 沉积学报, 2019, 37(6): 1269-1279. doi: 10.14027/j.issn.1000-0550.2019.010
    [14] 赵帮胜, 李荣西, 覃小丽, 刘福田, 吴小力, 赵迪, 刘齐, 周伟.  鄂尔多斯盆地中部上古生界山西组页岩储层特征 . 沉积学报, 2019, 37(6): 1140-1151. doi: 10.14027/j.issn.1000-0550.2019.054
    [15] 梁峰, 张琴, 熊小林, 崔会英, 梁萍萍, 马超.  四川盆地及周缘五峰组—龙马溪组富有机质页岩沉积演化模式 . 沉积学报, 2019, 37(4): 847-857. doi: 10.14027/j.issn.1000-0550.2018.164
    [16] 孙辉, 刘少治, 马宏霞, 鲁银涛, 许小勇.  东非鲁武马盆地海底水道—朵体体系粗粒浊流沉积物波特征及主控因素 . 沉积学报, 2017, 35(4): 763-771. doi: 10.14027/j.cnki.cjxb.2017.04.010
    [17] 张妮妮, 刘洛夫, 苏天喜, 戴琦雯, 赵园园.  库车坳陷东部下侏罗统致密砂岩储层特征及主控因素 . 沉积学报, 2015, 33(1): 160-169. doi: 10.14027/j.cnki.cjxb.2015.01.017
    [18] 白音查干凹陷桑合地区腾格尔组储层特征及主控因素分析 . 沉积学报, 2013, 31(2): 350-357.
    [19] 马世忠, 杨清彦.  曲流点坝沉积模式、三维构形及其非均质模型 . 沉积学报, 2000, 18(2): 241-247.
    [20] 郭建华.  塔里木盆地轮南地区奥陶系潜山古岩溶及其所控制的储层非均质性 . 沉积学报, 1993, 11(1): 56-64.
  • 加载中
图(11) / 表 (2)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  45
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-19
  • 修回日期:  2024-06-12
  • 录用日期:  2024-07-22
  • 网络出版日期:  2024-07-22
  • 刊出日期:  2025-12-10

目录

    湖泊细粒沉积岩纹层特征与形成机制研究进展及展望

    doi: 10.14027/j.issn.1000-0550.2024.080
      基金项目:

      国家自然科学基金项目 42090021

      作者简介:

      王铭乾,男,1995年出生,博士研究生,非常规油气沉积学,E-mail: wangmingqian2017@163.com

      通讯作者: 张元元,女,研究员,E-mail: yy-zhang@pku.edu.cn

    摘要: 意义 作为古气候还原及非常规油气勘探的重要载体,细粒沉积岩纹层近年来备受学者关注。然而,目前学术界对湖泊细粒沉积岩中纹层的形成机制及相应识别特征的研究尚不明确。 【进展】 对湖泊中细粒沉积岩纹层的形成机制、沉积特征及控制因素进行了系统总结。悬浮沉降、重力流远端稀释、底流、火山热液及微生物作用等方式,均可在湖泊环境中形成细粒沉积岩纹层。尽管不同沉积过程可能形成成分、层厚、粒度及形态相似的纹层,但它们在纹层组合、生物扰动以及其他沉积构造特征等方面存在较大差别。这些纹层的形成和分布受古气候和古地理两大类因素控制,古气候通过温度、降水、盐度和风场等要素对纹层进行控制,作用广泛且复杂,古地理通过水深、构造特征和物质来源等要素控制纹层分布格局。 展望 从理论发展和实际应用来看,目前湖泊细粒沉积岩纹层研究仍存在一些问题,未来应在查明纹层形成机制的基础上,发展科学的分类方案和有效的纹层信息提取手段,整合纹层空间尺度的变化,面向非常规油气重大需求,聚焦古气候还原、碳埋藏、生命演化及火星沉积学等前沿问题开展研究。

    English Abstract

    王铭乾, 张元元, 朱如凯, 郭召杰, 李志扬, 王俊峰. 湖泊细粒沉积岩纹层特征与形成机制研究进展及展望[J]. 沉积学报, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080
    引用本文: 王铭乾, 张元元, 朱如凯, 郭召杰, 李志扬, 王俊峰. 湖泊细粒沉积岩纹层特征与形成机制研究进展及展望[J]. 沉积学报, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080
    WANG MingQian, ZHANG YuanYuan, ZHU RuKai, GUO ZhaoJie, LI ZhiYang, WANG JunFeng. Progress and Perspective on the Characteristics and Formation Mechanism of Laminae in Lacustrine Fine-grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080
    Citation: WANG MingQian, ZHANG YuanYuan, ZHU RuKai, GUO ZhaoJie, LI ZhiYang, WANG JunFeng. Progress and Perspective on the Characteristics and Formation Mechanism of Laminae in Lacustrine Fine-grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(6): 1897-1918. doi: 10.14027/j.issn.1000-0550.2024.080
      • 细粒沉积岩,又称泥页岩,指主要由黏土级和粉砂级颗粒组成的岩石,作为地球上广泛发育、占比最高的沉积岩,它常发育大量纹层,使岩石表现出矿物成分、结构及颜色等变化[12]。由于细粒沉积岩不仅蕴含了巨量的非常规油气资源,还是古气候、地球磁场、生态环境重建[34]及早期生命演化[5]研究的重要载体,因此细粒沉积岩纹层研究备受学者关注[67]。近年来,细粒沉积岩纹层形成机制成为研究的热点和重点。传统观点认为,细粒物质一般在低能安静环境中缓慢沉积,并由于沉积间断形成纹层[8]。但水槽实验、海洋沉积观测及海相泥页岩的精细观察显示,细粒物质可在底流[9]、异重流[10]、风暴流[11]及浪控沉积物重力流[1213]等多种机制下搬运沉积,形成丰富纹层类型[14]。上述这些纹层形成机制研究进展主要集中于海洋环境,与之相比,湖相细粒沉积岩纹层的形成机制则关注较少[15]。但随着陆相页岩油勘探研究的不断深入,越来越多证据显示湖泊细粒沉积岩纹层也可通过多种方式形成[16],但这些纹层的成因机制尚未引起研究者广泛关注。究其原因,主要是湖泊细粒沉积岩纹层成因类型识别标准尚未建立。在此背景下,本文通过对前人研究的系统梳理,对湖泊细粒沉积岩纹层的形成机制、识别特征及控制因素方面的研究进展进行系统分析,归纳了不同成因纹层识别的特征,并根据目前研究进展,展望了纹层的发展趋势,以期共同推动陆相细粒沉积学发展。

