高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火山作用对碳酸盐岩沉积及成岩的影响

李泯星 屈海洲 程曦 杨迅 杨东凡 张本健 张云峰 李晓

李泯星, 屈海洲, 程曦, 杨迅, 杨东凡, 张本健, 张云峰, 李晓. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
引用本文: 李泯星, 屈海洲, 程曦, 杨迅, 杨东凡, 张本健, 张云峰, 李晓. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
LI MinXing, QU HaiZhou, CHENG Xi, YANG Xun, YANG DongFan, ZHANG BenJian, ZHANG YunFeng, LI Xiao. Influence of Volcanism on Carbonate Sedimentation and Diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
Citation: LI MinXing, QU HaiZhou, CHENG Xi, YANG Xun, YANG DongFan, ZHANG BenJian, ZHANG YunFeng, LI Xiao. Influence of Volcanism on Carbonate Sedimentation and Diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098

火山作用对碳酸盐岩沉积及成岩的影响

doi: 10.14027/j.issn.1000-0550.2019.098
基金项目: 

国家自然科学基金项目 41702163, 41702122

中石油碳酸盐岩储层重点实验室开放基金 2018⁃497

详细信息
    作者简介:

    李泯星,女,1995年出生,硕士研究生,地质学,E⁃mail: li_minx@163.com

    通讯作者:

    屈海洲,男,副教授,E⁃mail: quhaizhou@swpu.edu.cn

  • 中图分类号: P618.13

Influence of Volcanism on Carbonate Sedimentation and Diagenesis

Funds: 

National Natural Science Foundation of China 41702163, 41702122

PetroChina Carbonate Reservoir Key Laboratory Open Fund 2018⁃497

  • 摘要: 火山作用是熔岩(岩浆)、火山碎屑和火山气体通过火山口喷出到地球表面的现象。火山爆发带来大量火山碎屑物质和气体进入到大气、海洋和陆地环境系统中,这将对其中碳酸盐沉积物的成分、结构、沉积构造、相序及沉积演化过程产生重要影响。火山物质含量的增加不仅会干扰碳酸盐沉积,还能够改变其物理化学性质等,火山沉积物在空间上也遵循粒度分异的规律。在组合方式上往往出现狭义和广义的混合沉积,记录了火山活动的演化。碳酸盐岩主要形成于海洋、湖泊等环境,火山作用可以通过控制基底形态、热液喷涌、不同性质火山碎屑的输入和分布、台地的差异沉降/隆起等,影响生物、沉积水体性质等古环境参数。然而就生物而言,这种影响通常具有破坏性和建设性作用。例如火山灰的埋藏及释放有毒物质会导致生物死亡,而后期火山灰溶解又会释放PO3-、Fe3+、Mn2+等营养离子利于生物生长。就成岩作用及流体性质而言,不同类型的火山物质含不同元素、矿物等,导致流体性质的变化,进而影响成岩作用类型等,如火山灰可以提供Mg2+促进白云石化作用,有利于孔隙的形成,对碳酸盐岩储层的形成有积极作用。因此,研究火山作用对碳酸盐岩沉积、成岩的影响,对油气地质勘探有现实意义。
  • 图  1  火山物质的微观及宏观特征[16,20,22]

    (a)含硅质泥晶灰岩,见长石晶屑,分选磨圆差,吴家坪组双探12井,6 662 m ×50-;(b)含硅质泥晶灰岩,见长石晶屑,分选磨圆差,吴家坪组双探12井,6 662 m ×50+;(c)沉凝灰岩,白云质沉凝灰岩收缩孔,元坝7井,茅三段,6 936.49 m[16];(d)沉凝灰岩,有机质内微孔隙,元坝7井,茅三段,6 936.07 m[16];(e)晶间孔和晶间溶孔,元坝7井,茅三段,6 933.06 m[16];(f)西北太平洋早白垩世黑色火山碎屑与浅色灰岩碎屑杂乱堆积在一起[20];(g)王坡页岩野外露头照片,陕西汉中梁山剖面二叠系GLB界线[22];(h)王坡页岩,显示蚀变残留玻屑凝灰质结构,mo.蒙脱石,he.片沸石,陕西汉中梁山剖面二叠系GLB界线,单偏光[22];(i)王坡页岩扫面电镜照片(SEM),mo.蜂窝状、鳞片状蒙脱石,he.板状片沸石,陕西汉中梁山剖面二叠系GLB界线[22]

    Figure  1.  Microscopic and macroscopic characteristics of volcanic material[16,20,22]

    (a) siliceous micrite, see feldspar crystal chips, sorting and grinding circle difference, Wujiaping Formation Shuangtan12 well, 6 662 m×50-; (b) siliceous micrite, see feldspar crystal chips, sorting grinding circle difference, Wujiaping Formation Shuangtan 12 well, 6 662 m×50+; (c) sedimentary tuff, dolomitic tuff shrinkage hole, Yuanba 7 well, Mao 3 section, 6 936.49 m[16]; (d) sedimentary tuff, organic matter inner microporosity, Yuanba 7 well, Mao 3 section, 6 936.07 m [16]; (e) intercrystalline pores and intercrystalline dissolved pores, Yuanba 7 well, Mao 3 section, 6 933.06 m [16]; (f) black volcanic debris clustered with light-colored limestone debris, northwestern Pacific Ocean of the Early Cretaceous[20]; (g) photograph of the field outcrop of the Wangpo shale, GLB boundary of the Permian in the Liangshan section of Hanzhong, Shaanxi[22]; (h) Wangpo shale, showing altered residual glassy tuff structure, (mo montmorillonite, he = slice zeolite), Liangshang GLB boundary of Liangshan section, Hanzhong, Shaanxi, single polarized light[22]; (i) Wangpo shale scanning electron microscope (SEM) photograph (mo = honeycomb, scaly montmorillonite, he = plate⁃shaped zeolite), second⁃gray GLB boundary of Liangshan section in Hanzhong, Shaanxi [22]

    图  2  火山作用下的岩石组合类型[31,3536,41]

    (a)北大巴山地区震旦纪—志留纪时期火山岩中生物碎屑灰岩透镜体( 灰白色)[35];(b)阿根廷圣胡安州 San Ignacio组野外观察,露头部分显示碳酸盐沉积(Cb)覆盖在火山碎屑岩(V)之上[36];(c)中新世奥地利Styrian盆地珊瑚藻类和珊瑚石灰岩的碳酸盐岩复合体,灰岩被不连续的表面(A,B,F)和明显的凝灰岩层(C,D,E级)所隔断[31];(d)意大利西西里岛中新世Hyblaean山脉碳酸盐岩台地火山灰环与礁石灰岩组合关系[41]