      • 纹层是层理中厚度小于1 cm且不可再分的最基本单元[1718],它的沉积机制研究与20世纪以来的湖泊古气候、沉积地质和油气勘探发展密切相关。研究显示,纹层的形成与沉积速率、沉积间断、物质供给及流态转换密切相关,悬浮沉降不是湖泊细粒沉积岩纹层形成的唯一机制,重力流远端稀释及流态转换、底流、火山热液及微生物活动等也可使细粒物质迁移聚集形成纹层(图1)。

        图  1  细粒沉积岩纹层研究进展

        Figure 1.  Progress in research on laminae of fine⁃grained sedimentary rocks

      • 有关湖泊纹层研究历史最早可以追溯到19世纪中叶瑞典地区冰川湖中的年纹层沉积,后来,de Geer[19]用“纹泥(varve)”一词定义冰川湖泊中较粗浅色夏季纹层和较细深色冬季纹层组成的韵律性年纹层。尤尔斯特图解中,砂级别以下的细粒物质需要在静水环境下依靠重力克服自身的内聚力和水体摩擦力才可缓慢沉降下来形成纹层,因此20世纪以来,人们普遍认为细粒纹层是深水区悬浮沉降的产物。Anderson et al.[20]对湖泊纹泥类型进行归纳,分为有机质—碎屑、有机质—碳酸盐、有机质—蒸发盐、碎屑—蒸发盐和有机质—硅藻五类。悬浮沉降过程中,长英质及部分钙质细粒非黏性物质,满足斯托克定律;黏土及部分钙质颗粒沉积过程中易与有机质组合成团,以絮凝体的形式沉降[21]

        纹泥主要发育在面积小而深且底部相对平坦的深湖中,这些条件有利于水体分层且可避免纹层被后期生物扰动或浊流破坏[22]。而在靠近河口区域,河流或洪水携带的陆源物质进入湖泊可稀释形成羽状流,羽状流中细粒及粗颗粒差异悬浮沉降,可形成不具年度性质的毫米至厘米级的细粒纹层[23]

      • 相比悬浮沉降,重力流沉积速率相对较快,在深湖中多呈块状砂岩将悬浮沉降的纹层状泥岩隔开。但越来越多的研究显示,受物质来源、流体稀释及流态转化等因素影响,重力流也可在其远端形成细粒沉积岩纹层。

        20世纪80年代,Piper[24]将Bouma序列Te段细分为Te1-Te3,后来Stow et al.[25]又提出泥质为主的低密度浊流序列T0-T9(对应Bouma序列Tc-Te段),两类划分发育波状纹层、低幅度爬升纹层及平行纹层等沉积构造(图2)。前人对这些纹层成因存在争议,Stow et al.[25]及Talling et al.[26]认为浊流搬运过程中与底床的剪切作用,导致其形成波状、低角度交错及板状纹层,但流体性质仍然为重力流;而Lowe[27]则认为浊流搬运过程中被逐渐稀释,受悬浮沉降和牵引流影响,形成平行和低角度交错纹层。实际应用中,Stow序列细粒浊流虽提出较早,但由于其复杂性未得到广泛引用,Bouma序列及Piper的Te细分是细粒纹层成因的主流理论。近年来,Kong et al.[28]在束鹿凹陷沙河街组等湖相地层研究中将海相低密度浊流纹层成因解释应用到湖泊沉积。

        图  2  低密度浊流序列与经典浊流序列对比与划分(据文献[2425]修改)

        Figure 2.  Comparison and division of low⁃density turbidity sequence and classical turbidity sequence (modified from references [24⁃25])

        除垮塌型浊流外,洪水异重流也可携带大量物质沿着湖底进行远距离搬运,在咸盐水湖中由于能量减弱及密度反转,牵引和悬浮细粒物质形成具有逆—正粒序的低角度交错纹层及板状纹层[2930]

        此外,碎屑流在湖底搬运过程中,受水体加入、侵蚀及稀释作用的影响逐渐转变为低密度浊流。低密度浊流在搬运过程中,侵蚀泥质基底,使黏土含量增加湍流抑制,进一步转变为泥质碎屑流,两种转变均形成具有多种流变性质流体的“混合事件层”[3132]。Haughton et al.[33]将混合事件层划分为H1⁃H5五个单元,其中过渡流H2段及低密度浊流H4⁃H5段可发育细粒低角度交错、透镜状及板状纹层。

        Macquaker et al.[1213]通过对海相泥岩观察发现,风暴或底流作用会使细粒物质再悬浮,并在风浪作用下以重力流形式沿坡搬运形成浪控沉积物重力流,其底部受侵蚀牵引形成低角度交错纹层,上部受紊流抑制和剪切作用形成板状纹层。Bai et al.[34]在渤海湾盆地沙河街组湖相沉积中发现了浪控沉积物重力流。

      • 21世纪以来,一系列水槽实验显示,黏土质、长英质及钙质细粒物质在5~50 cm/s高能流速下能以絮状体形式迁移,形成低角度交错纹层[3536]。长英质和黏土细粒混合物在相近流速下同样可以以絮状体形式搬运,由于颗粒之间惰性及动量差异,沉积时絮凝体破裂分离形成低角度交错纹层或平行纹层[9];富水塑性沉积物,受侵蚀形成泥质撕裂碎屑,悬浮、搬运、再沉积形成细砂大小的透镜状纹层[37]。这些实验为风暴或风场等各类底流成因的水流波纹、浪成波纹和混合流波纹及透镜状纹层成因解释提供了有力依据。