    Figure  2.  Types of rock assemblages with volcanism[31,3536,41]

    (a) bioclastic limestone lens (off⁃white) of volcanic rocks in the North Daba Mountain of the Sinian⁃Silurian[35]; (b) field observation in the San Ignacio group in San Juan, Argentina; the outcrop shows carbonate deposition (Cb) overlying volcanic clastic rocks (V)[36]; (c) carbonate complexes of coral algae and coral limestone in the Styrian Basin of the Miocene, Austria, cut off by discontinuity surfaces of limestone (A, B, F) and the obvious tuff layer (C, D, E)[31]; (d) combination of volcanic ash ring and the reef limestone in the carboniferous platform of the Miocene Hyblaean Mountains in Sicily, Italy[41]

    图  3  Mozambique南部海峡新生代碳酸盐岩台地的演化历史[65]

    (a)火山碎屑物质沉积在碳酸盐岩台地表面,遭受强烈的火山作用,伴随着断裂带活动;(b)后期火山平息时,台地接受沉积,开始建造碳酸盐岩台地,台地抬升形成喀斯特岩溶表层,建造的同时也遭受破环作用;(c)台地抬升,遭受侵蚀作用,最后保留下来的是台缘—斜坡带,到礁的定殖阶段,逐渐演变发育成环礁

    Figure  3.  Evolution history of Cenozoic carbonate platform in the southern channel, Mozambique[65]

    (a) Volcanic detrital material deposited on the surface of the carbonate platform, experiencing strong volcanism and fault zone activity. (b) When the volcano subsides, sedimentation on the platform begins to build a carbonate platform which rises to form karst. The karst surface layer is also subjected to destructive effect at the same time. (c) The platform is uplifted and subjected to erosion. Finally, the platform⁃slope belt is retained, and the reclamation stage of the reef gradually evolves into an atoll

    图  4  准噶尔盆地玛湖凹陷湖盆边缘碳酸盐矿物沉淀模式(据文献[1,70]修改)

    Figure  4.  Model chart of carbonate mineral precipitation at the edge of lake basin in Mahu Depression, Junggar Basin (modified from references[1,70])

    图  5  火山活动对环境和生态效应的影响[73]

    Figure  5.  Effects of volcanic activities on the environment and on the ecology[73]

    图  6  中新世奥地利Styrian盆地火山灰对生物的影响[31,86]

    (a)在Retznei地区,珊瑚表面的黑色物质(箭头所指)和强烈钻孔(B)为火山灰造成的结果;(b)瘤状苔藓菌群被渗透的火山灰染成黑色;(c)分散的被凝灰岩侵染成黑色的生物碎片

    Figure  6.  Influence of volcanic ash on organisms in Styrian Basin, Austria, in the Miocene[31,86]

    (a) black stained (arrows) and intensively bored (B) coral surface resulted from volcanic ash in the Retznei area; (b) nodular celleporiform bryozoan colony stained black by infiltrated volcanic ash; (c) dispersed tuff infected with black biological debris

    图  7  火山灰对海藻生存环境的扰动恢复模型[86]

    (a)火山碎屑沉积物掩埋海藻。棘皮动物试图通过挖洞逃跑,但是在火山灰中或者被彻底破坏的海底表面中死去;(b)水流从暴露区域(箭头)清除未固结的火山灰,并将冠状藻定殖在表面。Oysters和Isognomon定殖在火山碎屑岩的基底固结部分。由于悬浮火山物质的溶解使水体富营养化,滋养了双壳类;(c)恢复过程表明,海藻在营养水平下降后才能恢复生长

    Figure  7.  Disturbance recovery model for volcanic ashfall into a seagrass environment[86]

    (a) Pyroclastic sediment eliminates seagrasses. Vagile Clypeaster echinoids tried to escape by burrowing but died in the ash or at the devastated seafloor. (b) Water currents removed unconsolidated ash from exposed areas (arrows) and concentrated Clypeaster coronas at the surface. The basal consolidated part of the volcaniclastics formed a hard substrate for the colonization of oysters and Isognomon. These suspension⁃feeding bivalves benefit from eutrophication caused by dissolution of suspended ashes. (c) Recovery process indicates that seagrass vegetation recovered after nutrient levels decreased

    图  8  重庆石柱吴家坪组硅质岩Al⁃Fe⁃Mn判别图解[104]

    Figure  8.  Al⁃Fe⁃Mn discriminant diagram for siliceous rocks of Wujiaping Formation in Shizhu, Chongqing[104]

    图  9  川西北部吴家坪组成岩作用类型

    (a)硅质岩,硅质胶结充填,坪上剖面,第11层,吴家坪组,正交光;(b)细晶灰质云岩,白云石化,见雾心亮边结构,坪上剖面,第14层,吴家坪组,单偏光;(c)硅质条带,坪上剖面,第19层中下部,吴家坪组;(d)中—细晶云岩,雾心亮边特征,可见残余颗粒幻影,红色箭头指示的为鞍状白云岩,坪上剖面,第12层,吴家坪组,单偏光

    Figure  9.  Diagenesis types, Wujiaping Formation, northwestern Sichuan

    (a) siliceous rock, siliceous cemented filling, Pingshang section, 11th layer, Wujiaping Formation, orthogonal light; (b) fine limey dolomite, dolomitization, foggy⁃center bright⁃edge structure, Pingshang section, 14th layer, Wujiaping Formation, single polarized light; (c) siliceous strip, Pingshang section, middle and lower part of the 19th layer, Wujiaping Formation; (d) medium⁃fine grain dolomite, foggy⁃center bright⁃edge characteristics, seen as residual particle phantom; red arrow indicates saddle dolomite, Pingshang section, 12th layer, Wujiaping Formation, single polarized light

  • [1] 徐夕生,邱检生. 火成岩岩石学[M]. 北京:科学出版社,2010.

    Xu Xisheng, Qiu Jiansheng. Igneous petrology[M]. Beijing: Science Press, 2010.
    [2] 王瑞华,谭钦银,付建元,等. 峨眉山地幔柱沉积—构造演化及沉积响应[J]. 地学前缘,2011,18(3):201-210.

    Wang Ruihua, Tan Qinyin, Fu Jianyuan, et al. The sedimentary-tectonic evolution and sedimentary response of mantle plume in Emeishan[J]. Earth Science Frontiers, 2011, 18(3): 201-210.
    [3] Cen J, Xu Y G. Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies[J]. Gondwana Research, 2019, 75: 68-96.
    [4] Mircescu C V, Bucur I I, Săsăran E, et al. Facies evolution of the Jurassic-Cretaceous transition in the Eastern Getic Carbonate Platform, Romania: Integration of sequence stratigraphy, biostratigraphy and isotope stratigraphy[J]. Cretaceous Research, 2019, 99: 71-95.
    [5] 徐义刚,钟玉婷,位荀,等. 二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报,2017,36(3):359-373.

    Xu Yigang, Zhong Yuting, Wei Xun, et al. Permian mantle plumes and earth's surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 359-373.
    [6] Picotti V, Cobianchi M, Luciani V, et al. Change from rimmed to ramp platform forced by regional and global events in the Cretaceous of the Friuli-Adriatic Platform (southern Alps, Italy)[J]. Cretaceous Research, 2019, 104: 104⁃177.
    [7] Vázquez-Loureiro D, Gonçalves V, Sáez A, et al. Diatom-inferred ecological responses of an oceanic lake system to volcanism and anthropogenic perturbations since 1290 CE[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109⁃285.
    [8] Mambwe M P, Lavoie S, Delvaux D, et al. Soft sediment deformation structures in the Neoproterozoic Kansuki Formation (Katanga Supergroup, Democratic Republic of the Congo): Evidence for deposition in a tectonically active carbonate platform[J]. Journal of African Earth Sciences, 2019, 150: 86-95.
    [9] Chen Z Q, Tu C Y, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189: 21-50.
    [10] Zhu S F, Yue H, Zhu X M, et al. Dolomitization of felsic volcaniclastic rocks in continental strata: A study from the Lower Cretaceous of the A’nan Sag in Er’lian Basin, China[J]. Sedimentary Geology, 2017, 353: 13-27.
    [11] Menezes C P, Bezerra F H R, Balsamo F, et al. Hydrothermal silicification along faults affecting carbonate-sandstone units and its impact on reservoir quality, Potiguar Basin, Brazil[J]. Marine and Petroleum Geology, 2019, 110: 198-217.
    [12] Elias Bahnan A, Carpentier C, Pironon J, et al. Impact of geodynamics on fluid circulation and diagenesis of carbonate reservoirs in a foreland basin: Example of the Upper Lacq reservoir (Aquitaine Basin, SW France)[J]. Marine and Petroleum Geology, 2020, 111: 676-694.
    [13] Chakir S, Slimani H, Hssaida T, et al. Dinoflagellate cyst evidence for the age, palaeoenvironment and paleoclimate of a new Cretaceous–Paleogene (K/Pg) boundary section at the Bou Angueur syncline, Middle Atlas, Morocco[J]. Cretaceous Research, 2020, 106: 104⁃219.
    [14] Lima B E M, De Ros L F. Deposition, diagenetic and hydrothermal processes in the Aptian Pre-Salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil[J]. Sedimentary Geology, 2019, 383: 55-81,
    [15] Lukoczki G, Haas J, Gregg J M, et al. Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine–peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data[J]. Marine and Petroleum Geology, 2019, 101: 440-458.
    [16] 胡东风. 四川盆地元坝地区茅口组台缘浅滩天然气勘探的突破与启示[J]. 天然气工业,2019,39(3):1-10.

    Hu Dongfeng. Breakthrough in natural gas exploration in the platform margin shoal at the Maokou Fm in the Yuanba area, Sichuan Basin, and its implications[J]. Natural Gas Industry, 2019, 39(3): 1-10.
    [17] Huang H, Cawood P A, Hou M C, et al. Provenance of Late Permian volcanic ash beds in South China: Implications for the age of Emeishan volcanism and its linkage to climate cooling[J]. Lithos, 2018, 314-315: 293-306.
    [18] Xian B Z, He Y X, Niu H P, et al. Identification of hydrovolcanism and its significance for hydrocarbon reservoir assessment: A review[J]. Journal of Palaeogeography, 2018, 7(4): 348-362.
    [19] 徐伟,杜晓峰,黄晓波,等. 混合沉积研究进展与关键问题[J]. 沉积学报,2019,37(2):225-238.

    Xu Wei, Du Xiaofeng, Huang Xiaobo, et al. Research advances and critical issues of “mixed siliciclastic and carbonate sediments”[J]. Acta Sedimentologica Sinica, 2019, 37(2): 225-238.
    [20] Martin U, Breitkreuz C, Egenhoff S, et al. Shallow-marine phreatomagmatic eruptions through a semi-solidified carbonate platform (ODP Leg 144, Site 878, Early Cretaceous, MIT Guyot, West Pacific)[J]. Marine Geology, 2004, 204(3/4): 251-272.
    [21] Hannon J S, Huff W D. Assessing the preservation and provenance of Sr and Nd isotopic signatures in Cretaceous volcanic ash beds[J]. Lithos, 2019, 346-347: 105-145.
    [22] 郭俊锋,宋祖晨,肖良,等. 陕西汉中梁山二叠系乐平统底部吴家坪组王坡页岩新认识[J]. 地质论评,2017,63(5):1169-1179.

    Guo Junfeng, Song Zuchen, Xiao Liang, et al. New petrographic and mineralogical analyses of the Wangpo shale, Wujiaping Formation (Basal Lopingian, Permian) in the Liangshan area of Shaanxi[J]. Geological Review, 2017, 63(5): 1169-1179.
    [23] Calarge L M, Meunier A, Formoso M L L. A bentonite bed in the Aceguá (RS, Brazil) and Melo (Uruguay) areas: A highly crystallized montmorillonite[J]. Journal of South American Earth Sciences, 2003, 16(2): 187-198.
    [24] Fisher R V, Schmincke H U. Pyroclastic rocks[M]. Berlin: Springer-Verlag, 1984: 1-472.
    [25] 范广慧,王永标,孟峥,等. 贵州紫云晚二叠世:早三叠世初火山作用与生物礁的沉积演化[J]. 沉积学报,2017,35(1):24-34.

    Fan Guanghui, Wang Yongbiao, Meng Zheng, et al. The relationship between volcanism and reef sedimentary evolution from Late Permian to the beginning of Early Triassic in Ziyun area, Guizhou province[J]. Acta Sedimentologica Sinica, 2017, 35(1): 24-34.
    [26] 王璞珺,缴洋洋,杨凯凯,等. 准噶尔盆地火山岩分类研究与应用[J]. 吉林大学学报(地球科学版),2016,46(4):1056-1070.