      • 近年来,在鄂尔多斯盆地延长组、准噶尔盆地芦草沟组等湖相地层研究中发现,细粒沉积岩纹层也常与火山、热液作用相关[3839]。水下或水上火山喷发产生的细粒火山灰以悬浮沉降或重力流等多种形式搬运至湖底形成纹层,同时火山喷发带来的营养元素使藻类勃发形成有机质纹层[40]。受水下压力和温度影响,水下热液脉动喷发并形成方沸石等细粒纹层。

        在北美始新世绿河组及柴达木盆地新生界的湖泊浅水环境中,微生物活动并产生大量黏性胞外聚合物EPS,捕获、凝聚、阻挡和结合细粒物质,形成叠层石或底栖微生物席纹层[4142]。湖水表层钙质或硅质生物死亡后沉降、埋藏也可形成生物残骸纹层[43]

      • 季节性径流携带的陆源物质(石英、长石及黏土矿物)与盆内自生矿物(如方解石或盐类矿物)以表层流或层间流方式悬浮在分层水体中搬运,在相对封闭且安静的半深湖—深湖中沉积下来形成纹层,如果纹层沉积后不遭受改造、保存季节信号并呈韵律出现的纹层称为年纹层或季节性纹泥[44]

        识别标志上,季节性纹泥常呈板状、连续、平行的韵律层偶出现,接触界面截然或渐变(图3[4549];整体具正粒序,可分为表层流和层间流形成的渐变正粒序及季节性径流、融雪或羽状流缓慢沉积形成的具亚层正粒序(图3b,c)[50];可见漂浮细砾、粪球粒及黏土有机质聚集体等指示悬浮沉降意义物质(图3a)[51];纹层原始厚度介于0.1~1.0 mm,成岩脱水后介于20~100 μm[52];细纹泥(<1 mm)季节性特征保存较好,较浅水厚纹泥(>1 mm)受湖流或者浊流影响可呈缓波状并发育小型交错纹层,甚至被打乱[5354]。纹泥矿物组成受控于湖泊内、外源物质季节性供给,淡水湖以陆源沉积为主,少见碳酸盐沉积。以松辽盆地青山口组过填充阶段为例,在浅湖—半深湖区,夏季河流输入强,颗粒粗,形成浅色粗粒厚层,冬季形成深色细粒薄纹层,组成黏土—碎屑层偶(图3a);在远离物源深湖区,夏季发育黏土等细粒物质沉积,冬季则在强还原环境下发育黄铁矿纹层,形成富有机质黄铁矿—黏土层偶(图3b)[46];在中高纬度湖泊中,春夏秋季不同属种硅藻沉积形成浅色厚层硅藻纹层,冬季黏土、有机质沉积形成深色薄层的黏土纹层,形成生物纹泥(图3c)[55]

        图  3  季节性纹泥沉积特征

        Figure 3.  Photographs and schematics of sedimentary varve types

        半咸水—盐湖利于碳酸盐沉淀,在半深湖或深湖低能缓坡区沉积成分或组构混积的钙质—有机混合纹泥[56]。由下至上分为三端元:夏季藻类勃发或底栖微生物活动使方解石沉淀,形成浅色钙质厚纹层;秋季藻类死亡,形成有机质纹层,冬季水体紊动性降低,黏土矿物沉淀(图3d)[52]。深湖区由于温度及二氧化碳分压使碳酸盐溶解度增加,使纹层中钙质含量略微降低[57]

      • 沉积物羽流指在湖泊水体中运动的富泥浑浊水体,它可形成三种纹层:一是洪水或河流表层流及层间羽状流,由于湖水盐度、粒径、有机质含量、黏土含量、潮汐等条件变化,在河口的近端稀释卸载形成的薄层或纹层[58];二是砂质异重流远端由于密度反转形成的漂浮相会产生羽状流纹层[59];三是异轻流在湖中心缓慢沉降也可能形成纹层[60]。与纹泥相比,羽状流纹层也常呈平行板状,但层厚变化大(毫米至几十厘米不等),韵律性差(图4a);底部由于微弱水流形成饥饿纹层(图4b);粒度上,异重流漂浮相大于河口羽状流和季节性纹层,为粗粉砂质与泥质互层;接触面截然,可发育液化小型负载构造(图4c)[61]。累计厚度大(可达0.5 m),分布广(图4d);成分上,羽状流携带的陆源细粒物质既可单独沉降,也可在搬运过程中与水体中石英、碳酸盐及有机质等物质絮凝体沉降,形成成分单一或混积纹层;层间含植物碎屑、收缩缝和菱铁矿结核(图4e)[30];生物扰动无或弱。异轻流沉积特征前人已有介绍,其沉积速率慢且分布范围广,与深水季节性纹泥类似,但厚度稍厚(纹层至薄层),生物扰动变化大,有机质及化石类型也存在差别[62],在此不赘述。

        图  4  沉积物羽流成因纹层沉积特征

        Figure 4.  Sedimentary characteristics of laminae induced by sediment plumes

      • 湖泊中前三角洲或斜坡上细粒物质易垮塌形成浊流。研究显示,低密度浊流沉积时间介于45~90天,形成纹层至薄层状泥—粉砂沉积[63]。低密度浊流除Bouma序列Tc-Te段外[31],还存在Stow序列T0-T7及Piper对Te段Te1-Te3两种划分,选择随实际情况而定(图2)。侵蚀或截然基底、正粒序、微交错层理及透镜状的粉砂—砂质纹层等牵引构造为低密度浊流下部Tc及T0-T3特征(图5a,b),黏土絮凝和粉砂反复分选形成上部板状纹层(可能为Tb、Td、T4-T6、Te1)和悬浮沉降块状泥岩(Te2-Te3)(图5c~e),根据纹层叠置关系和与粒径对比综合确定[48];成分上,浊流形成及演化过程中会搬运源区和路径上细粒物质形成浑浊水体,由于颗粒比重与比表面积存在较大差异使得颗粒沉降速度不同,可能形成较厚层不具生物扰动泥质纹层或成分不同但粒度相同的韵律纹层(图5f)[28]。因此不难看出,层厚、粒度及韵律性不是判断事件沉积的标准,侵蚀基底、正粒序和垂向组合是识别重力流成因纹层的重要标志。