    Wang Pujun, Jiao Yangyang, Yang Kaikai, et al. Classification of volcanogenic successions and its application to volcanic reservoir exploration in the Junggar Basin, NW China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1056-1070.
    [27] Di Roberto A, Smedile A, Del Carlo P, et al. Tephra and cryptotephra in a ~ 60, 000-year-old lacustrine sequence from the Fucino Basin: New insights into the major explosive events in Italy[J]. Bulletin of Volcanology, 2018, 80(3): 20.
    [28] Smith V C, Isaia R, Engwell S L, et al. Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: Implications for ultra-distal ash transport during the large caldera-forming eruption[J]. Bulletin of Volcanology, 2016, 78(6): 45.
    [29] McNamara K, Rust A C, Cashman K V, et al. Comparison of lake and land tephra records from the 2015 eruption of Calbuco volcano, Chile[J]. Bulletin of Volcanology, 2019, 81(2): 10.
    [30] Obst K, Ansorge J, Matting S, et al. Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark[J]. International Journal of Earth Sciences, 2015, 104(8): 2179-2212.
    [31] Reuter M, Piller W E, Erhart C. A Middle Miocene carbonate platform under silici-volcaniclastic sedimentation stress (Leitha Limestone, Styrian Basin, Austria)-Depositional environments, sedimentary evolution and palaeoecology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352: 198-211.
    [32] Basile C, Chauvet F. Hydromagmatic eruption during the buildup of a Triassic carbonate platform (Oman Exotics): Eruptive style and associated deformations[J]. Journal of Volcanology and Geothermal Research, 2009, 183(1/2): 84-96.
    [33] Chelaru R, Săsăran E, Tămaș T, et al. Middle Miocene carbonate facies with rhodoliths from the NW Transylvanian Basin (Vălenii Șomcutei Cave, Romania)[J]. Facies, 2019, 65(1): 4.
    [34] 杨朝青,沙庆安. 云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J]. 沉积学报,1990,8(2):59-66.

    Yang Chaoqing, Sha Qing’an. Sedimentary environment of the middle Devonian Qujing Formation, Qujing, Yunnan province: A kind of mixing sedimentation of terrigenous clastics and carbonate[J]. Acta Sedimentologica Sinica, 1990, 8(2): 59-66.
    [35] 闫臻,王宗起,张英利,等. 北大巴山与志留纪火山作用相关的碳酸盐岩沉积学特征及形成环境[J]. 沉积学报,2011,29(1):31-40.

    Yan Zhen, Wang Zongqi, Zhang Yingli, et al. Sedimentary features and tectonic environments of silurian volcanic-related carbonates in the North Daba mountains[J]. Acta Sedimentologica Sinica, 2011, 29(1): 31-40.
    [36] Busquets P, Méndez-Bedia I, Gallastegui G, et al. The relationship between carbonate facies, volcanic rocks and plant remains in a Late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)[J]. International Journal of Earth Sciences, 2013, 102(5): 1271-1287.
    [37] Armella C, Leanza H A, Corfu F. Synsedimentary ash rains and paleoenvironmental conditions during the deposition of the Chachil Formation (Pliensbachian) at its type locality, Neuquén Basin, Argentina[J]. Journal of South American Earth Sciences, 2016, 71: 82-95.
    [38] Türk-Öz E, Özyurt M. Palaeoenvironment reconstruction and planktonic foraminiferal assemblages of Campanian (Cretaceous) carbonate succession, Çayırbağ area (Trabzon, NE Turkey)[J]. Carbonates and Evaporites, 2019, 34(2): 419-431.
    [39] 焦鑫,柳益群,杨晚,等. 水下火山喷发沉积特征研究进展[J]. 地球科学进展,2017,32(9):926-936.

    Jiao Xin, Liu Yiqun, Yang Wan, et al. Progress on sedimentation of subaqueous volcanic eruption[J]. Advances in Earth Science, 2017, 32(9): 926-936.
    [40] 赵省民,陈登超,邓坚. 内蒙古西部银根—额济纳旗地区石炭系—二叠系碳酸盐岩沉积模式及其石油地质意义[J]. 地质通报,2010,29(2/3):351-359.

    Zhao Xingmin, Chen Dengchao, Deng Jian. Depositional models of the Permo-Carboniferous carbonate rocks and their significance in Yingen-Ejinaqi area, Inner Mongolia, China[J]. Geological Bulletin of China, 2010, 29(2/3): 351-359.
    [41] Suiting I, Schmincke H U. Iblean diatremes 3: Volcanic processes on a Miocene carbonate platform (Iblean Mountains, SE-Sicily): A comparison of deep vs. shallow marine eruptive processes[J]. Bulletin of Volcanology, 2012, 74(1): 207-230.
    [42] Huang X, Aretz M, Zhang X H, et al. Upper Viséan coral biostrome in a volcanic-sedimentary setting from the eastern Tianshan, Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108-739.
    [43] Caron V, Bailleul J, Chanier F, et al. Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian-Bartonian limestones, St. Bartholomew, French West Indies)[J]. Sedimentary Geology, 2019, 387: 104-125.
    [44] Alexeiev D V, Biske Y S, Djenchuraeva A V, et al. Lower Moscovian Limestones of the Bogdashan range (NW China) as an indicator of cessation of arc magmatism in the Junggar region[J]. Stratigraphy and Geological Correlation, 2019, 27(1): 51-72.
    [45] Engel B E. Effects of a shallow-water hydrothermal vent gradient on benthic calcifiers, Tutum Bay, Ambitle Island, Papua New Guinea[D]. South Florida: University of South Florida, 2010.
    [46] Pandolfi J M, Tudhope A W, Burr G, et al. Mass mortality following disturbance in Holocene coral reefs from Papua New Guinea[J]. Geology, 2006, 34(11): 949-952.
    [47] Dobretsov N L, Buslov M M, Yu U. Fragments of oceanic islands in accretion–collision areas of Gorny Altai and Salair, southern Siberia, Russia: Early stages of continental crustal growth of the Siberian continent in Vendian–Early Cambrian time[J]. Journal of Asian Earth Sciences, 2004, 23(5): 673-690.
    [48] 向忠金,闫全人,闫臻,等. 北大巴山志留系滔河口组火山碎屑岩相序、组构特征及古火山作用环境分析[J]. 地质学报,2010,84(3):311-328.

    Xiang Zhongjin, Yan Quanren, Yan Zhen, et al. Facies succession and architecture of Volcaniclastic rocks of the Taohekou Formation: Implication for Early Silurian volcanism in the North Dabashan area, China[J]. Acta Geologica Sinica, 2010, 84(3): 311-328.
    [49] Hernández P A, Padilla G, Barrancos J, et al. Geochemical evidences of seismo-volcanic unrests at the NW rift zone of Tenerife, Canary Islands, inferred from diffuse CO2 emission[J]. Bulletin of Volcanology, 2017, 79(4): 30.
    [50] Robock A. Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2): 191-219.
    [51] Self S, Schmidt A, Mather T A. characteristics Emplacement, scales time, and volcanic gas release rates of continental flood basalt eruptions on Earth[M]//Keller G, Kerr A C. Volcanism, impacts, and mass extinctions: Causes and effects. Boulder, America: Geological Society of America, 2014: 319-337.
    [52] 施泽进,张瑾,李文杰,等. 四川盆地Guadalupian统碳酸盐岩稀土元素和碳—锶同位素特征及地质意义[J]. 岩石学报,2019,35(4):1095-1106.