        图  5  垮塌浊流成因纹层沉积特征

        Figure 5.  Sedimentary characteristics of laminae induced by collapsed turbidity flows

      • 据统计,71%的河流输送物质到海洋中会产生中高频率异重流,与海洋相比,湖泊常具水体密度较小、近物源及易受气候影响的特点,使湖泊中异重流触发概率大幅提升[65]。不同于垮塌浊流[66],异重流持续时间长,可进行远距离运移,在远端形成粗粒或细粒纹层[67]。异重流在粒径、厚度、物质来源及地球化学特征等标志与垮塌型浊流均有差别[68]

        沉积特征中,厘米至米级逆—正粒序层是异重流识别的典型标志,记录了能量增强减弱的过程,其中,由于逆粒序不易远端保存且受后期侵蚀,可能只保留正粒序[30];多期异重流可在远端形成韵律性纹层沉积(图6a);混有植物或浅水生物化石(图6b),可见火焰状构造等软沉积变形构造[69];垂向组合上,异重流底部侵蚀牵引,具正—逆粒序的粉砂质水流波纹或板状纹层(类型II及FA1)(图6c~f),沉积后不久,缓慢沉降形成的弥漫深灰色泥质层(FA2),最后,沉积后长时间悬浮沉降的生物扰动泥岩(FA3)(图6d)[10];横向上,近端以具侵蚀基底,发育波浪和水流纹层沉积为主,远端则以羽状流形成含水流波痕的韵律性平行纹层,远近都具沉积后缓慢沉降形成生物扰动泥岩[70];成分上,异重流纹层一般以长英质或黏土质为主,但也可在搬运过程中混合内源物质形成混积纹层。

        图  6  异重流成因纹层沉积特征

        Figure 6.  Sedimentary characteristics of muddy hyperpycnal flow⁃related laminae

      • 在风暴流或波浪搅动下,沉积物再悬浮以高密度重力流沿坡向下运移,形成风暴流或浪控沉积物重力流[1213]。受风暴发生频率和强度影响,该类纹层主要在海洋及大型湖泊浅湖—半深湖中发育,前人已对其沉积特征进行总结,在此不重复赘述[11]。需要注意的是,浪控沉积物重力流虽也存在与以上两类重力流相似流态转换和垂向组合,整体也具正粒序,但底部多见风暴或波浪作用的低角度交错、丘状或下洼纹层(图7,单元ⅰ)[71];由于湖泊更靠近物源且其风暴或波浪一般小于海洋,因此湖泊中底部纹层一般呈厚度更小、粒度更粗的特征[34]

        图  7  浪控沉积物重力流成因纹层沉积特征

        Figure 7.  Sedimentary characteristics of laminae induced by wave⁃enhanced sediment gravity flow

      • 有关混合事件层组合特征前人已在文章中描述,在此不再赘述[72]。组合上端低密度细粒浊流向远端在迁移过程中沉积稀释,流速减慢,侵蚀能力加强,浓度升高,紊流转变为层流,表现为低角度交错纹层向板状纹层转变(图8a)[73];层流成因的板状纹层中粗颗粒或生物颗粒常“漂浮”在其中[74];实际上,在薄片尺度下,也存在相似的流态转换,在Dunvegan页岩中波状纹层泥岩和相邻无构造泥岩中发现大颗粒“漂浮”在基质中,显示了随着沉积物浓度的增加,从湍流被抑制形成层流(图8b,c)[49]

        图  8  混合事件成因纹层沉积特征

        Figure 8.  Sedimentary characteristics of laminae induced by hybrid flow

      • 底流是指湖泊浪基面之下的水体流动,湖泊中存在风场底流、温盐底流及风暴流三种,使沉积物再悬浮、搬运和沉积形成纹层[75]。风场底流是湖泊中表层流和底层流循环引起全湖广泛、大规模水体流动[76];受温度和盐度影响,湖泊表层和底层水体会发生垂向季节性水柱交换,形成微弱、持续温盐驱动的底流[77],由于湖泊面积小,风力整体相比海洋弱,该类底流的水动力是否强到可以搬运细粒物质形成纹层还需要进一步验证;但在如安大略湖及密歇根湖、济阳坳陷沙三下亚段等大型湖泊深水中,均观察到风暴成因底流牵引形成透镜状纹层[78]

        基于现今大型湖泊沉积观测,前人将海洋中风场底流概念运用到青山口组等大型湖泊中,风场底流牵引沉积物形成夹层、爬升交错层理、压扁层理、透镜状层理、平行层理、韵律层理及交错层理等砂质沉积构造[79]。而对细粒沉积,如前文水槽实验所述,在相对高能底流(5~50 cm/s)作用下,细粒物质以富水絮凝体形式底载牵引沉积形成低角度交错纹层(图9a~c)[16,8081],或侵蚀湖底软泥,形成泥质撕裂内碎屑搬运及再沉积,形成透镜状纹层(图9d~f)[37,8283]。温盐底流(水柱交换)常发育在深湖—半深湖环境中,也可能形成泥质透镜状—微波状纹层,由于受季节影响,所形成的纹层可能存在周期性韵律变化(图9d)[82]