    Shi Zejin, Zhang Jin, Li Wenjie, et al. Characteristics of rare earth element and carbon-strontium isotope and their geological significance of Guadalupian carbonate in Sichuan Basin[J]. Acta Petrologica Sinica, 2019, 35(4): 1095-1106.
    [53] 赵文斌,郭正府,孙玉涛,等. 火山区CO2气体释放研究进展[J]. 矿物岩石地球化学通报,2018,37(4):601-620.

    Zhao Wenbin, Guo Zhengfu, Sun Yutao, et al. Advances of the research on CO2 degassing from volcanic fields[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 601-620.
    [54] 陈军,徐义刚. 二叠纪大火成岩省的环境与生物效应:进展与前瞻[J]. 矿物岩石地球化学通报,2017,36(3):374-393.

    Chen Jun, Xu Yigang. Permian large igneous provinces and their impact on paleoenvironment and biodiversity: Progresses and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 374-393.
    [55] Wignall P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33.
    [56] 林良彪,陈洪德,朱利东. 川东地区吴家坪组层序—岩相古地理特征[J]. 油气地质与采收率,2009,16(6):42-45.

    Lin Liangbiao, Chen Hongde, Zhu Lidong. Sequence-based lithofacies and paleographic characteristics of Wujiaping Formation, eastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(6): 42-45.
    [57] Brandano M, Cornacchia I, Tomassetti L. Global versus regional influence on the carbonate factories of Oligo-Miocene carbonate platforms in the Mediterranean area[J]. Marine and Petroleum Geology, 2017, 87: 188-202.
    [58] 马本俊. 南海北部不同背景下深水斜坡沉积体系特征及其演化模式[D]. 北京:中国科学院大学(中国科学院海洋研究所),2017.

    Ma Benjun. Characteristics and evolution model of deepwater slope system under different sedimentary settings in the continental margin of northern South China Sea[D]. Beijing: University of the Chinese Academy of Sciences (Institute of Oceanography, Chinese Academy of Sciences), 2017.
    [59] 马本俊,秦志亮,吴时国,等. 深水斜坡类型与沉积过程及其产物研究进展[J]. 沉积学报,2018,36(6):1075-1090.

    Ma Benjun, Qin Zhiliang, Wu Shiguo, et al. An overview of deep-water slope types and their corresponding sedimentary processes and productions[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1075-1090.
    [60] R J Alderson Stanton,. Limestone interbedded with submarine volcanics: The Early-Middle Miocene Conejo Volcanics, California[J]. Facies, 2013, 59(3): 467-480.
    [61] Shahzad K, Betzler C, Ahmed N, et al. Growth and demise of a Paleogene isolated carbonate platform of the offshore Indus Basin, Pakistan: Effects of regional and local controlling factors[J]. International Journal of Earth Sciences, 2018, 107(2): 481-504.
    [62] 傅恒,曾驿,周小康,等. 珠江口盆地新生代碳酸盐岩形成地质条件[J]. 地质学报,2018,92(11):2349-2358.

    Fu Heng, Zeng Yi, Zhou Xiaokang, et al. Geological conditions of formation of Cenozoic carbonate rocks in the Pearl River Mouth Basin[J]. Acta Geologica Sinica, 2018, 92(11): 2349-2358.
    [63] Mikołajewski Z, Grelowski C, Kwolek K, et al. Hydrocarbon habitat in the Zielin Late Permian isolated carbonate platform, western Poland[J]. Facies, 2019, 65(1): 2.
    [64] 顾家裕,马锋,季丽丹. 碳酸盐岩台地类型、特征及主控因素[J]. 古地理学报,2009,11(1):21-27.

    Gu Jiayu, Ma Feng, Ji Lidan. Types, characteristics and main controlling factors of carbonate platform[J]. Journal of Palaeogeography, 2009, 11(1): 21-27.
    [65] Courgeon S, Jorry S J, Jouet G, et al. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)[J]. Sedimentary Geology, 2017, 355: 114-131.
    [66] Courgeon S, Jorry S J, Camoin G F, et al. Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean)[J]. Marine Geology, 2016, 380: 90-105.
    [67] Roche A, Vennin E, Bouton A, et al. Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 34-59.
    [68] 曲长胜,邱隆伟,杨勇强,等. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义[J]. 地质学报,2017,91(3):605-616.

    Qu Changsheng, Qiu Longwei, Yang Yongqiang, et al. Carbon and oxygen isotope compositions of carbonatic rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and their paleolimnological significance[J]. Acta Geologica Sinica, 2017, 91(3): 605-616.
    [69] 张帅,柳益群,焦鑫,等. 准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组云质岩沉积环境及白云石成因探讨[J]. 古地理学报,2018,20(1):33-48.

    Zhang Shuai, Liu Yiqun, Jiao Xin, et al. Sedimentary environment and formation mechanisim of dolomitic rocks in the Middle Permian Lucaogou Formation, Jimusar Depression, Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(1): 33-48.
    [70] 余宽宏,操应长,邱隆伟,等. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理[J]. 天然气地球科学,2016,27(7):1248-1263.

    Yu Kuanhong, Cao Yingchang, Qiu Longwei, et al. Brine evolution of ancient lake and mechanism of carbonate minerals during the sedimentation of Early Permian Fengcheng Formation in Mahu Depression, Junggar Basin, China[J]. Natural Gas Geoscience, 2016, 27(7): 1248-1263.
    [71] Ross K A, Schmid M, Ogorka S, et al. The history of subaquatic volcanism recorded in the sediments of Lake Kivu; East Africa[J]. Journal of Paleolimnology, 2015, 54(1): 137-152.
    [72] Hickson T A, Theissen K M, Lamb M A, et al. Lower Pahranagat Lake: Modern analogue for extensive carbonate deposition in paleolakes of the Late Oligocene to Miocene Rainbow Gardens and Horse Spring Formations[J]. Journal of Paleolimnology, 2018, 59(1): 39-57.
    [73] 胡东平. 晚奥陶—早志留世海洋的碳、硫、锶和汞循环[D]. 合肥:中国科学技术大学,2017.

    Hu Dongping. C, S, Sr, and Hg cycles in the Late Ordovician-Early Silurian Oceans[D]. Hefei: University of Science and Technology of China, 2017.
    [74] Roth R, Joos F. Model limits on the role of volcanic carbon emissions in regulating glacial–interglacial CO2 variations[J]. Earth and Planetary Science Letters, 2012, 329-330: 141-149.
    [75] Noone K J, Sumaila U R, Diaz R J. Managing ocean environments in a changing climate[M]. Boston: Elsevier, 2013.
    [76] Agostini S, Harvey B P, Wada S, et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone[J]. Scientific Reports, 2018, 8(1): 11354.
    [77] Hall-Spencer J M, Rodolfo-Metalpa R, Martin S, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification[J]. Nature, 2008, 454(7200): 96-99.
    [78] Martin S, Rodolfo-Metalpa R, Ransome E, et al. Effects of naturally acidified seawater on seagrass calcareous epibionts[J]. Biology Letters, 2008, 4(6): 689-692.
    [79] Cigliano M, Gambi M C, Rodolfo-Metalpa R, et al. Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents[J]. Marine Biology, 2010, 157(11): 2489-2502.
    [80] Raven J, Caldeira K, Elderfield H, et al. Ocean acidification due to increasing atmospheric carbon dioxide[R]. London, UK: The Royal Society, 2005,215: 1-60.
    [81] Anthony K R N, Kline D I, Diaz-Pulido G, et al. Ocean acidification causes bleaching and productivity loss in coral reef builders[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17442-17446.
    [82] Meron D, Hazanov L, Fine M, et al. Effect of ocean acidification on the coral microbial community[M]//Rosenberg E, Gophna U. Beneficial microorganisms in multicellular life forms. Berlin, Heidelberg: Springer, 2012: 163-173.
    [83] Bharatha Rathna P, Santhanam P. A study on the impact of acidification on the morphometry, photosynthesis, and biochemical composition of phytoplankton[M]//Santhanam P, Begum A, Pachiappan P. Basic and applied phytoplankton biology. Singapore: Springer, 2019: 239-249.
    [84] Tribollet A, Chauvin A, Cuet P. Carbonate dissolution by reef microbial borers: A biogeological process producing alkalinity under different pCO2 conditions[J]. Facies, 2019, 65(2): 9.
    [85] Ayris P M, Delmelle P. The immediate environmental effects of tephra emission[J]. Bulletin of Volcanology, 2012, 74(9): 1905-1936.
    [86] Reuter M, Piller W E. Volcaniclastic events in coral reef and seagrass environments: Evidence for disturbance and recovery (Middle Miocene, Styrian Basin, Austria)[J]. Coral Reefs, 2011, 30(4): 889-899.
    [87] Fan G H, Wang Y B, Kershaw S, et al. Recurrent breakdown of Late Permian reef communities in response to episodic volcanic activities: Evidence from southern Guizhou in South China[J]. Facies, 2014, 60(2): 603-613.
    [88] 范广慧. 贵州紫云晚二叠世生物礁的演化及其对火山作用的响应[D]. 武汉:中国地质大学(武汉),2014.

    Fan Guanghui. Evolution of Late Permian reefs communities and its response to episodic volcanic activities-evidence from Ziyun in Guizhou province[D]. Wuhan: China University of Geosciences, Wuhan, 2014.
    [89] Wilson M E J. Tectonic and volcanic influences on the development and Diachronous termination of a tertiary tropical carbonate platform[J]. Journal of Sedimentary Research, 2000, 70(2): 310-324.
    [90] 王振涛,周洪瑞,王训练,等. 鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用[J]. 地质学报,2015,89(11):1990-2004.

    Wang Zhentao, Zhou Hongrui, Wang Xunlian, et al. Ordovician geological events group in the West and South Ordos Basin[J]. Acta Geologica Sinica, 2015, 89(11): 1990-2004.
    [91] Duggen S, Olgun N, Croot P, et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: A review[J]. Biogeosciences, 2010, 7(3): 827-844.
    [92] Olgun N, Duggen S, Croot P, et al. Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean[J]. Global Biogeochemical Cycles, 2011, 25(4): GB4001.
    [93] Frogner P, Reynir Gíslason S, Óskarsson N. Fertilizing potential of volcanic ash in ocean surface water[J]. Geology, 2001, 29(6): 487-490.
    [94] Yevenes M A, Lagos N A, Farías L, et al. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption[J]. Science of the Total Environment, 2019, 669: 49-61.
    [95] Aref M A, Taj R J. Recent evaporite deposition associated with microbial mats, Al-Kharrar supratidal–intertidal sabkha, Rabigh area, Red Sea coastal plain of Saudi Arabia[J]. Facies, 2018, 64(4): 28.
    [96] 余聪,姚华舟,赵小明,等. 鄂西利川地区二叠—三叠系界线附近地层的碳酸盐微相类型和早三叠世火山活动的证据[J]. 华南地质与矿产,2015,31(2):115-124.

    Yu Cong, Yao Huazhou, Zhao Xiaoming, et al. Carbonate microfacies in strata near the Permian-Triassic boundary and the volcanic activity evidence in the Early Triassic in Lichuan area, western Hubei province[J]. Geology and Mineral Resources of South China, 2015, 31(2): 115-124.
    [97] Tang H, Kershaw S, Liu H, et al. Permian–Triassic boundary microbialites (PTBMs) in Southwest China: Implications for paleoenvironment reconstruction[J]. Facies, 2017, 63(1): 2.
    [98] Olivier N, Fara E, Vennin E, et al. Late Smithian microbial deposits and their lateral marine fossiliferous limestones (Early Triassic, Hurricane Cliffs, Utah, USA)[J]. Facies, 2018, 64(2): 13.
    [99] Zhang W Y, Liu J, Dong Y, et al. Archaeal community structure in sediments from a seamount in the Mariana Volcanic Arc[J]. Journal of Oceanology and Limnology, 2019, 37(4): 1197-1210.
    [100] Staudigel H, Clague D A. The geological history of deep-sea volcanoes: Biosphere, hydrosphere, and lithosphere interactions[J]. Oceanography, 2010, 23(1): 58-71.
    [101] Vilaclara G, Martinez-Mekler G, Cuna E, et al. Diatom-inferred palaeoenvironmental changes of a Pliocene lake disturbed by volcanic activity[J]. Journal of Paleolimnology, 2010, 44(1): 203-215.
    [102] Oelkers E H, Gislason S R, Matter J. Mineral carbonation of CO2[J]. Elements, 2008, 4(5): 333-337.
    [103] 周冰,朱德丰,李春柏,等. 海拉尔盆地贝尔凹陷含片钠铝石沉凝灰岩的成岩作用[J]. 沉积学报,2013,31(3):450-460.