        图  9  底流成因纹层沉积特征

        Figure 9.  Photomicrographs of laminae induced by bottom⁃currents

        北美海相页岩多沉积于风暴主导陆架环境,前人对风暴流及其底流沉积特征已总结和发表了大量文章,在此不再赘述[84]。大量观测显示,风暴流也存在侵蚀—湍流—层流—悬浮的沉积转换[85],可形成泥质楔形纹层、丘状交错纹层、水流波纹、浪成波纹、混合流波纹、饥饿波纹及水平纹层[86],随水深变化,近端发育丘状交错纹层,中端以浪成波纹和混合流波纹为主,远端则主要发育风暴底流成因的饥饿水流波纹[64]

      • 研究显示,芦草沟组、延长组等陆相湖盆优质烃源岩常与火山—热液作用伴生,火山喷发形成凝灰质在深水区沉降形成沉凝灰或方沸石等各类纹层[8788]。水下喷发的熔浆或热液与湖水接触后产生水蒸气并释放能量形成粒度极细的碎屑颗粒,形成热液喷积岩纹层[89]。钙质或硅质生物死亡后经沉降、埋藏可发育生物残骸纹层;光照带生物活动黏结细粒物质,形成叠层石或微生物席纹层[90]图10a)。识别特征上,沉凝灰纹层含火山成因石英、长石、火山碎屑、棱角状火山玻璃(图10b,c)[91];成岩阶段,凝灰层中沸石类、伊利石等黏土矿物发生特定比例变化[92];火山灰水解使P、Fe、Mo及V等元素富集,促进浮游生物繁盛,形成有机质纹层(图10c)[38]。水下喷积岩以溢流或脉动式喷发并受压力影响,形成粒度极细且组成单一的纹层(图10d,e)。受湖浪影响,微生物席黏结碎屑或碳酸盐形成刺状、针状及丘状等不同形态叠层石,发育深色波状碳质纹层,内部有黏土和粉砂,微生物席生长偶尔被风暴打断而具正粒序(图10f)[35,93]

        图  10  火山、热液及微生物成因纹层沉积特征

        Figure 10.  Photomicrographs of laminae with volcanic, hydrothermal or microbial origins

        需要注意的是,不同沉积过程可能会产生相似的纹层结构,目前还没有一种方法可以仅凭沉积结构精确区分为纹层成因(表1图11),因此在识别中,需要结合物质成分、生物扰动及地质背景等不同证据来综合判别。

        表 1  湖泊细粒沉积岩纹层成因机制分类及沉积特征

        Table 1.  Classification of formation mechanism and sedimentary characteristics of laminae in lacustrine fine⁃grained sedimentary rocks

        形成机制悬浮沉降重力流远端底流其他机制
        成因类型纹泥沉积物羽流垮塌浊流异重流浪控沉积物重力流混合事件层风场底流火山或热液微生物
        野外或岩心产出页岩、纹层状泥岩纹层—薄层状泥岩、页岩纹层—厚层状泥岩、单次事件从底至顶层厚变小泥岩、页岩页岩、纹层状泥岩叠层石、纹层—薄层状泥岩
        粒径中泥—细泥粗泥—细泥砂—细泥,单次事件从底到顶部粒径变细砂—细泥砂—细泥砂—细泥
        矿物组成黏土—粉砂、黏土—黄铁矿、钙质—有机质、生物残骸、盐类—黏土等黏土、粉砂或钙质—碎屑混积,取决于物质来源、搬运和混合过程火山成因矿物、有机质黏土、粉砂、有机质、生物残骸
        层厚几十微米—几厘米微米—几十厘米几十微米—几十厘米几十微米—几厘米几十微米—几厘米
        几何形态板状、平行、连续板状—波状—透镜状、平行—不平行、连续—不连续板状—波状—曲线状、平行—不平行、连续—不连续板状—透镜状、不平行、连续—不连续板状—透镜状、平行、连续—不连续刺状—针状—丘状—波状、平行—不平行、连续—断续
        沉积特征韵律年纹层组合,不同类型湖泊有差异层厚差别大的平行板状纹层或层、底部透镜状纹层、“云雾状”等软沉积变形、层间植物碎屑鲍马序列或Stow细粒浊流序列侵蚀基底、逆—正粒序、低角度交错纹层、板状纹层、顶部生物扰动、植物碎屑侵蚀基底、正粒序、低角度交错纹层、丘状纹层、下洼纹层、顶部生物扰动紊流成因低角度交错纹层和层流成因颗粒“悬浮”的板状纹层互层低角度交错纹层、内碎屑集合体纹层、正粒序火山成因矿物纹层—有机质纹层层偶、正粒序碳质纹层,偶尔被风暴打断、生物残骸聚集
        生物扰动0~10~30~50~30~30~50~50~10~5
        沉积环境深湖—半深湖浅湖—半深湖前三角洲、浅湖—深湖前三角洲、滨湖—深湖浅湖—深湖(可能)浅湖—深湖滨湖—深湖深湖滨湖—半深湖
        主控因素水深、构造、风场、水体性质、温度、降水物质来源、水体性质、风场构造、水深、物质来源降水、水体性质、水深、物质来源气候、构造、水深构造、水深、物质来源水深、风场、构造水深、构造、物质来源水深、物质来源

        图  11  湖泊细粒沉积岩纹层沉积机制分布

        Figure 11.  Sedimentary development mechanisms in lacustrine environments

      • 纹层通常是单一水流或沉积事件在几秒钟到一年或几年的“地质时间的瞬间”形成的[11]。湖泊细粒沉积岩纹层的控制因素包括但不限于气候、地貌、风场、盆底形态、水文、基岩类型、构造等因素[94]。由于各因素之间常相互关联,不完全独立,本文将影响纹层沉积机制和特征的因素分为古气候和古地理两大类,将次要影响因素包含到相关主要因素中一并讨论。

      • 温度通过控制水体分层,影响纹层连续性、形态和成分[95]。太阳光照使表层低密度暖水漂浮在底部高密度冷水之上,形成湖水温度分层,利于物质悬浮沉降形成纹层[96]。纬度不同导致的光照差异,热带—亚热带湖泊温度分层能一直存在,如非洲Kivu湖,而高纬度地区,温度分层可季节性消失,受水柱交换或风场影响,产生底流纹层[97]。此外,温度通过控制生物活动或蒸发作用也可使纹层成分发生变化,例如在沙河街组平衡填充咸—盐水湖中的钙质—有机质纹泥或盐类—黏土纹层组合中,夏季高温、水体蒸发和生物作用繁盛使水体盐类达到饱和,形成碳酸盐或盐类矿物纹层,秋冬季生物死亡,沉积有机质或黏土纹层[28]

      • 温度与降水影响水体介质和内外源物质供给,从而控制了纹层成分。一般来讲,湿润气候剥蚀作用加强,陆源输入增加,易形成长英质或黏土纹层;干旱气候下,碳酸盐及盐类纹层则相对富集[98]。例如,在青山口组等过充填型淡水湖中,开放水体一般具有较低pH,碳酸盐溶解度较高,伴随湿润气候使陆源碎屑输入增加,因此长英质占主导,夏季强降水沉积碎屑纹层,冬季低能沉降黏土纹层;在芦草沟组及沙河街组等平衡充填型湖中,夏季降水碎屑输入使浮游藻类和细菌繁盛并蒸发强烈,降低水体CO2分压并提高pH值,使碳酸盐达到饱和度沉积碳酸盐纹层[99],底部卤水滞留可形成盐度分层,其持续时间较温度分层久得多,长期滞留导致氧化还原分层,利于有机质或Fe、Mn等还原态形式保存,形成富有机质碳酸岩或盐类纹层[100101];在准噶尔盆地风城组或土耳其Van湖等欠充填型咸水—盐水湖中,干旱气候下封闭水体一般pH和盐度较高,使碳酸盐溶解度降低,碳酸盐与碱性矿物纹层比例则进一步加大[102]

        湿度和降水通过控制湖平面变化,影响了重力流的纹层类型和分布。阿拉斯加Eklutna湖的现代沉积中,洪水成因纹层一般只发生在春季和初夏,垮塌浊流则不受季节变化影响。在长时间尺度上,受气候—湖平面变化影响,情况有所不同,前人对沙四段地层堆积样式与沉积相分布调查发现,温暖湿润期,湖平面快速上升,异重流易发育;寒冷干旱期,湖平面下降,斜坡暴露有助于触发垮塌重力流[103]。此外,Zavala et al. [104]对洪水相关异重流或异轻流发育特征总结发现,异重流类型受洪水和湖水密度综合控制,而湿度和降水正是控制这两者的关键因素。水体盐度也影响羽状流絮凝作用,导致物质沉积速率发生变化,从而控制纹层的厚度和类型。实验表明,细粒物质在盐度为1~2 g/L时便开始絮凝,达到35 g/L絮凝速率最快,超过40 g/L时沉积速率反而降低[105]。因此,盐度过高或过低时,羽状流均可在风场作用下进行较长距离搬运,有利于形成羽状流纹层[106]

      • 风场通过控制不同深度水体运动使纹层形态和粒径发生变化。一般来讲,板状纹层多形成于能量较强底流或悬浮沉降条件;曲线状纹层常与底流或波浪有关,水体能量较高。波状纹层常与波浪有关,水流能量中等至较低[107]。粒径上,弱水动力条件易沉积黏土质细泥纹层(<8 μm),中等—弱水动力条件易形成细粉砂和碳酸盐为主的中泥纹层(8~32 μm),中等—较强水动力条件易形成粉砂和生物残骸组成的粗泥纹层(32.0~62.5 μm)[108]

        羽状流在波浪、风及湖流等作用下向盆地中心搬运和分选,物质供给减少及水体加深,形成由盆地边界到中心整体呈块状—层状—纹层状分布[109]。大型湖泊风场风浪湖底形态之间作用影响了水流方向,进一步改变纹层分布范围和混积类型[110111]

        综上所述,气候对纹层控制作用广泛而复杂,常通过控制温度、降水、盐度和风场等要素,影响水体分层(氧化还原、密度)、物质供给、重力流触发机制及絮凝速率,使纹层颜色、成分、结构、厚度和分布发生变化。

      • 纹层易形成于水体足够深且底部平坦的半深湖—深湖中。足够的水深是抵抗风浪和维持水体分层和物质缓慢沉降的有利条件,因此水深越大越利于纹层形成。一般来说,大型淡水湖—半咸水湖水深需20 m左右可形成纹层,盐湖则稍浅[112]

        十万年到百万年时间尺度上,水深和径流供给控制了湖泊的类型,导致纹层类型发生变化(表2图11[113]。以绿河组为例,在过充填阶段,三角洲进积强,水体分层差,深水区以碎屑型、黏土型、生物型及钙质—有机混合纹泥和高密度重力流成因纹层为主,滨浅湖区低能缓坡区可沉积叠层石纹层;平衡充填阶段,盐度较高,碳酸盐生产力和水分层强,半深湖—深湖区以混积的钙质—有机质纹泥、盐类纹层及低密度浊流纹层为主,河口区及滨浅湖发育羽状流卸载及叠层石纹层;欠充填湖泊水位低,盐度大,深水区纹层以盐类、风场及混源纹泥为主,局部底栖微生物席纹层,滨浅湖区沉积悬浮沉降纹层[114]

        表 2  湖泊不同相带沉积环境、纹层类型及有机质富集关系

        Table 2.  Sedimentary environment, laminae types and organic matter enrichment relationships in different lacustrine facies