    Zhou Bing, Zhu Defeng, Li Chunbai, et al. Diagenesis of dawsonite-bearing tuffite in Beier Sag, Hailar Basin[J]. Acta Sedimentologica Sinica, 2013, 31(3): 450-460.
    [104] 林良彪,陈洪德,朱利东. 重庆石柱吴家坪组硅质岩地球化学特征[J]. 矿物岩石,2010,30(3):52-58.

    Lin Liangbiao, Chen Hongde, Zhu Lidong. Geochemical characteristics of silicalites from Wujiaping Formation in Shizhu, Chongqing[J]. Journal of Mineralogy and Petrology, 2010, 30(3): 52-58.
    [105] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
    [106] Qian M P, Xing G F, Ma X, et al. Mesoproterozoic stromatolites from Shennongjia UNESCO Global Geopark, central China[J]. Journal of Geology, 2018, 42(04): 527-542.
    [107] Wang K Y, Fang A M, Zhang J, et al. Genetic relationship between fenitized ores and hosting dolomite carbonatite of the Bayan Obo REE deposit, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2019, 174: 189-204.
    [108] Cornacchia I, Agostini S, Brandano M. Miocene oceanographic evolution based on the Sr and Nd isotope record of the central mediterranean[J]. Paleoceanography and Paleoclimatology, 2018, 33(1): 31-47.
    [109] Kocsis L, Vennemann T W, Fontignie D, et al. Oceanographic and climatic evolution of the Miocene Mediterranean deduced from Nd, Sr, C, and O isotope compositions of marine fossils and sediments[J]. Paleoceanography and Paleoclimatology, 2008, 23(4): PA4211.
    [110] 田景春,林小兵,郭维,等. 四川盆地二叠纪玄武岩喷发事件的油气地质意义[J]. 成都理工大学学报(自然科学版),2017,44(1):14-20.

    Tian Jingchun, Lin Xiaobing, Guo Wei, et al. Geological significance of oil and gas in the Permian basalt eruption event in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(1): 14-20.
    [111] 周新平,何幼斌,罗进雄,等. 川东地区二叠系结核状、条带状及团块状硅岩成因[J]. 古地理学报,2012,14(2):143-154.

    Zhou Xinping, He Youbin, Luo Jinxiong, et al. Origin of the Permian nodular, striped and lump siliceous rock in eastern Sichuan province[J]. Journal of Palaeogeography, 2012, 14(2): 143-154.
    [112] 周新平,何幼斌,杜红权,等. 四川宣汉地区二叠系硅岩地球化学特征及成因研究[J]. 古地理学报,2009,11(6):670-680.

    Zhou Xinping, He Youbin, Du Hongquan, et al. Geochemical characteristics and origin of the Permian siliceous rocksin Xuanhan region of Sichuan province[J]. Journal of Palaeogeography, 2009, 11(6): 670-680.
    [113] 金小燕,杜晓峰,王清斌,等. 渤海海域火山热流体及其对碳酸盐岩优质储层的控制作用[J]. 石油实验地质,2018,40(6):800-807,842.

    Jin Xiaoyan, Du Xiaofeng, Wang Qingbin, et al. Volcanic hydrothermal fluid activity and its influence on carbonate reservoirs in Bohai Sea area[J]. Petroleum Geology & Experiment, 2018, 40(6): 800-807, 842.
    [114] 金小燕,刘晓健,郝轶伟,等. CF油田火山热液流体活动及其对碳酸盐岩储层的改造作用[J]. 大庆石油地质与开发,2019,38(1):42-50.

    Jin Xiaoyan, Liu Xiaojian, Hao Yiwei, et al. Reformation of the volcanic hydrothermal fluid activities to the carbonate reservoir in CF oilfield[J]. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(1): 42-50.
    [115] 吕修祥,解启来,杨宁,等. 塔里木盆地深部流体改造型碳酸盐岩油气聚集[J]. 科学通报,2007,52(增刊1):142-148.

    Xiuxiang Lü, Xie Qilai, Yang Ning, et al. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin[J]. Chinese Science Bulletin, 2007, 52(Suppl.1): 142-148.
  • [1] 臧贻萍, 王钦贤, 贾子策, 陈多福.  台湾地区古冷泉碳酸盐岩地质与地球化学特征 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.063
    [2] 杨佳奇, 纪友亮, 吴浩, 孟令箭.  南堡凹陷深层储层成岩作用与孔隙演化 . 沉积学报, 2022, 40(1): 203-216. doi: 10.14027/j.issn.1000-0550.2020.061
    [3] 曹天宇, 钟大康, 牛胜利, 孙海涛, 曹轩, 王菲.  惠州凹陷东部珠海组储层碱性成岩作用及孔隙演化 . 沉积学报, 2020, 38(6): 1327-1337. doi: 10.14027/j.issn.1000-0550.2020.011
    [4] 强深涛, 沈平, 张健, 夏茂龙, 冯明友, 夏青松, 陶艳忠, 夏自强, 林怡.  四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化 . 沉积学报, 2017, 35(4): 797-811. doi: 10.14027/j.cnki.cjxb.2017.04.014
    [5] 范广慧, 王永标, 孟峥, 李国山.  贵州紫云晚二叠世-早三叠世初火山作用与生物礁的沉积演化 . 沉积学报, 2017, 35(1): 24-34. doi: 10.14027/j.cnki.cjxb.2017.01.003
    [6] 宋慧波, 王芳, 胡斌.  晋中南地区上石炭统-下二叠统太原组碳酸盐岩中遗迹组构及其沉积环境 . 沉积学报, 2015, 33(6): 1126-1139. doi: 10.14027/j.cnki.cjxb.2015.06.006
    [7] 碳酸盐岩沉积相及相模式 . 沉积学报, 2013, 31(6): 965-979.
    [8] 陈景山.  塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布 . 沉积学报, 2007, 25(6): 858-868.
    [9] 柳永清, 高林志, 刘燕学.  苏皖辽地区新元古代微亮晶构造碳酸盐岩的沉积岩相与环境约束 . 沉积学报, 2005, 23(1): 49-59.
    [10] 邓长瑜, 张秀莲, 陈建文, 王贤.  黔东南地区寒武系碳酸盐岩成岩作用分析 . 沉积学报, 2004, 22(4): 588-596.
    [11] 颜佳新, 伍明, 李方林, 方念乔.  湖北省巴东栖霞组沉积成岩作用地球化学特征研究 . 沉积学报, 1998, 16(4): 78-83.
    [12] 赖健清, 易诗军, 杨楚雄, 丁传谱.  广东凡口地区泥盆系碳酸盐岩化学成岩作用 . 沉积学报, 1997, 15(4): 143-147.
    [13] 何海清.  浙江省栖霞组沉积微相、旋回、沉积环境及其演化规律 . 沉积学报, 1996, 14(S1): 75-83.
    [14] 韦龙明.  菌藻对碳酸盐颗粒的泥晶化作用研究─以滇西保山地区下石炭统研究为例 . 沉积学报, 1995, 13(3): 89-97.
    [15] 姜月华, 岳文浙, 业治铮, 魏乃颐.  苏南下三叠统青龙组碳酸盐岩的成岩作用和孔隙演化 . 沉积学报, 1993, 11(1): 47-55.
    [16] 宋春晖, 武安斌.  西成矿田中泥盆统碳酸盐岩沉积微相、微相组及其环境分析 . 沉积学报, 1993, 11(2): 34-42.
    [17] 许凤仪.  西成铅锌矿田西部中泥盆统西汉水组碳酸盐岩沉积特征 . 沉积学报, 1991, 9(1): 81-86.
    [18] 高仁祥.  川南地区下三叠统碳酸盐岩的沉积成岩作用 . 沉积学报, 1991, 9(3): 50-58.
    [19] 史基安, 马宝林, 师育新.  新疆巴楚-柯坪地区上石炭统碳酸盐岩的沉积环境与成岩作用 . 沉积学报, 1990, 8(4): 59-67.
    [20] 刘宝珺, 余光明, 王成善, 张哨楠.  西藏北部西雅尔岗地区白垩—第三系红层的成岩作用及成岩环境 . 沉积学报, 1989, 7(1): 11-28.
  • 加载中
图(9)
计量
  • 文章访问数:  888
  • HTML全文浏览量:  240
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-12
  • 刊出日期:  2020-09-02