        湖泊类型地表—扩张湖滨湖浅湖半深湖—深湖有利甜点段
        过充填淡水—微咸水湖沉积环境沼泽、潟湖、砂—泥滩、泛滥平原、火山溢流湖滩、高能或低能台地、三角洲平原—前缘、火山溢流斜坡、高能或低能缓坡、前三角洲、火山重力流、河流底流悬浮沉降(陆源为主,内源及火山灰少)、浊流、异重流(河流或火山)、风场底流、水柱交换、重力流、湖底热液河流影响强烈、三角洲进积强,盐度低,水体分层差,高密度重力流发育,中到低TOC,植物和藻类有机质,沉积体横向变化截然
        细粒纹层潟湖中悬浮沉降纹层台地叠层石斜坡或前三角洲垮塌浊流纹层、缓坡叠层石、浅湖—半深湖悬浮沉降纹层、河流、风场或风暴纹层底流碎屑型、黏土型、钙质—有机混合(微咸水)及生物型纹泥、浊流、异重流远端及混合事件层纹层、水柱交换及风场底流纹层、沉凝灰及喷积纹层实例:青山口组、延长组七段非常规:半深湖—深湖钙质—有机质混合纹泥(微咸水湖)、部分凝灰岩及喷积岩纹层常规:深水浊流砂体或生物遗骸沉积、异重流砂体、滨浅湖碳酸盐或混积岩
        平衡充填微咸—咸水湖沉积环境碳酸盐浅滩、高能或低能台地、三角洲平原—前缘、火山溢流高能或低能缓坡;前三角洲、火山重力流内源或混源悬浮沉降为主、浊流、异重流、风场底流、水柱交换、火山悬浮或重力流、水下火山或热液低能深水为主、水体分层好,藻类有机质,中—低密度浊流易发育,中到高TOC,湖平面变化大,高水位横向连续性好
        细粒纹层浅滩或台地叠层石叠层石、河口羽状流纹层、异重流纹层、河流、风场或风暴底流、浅湖—半深湖悬浮沉降纹层钙质—有机质混合纹泥或蒸发盐纹泥、低密度浊流、混合事件层、浪控沉积物重力流及异重流(争议)纹层、微生物席纹层、底流纹层、沉凝灰及喷积岩纹层实例:芦草沟组、沙河街组三段非常规:浅湖—半深湖钙质—有机质混合纹泥、羽状流、部分凝灰岩及喷积岩纹层常规:深水生物遗骸沉积、滨浅湖碳酸盐、缓坡泥灰岩、重力流砂体
        欠充填咸—盐水湖沉积环境干泥滩、泛滥平原、河流、风成沙丘、潟湖、火山溢流盐沼、三角洲平原—前缘、风暴、火山溢流盐田、前三角洲、火山重力流多年生盐湖、季节性风场、水下火山或热液风场影响强烈、水体分层强,低密度浊流易发育,藻类有机质,低到高TOC,湖平面低且变化大,横向连续性差
        细粒纹层潟湖中悬浮沉降纹层、河流在泥滩表面水流纹层叠层石纹层、风暴在盐沼表面的水流纹层纹层—层状蒸发盐、悬浮沉降混源纹层、叠层石蒸发盐—黏土、钙质—有机质混源、季节性风场纹层或纹泥、浪控沉积物重力流(可能)、微生物席纹层、沉凝灰及喷积岩纹层实例:绿河组Wilkins Peak段、井井子沟组非常规:混源钙质—有机质纹泥、部分凝灰岩及喷积岩纹层常规:三角洲或河流席状粉砂—砂岩、滨浅碳酸盐
      • 构造是控制纹层分布的另一个重要条件,盆底起伏使沉积动力增强,使沉积物快速沉降,不宜于纹层形成和保存。例如在济阳坳陷沙河街组中,陡坡区或地形起伏的湖底,近岸水下扇发育,沉积速率快,不易形成和保存纹层沉积,而湖底地形平坦开阔湖深洼区或缓坡区,沉积速率较慢,沉积富有机质钙质纹层状泥岩[115]

        盆地形态、断层活动和深度控制了重力流(纹层)类型。例如在济阳坳陷沙河街组陡坡带或断层构造活跃期,垮塌型重力流多发育,而缓坡带或断层稳定期,垮塌型浊积扇规模一般较小,湖平面变化明显,异重流则相对较发育[116]。此外,在重力流流态转变与盆底形态、水体深度和盐度密切相关,凹陷湖盆由于水体较浅且密度小,碎屑流还未向低密度浊流转变就在湖底沉积下来[117],而在深大断陷湖泊中,盆地形态和足够水深使低密度浊流可以持续侵蚀向混合流或碎屑流转变形成不同类型的纹层或纹层组合[118]

      • 湖泊中陆源、火山源及内源等各类细粒物质经多种方式在湖泊不同深度沉积形成纹层,不同湖盆类型纹层类型及组构特征差别极大。总体而言,欠充填型盐水或碱湖中,碳酸盐与碱性矿物纹层所占比例大,而过充填型淡水—半咸水湖则黏土及长英质纹层则占主导(表2[119120]。以平衡充填咸水湖为例,水体较浅、盐度较高水体可提供充足的Ca2+、Na+和Mg2+离子,发育碳酸盐纹层。深水区受温度和二氧化碳分压影响,会在沉积物和水界面“蒸发”沉淀碱性和盐类矿物形成纹层[121]

        受陆源输入强度影响,纹层成分也发生变化,形成成分或组构混积的纹层[81]。但常被忽略的钙质物源在细粒物质供给中可能也起到很大贡献。Schieber et al.[122]在New Albany细粒沉积中观察到碎屑白云石颗粒,绿河组Fossil Butte段两层凝灰纹层之间在浅水和深水区钙质纹层数量和厚度存在极大差别,也可能指示钙质物质来源于富钙径流与盐湖混合沉淀形成[123];在土耳其Van湖中,受钙质径流影响,不管是在高水位湿润气候或低水位干旱气候均会沉积钙质纹层[124]。火山及热液产生的凝灰质纹层的成分及结构特征取决于源区及搬运过程[125]

        物质供给浓度决定了细粒物质沉降的临界速度。水槽实验显示,底流作用下,细粒沉积物浓度从0.03 g/L上升到1~2 g/L时,沉降速度可由10 cm/s增加到26 cm/s[35];羽状流沉降过程中,当黏土浓度从2%上升至4%时,它和有机质絮凝效率可提高一倍,使河口区羽状流对流旺盛,可能诱发浊流[105]

        此外,细粒物质既可以是单一的,也可以是复合的(如絮凝体、泥质撕裂碎屑、岩屑及粪球粒等),其在恢复物源及沉积机制方面有重要意义[126]。在埋藏成岩阶段,受有机酸、温度和压力影响,石英、黏土及碳酸盐类矿物及泥质复合体发生变形、溶解、重结晶及次生加大等成岩转换,进而改变纹层的物质组成及结构[127]

      • 湖泊细粒沉积岩纹层极大促进了人类对古气候、古环境及细粒沉积学等理论的发展,并随着碳循环、非常规油气勘探乃至行星地质学等研究的不断深入,纹层的沉积机制和特征研究将愈加引起人们关注。从研究现状看,未来在以下几个方面需给予重视。

      • 陆相页岩油气勘探显示,纹层状细粒沉积岩的储层性能一般优于层状和块状细粒沉积岩,是非常规油气“甜点”勘探开发的有利岩相[128130]。其中,富有机质细粒沉积岩纹层发育情况及组构特征,更直接影响非常规油气的储层质量和工程品质[46,80]。然而,目前对于细粒沉积岩纹层发育规律和表征方法不统一,使得不同盆地中纹层的结构、储集性能与石油赋存状态等方面评价结果存在很大不确定性。因此,未来在查明细粒沉积岩纹层发育特征和空间变化基础上,利用不同手段对细沉积岩纹层进行表征。岩石学方面,矿物整体含量(XRD)应是岩石描述的基础层次,更需要在薄片或SEM尺度下,利用XRF及QEMSCAN等手段,开展纹层组构特征精细描述[131]。孔隙特征方面,受样品尺寸及分辨率影响,单一实验手段无法有效表征孔隙结构分布,利用SEM、CT扫描、高压压汞及氮气吸附等不同手段对纹层储集特征进行综合分析[132]。油气赋存状态方面,在TOC和热解测定岩石整体含油性基础上,利用激光共聚焦显微镜分析纹层微米级孔隙中不同性质烃类流体分布[133]。纹层成因机制研究手段方面,需继续开展水槽实验和湖泊沉积观测,查明纹层在盐度、水动力条件、物质组成及浓度等多因素作用下的沉积过程[134]。此外,也可利用数值模拟等手段还原纹层在给定参数下(流速、深度、颗粒种类、大小及实验组数等)的沉积—成岩过程,以期更好理解纹层的发育演化[135]

      • 纹层科学的分类系统,对于纹层研究是至关重要的。前人虽依据厚度、颜色、粒度、矿物组成、形状、连续性及有机质含量等要素总结出多种纹层划分和命名方案,但尚未达成共识[136]。纹层科学分类方案需要综合考虑矿物组成(矿物含量、元素组成)、形态特征(纹层组合、侵蚀及粒序)及生物扰动等能够反映沉积过程和沉积环境变化标志,并结合有机质分布及其他地球化学参数特征,对纹层成因及环境进行综合分析[122]。此外,由于沉积解释多解性,不同成因机制识别与划分还需进一步研究,如何能够更加经济、高效、快速地识别不同成因机制的纹层类型,也是未来研究工作中急需解决的问题。

        纹层是沉积—成岩过程复合作用的产物,还应重视不同阶段有机和无机控制因素研究。沉积阶段,除加强水槽实验外,在类型上,还应注重异重流、羽状流、低密度浊流、混合事件层及火山—热液等类型纹层的控制因素研究。成岩阶段研究目前主要聚焦于早成岩及后期热演化过程中矿物生成和转变,而对温度、压力及应力等多因素耦合下纹层中有机质与矿物之间相互作用研究也应给予重视[137]。在查明纹层沉积机制基础上,开展湖泊细粒沉积岩的沉积微相、层序地层及旋回地层方面研究,对建立陆相湖泊细粒沉积体系、成因模式和预测储层空间分布具有极大的价值[138139]

      • 传统上,由于缺乏绝对年龄约束,基于纹层的气候研究主要集中于第四纪及现代[140]。但近年研究显示,第四纪之前的古湖泊中细粒沉积岩纹层可以在火山活动、极热事件、厄尔尼诺气候事件等因素控制下,存在十年到万年天文周期韵律变化,结合数值模拟等手段,可恢复古老时间的气候变化及地质事件,具有巨大的应用前景[112,141]。然而,相比第四纪及现代,未来还需在XRF、测井、图像及红外光谱等手段提取纹层各类信号基础上,开发定量—半定量模型,整合纹层从米到毫米尺度变化,结合机器学习及数值模拟等方法来恢复古环境高精度变化[142]

        湖泊作为重要碳储库已是共识,但由于碳埋藏空间变异性大,使目前对埋藏量的准确评估存在困难[143]。纹层结构、成分、类型、有机质特征及周期性发育等特征则详细记录了碳埋藏的空间变化信息,对定量评估湖泊细粒沉积序列中有机碳埋藏量具有重要意义[144145]。此外,在如风城组、绿河组等欠充填咸水—盐水湖中,发育大量含钠碳酸盐等碱性矿物纹层,也是重要的无机碳库[146]

        除气候还原和碳埋藏外,生命演化及火星地质学等前沿热点问题也需查明纹层的沉积机制。例如,湖相叠层石一直被认为是寻找地球早期生命演化的重要载体[147]。但研究显示,有些古老叠层石可能不是生物成因的,而是软沉积变形形成的[148]。因此,利用纹层解决上述问题时,应对纹层形成机制进行准确识别。此外,随着行星地质学发展,人类已对火星上湖泊细粒沉积开展研究[7]。“好奇号”在Gale陨击坑Pahrump段湖相地层细粒沉积中发现蒸发成因的盐类纹层,结合地球化学物源分析,推测湖泊类型为欠充填盐湖[149]。由此不难看出,对细粒沉积岩纹层沉积机制对应特征的理解掌握,也是开展火星等行星地质沉积研究的基础。

    参考文献 (149)

    目录

      /

      返回文章
      返回