目录

    火山作用对碳酸盐岩沉积及成岩的影响

    doi: 10.14027/j.issn.1000-0550.2019.098
      基金项目:

      国家自然科学基金项目 41702163, 41702122

      中石油碳酸盐岩储层重点实验室开放基金 2018⁃497

      作者简介:

      李泯星,女,1995年出生,硕士研究生,地质学,E⁃mail: li_minx@163.com

      通讯作者: 屈海洲,男,副教授,E⁃mail: quhaizhou@swpu.edu.cn
    • 中图分类号: P618.13

    摘要: 火山作用是熔岩(岩浆)、火山碎屑和火山气体通过火山口喷出到地球表面的现象。火山爆发带来大量火山碎屑物质和气体进入到大气、海洋和陆地环境系统中,这将对其中碳酸盐沉积物的成分、结构、沉积构造、相序及沉积演化过程产生重要影响。火山物质含量的增加不仅会干扰碳酸盐沉积,还能够改变其物理化学性质等,火山沉积物在空间上也遵循粒度分异的规律。在组合方式上往往出现狭义和广义的混合沉积,记录了火山活动的演化。碳酸盐岩主要形成于海洋、湖泊等环境,火山作用可以通过控制基底形态、热液喷涌、不同性质火山碎屑的输入和分布、台地的差异沉降/隆起等,影响生物、沉积水体性质等古环境参数。然而就生物而言,这种影响通常具有破坏性和建设性作用。例如火山灰的埋藏及释放有毒物质会导致生物死亡,而后期火山灰溶解又会释放PO3-、Fe3+、Mn2+等营养离子利于生物生长。就成岩作用及流体性质而言,不同类型的火山物质含不同元素、矿物等,导致流体性质的变化,进而影响成岩作用类型等,如火山灰可以提供Mg2+促进白云石化作用,有利于孔隙的形成,对碳酸盐岩储层的形成有积极作用。因此,研究火山作用对碳酸盐岩沉积、成岩的影响,对油气地质勘探有现实意义。

    English Abstract

    李泯星, 屈海洲, 程曦, 杨迅, 杨东凡, 张本健, 张云峰, 李晓. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
    引用本文: 李泯星, 屈海洲, 程曦, 杨迅, 杨东凡, 张本健, 张云峰, 李晓. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
    LI MinXing, QU HaiZhou, CHENG Xi, YANG Xun, YANG DongFan, ZHANG BenJian, ZHANG YunFeng, LI Xiao. Influence of Volcanism on Carbonate Sedimentation and Diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
    Citation: LI MinXing, QU HaiZhou, CHENG Xi, YANG Xun, YANG DongFan, ZHANG BenJian, ZHANG YunFeng, LI Xiao. Influence of Volcanism on Carbonate Sedimentation and Diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
      • 火山作用是熔岩(岩浆)、火山碎屑和火山气体通过火山口喷出到地球表面的现象[1]。地幔柱活动除了造成火山喷发外,还引发了一系列相关的地质事件,如火山穹隆的形成、地震、海啸以及热液活动等[2]。这些活动伴生的大气圈和水圈的变化导致生物演化甚至灭绝、台地消亡、环境演变等一系列重大事件或效应[34]。例如二叠纪中晚期、末期的两次大型火山活动形成了三个大火成岩省(西伯利亚、 峨眉山玄武岩、塔里木),并引发了两次生物大灭绝(PTL、GLB界线)[5]。但是,就碳酸盐岩而言,这些火山物质以及火山活动影响的生物群落演化对碳酸盐岩的沉积环境和沉积物的成分、结构、构造、成岩序列以及岩层空间展布等特征产生重要影响[69]。一方面,火山物质所富含的有机质,可以促进生物生长繁盛,形成生物格架或者叠层石;另一方面,生物群体也有可能会因为大量火山物质的掩埋以及吸收火山物质中的有害物而死亡。此外,火山物质中富含金属离子Ca2+、Mg2+等还能直接或间接对碳酸盐岩的矿物成分产生影响[10]。在岩石特征上,火山物质能够与碳酸盐岩同时沉积,影响岩石类型,而火山相关流体可能会形成硅质交代、硅质胶结、埋藏白云石化、去白云石化等成岩作用[1115]。从油气勘探开发来看,川北元坝地区茅口组、川西北部吴家坪组发现的沉凝灰岩、凝灰岩可以成为一种新的储集岩石类型[1617];其中火山灰是储层形成的主控因素之一,孔隙成因主要是火山碎屑物中不稳定矿物发生物理和化学作用而形成[18]。该类储层分布广、厚度薄,但孔隙度高,可作为一种新的勘探方向。因此,火山作用对碳酸盐岩沉积、成岩的影响机制具有重大勘探意义。本文主要从岩石学、沉积环境、生物演化、成岩作用等方面来总结火山作用对碳酸盐岩沉积和成岩的影响。

      • 火山爆发可以将大量的火山碎屑物质喷射到大气、海洋和陆地环境系统中,这将对相关沉积环境中碳酸盐沉积物的成分、结构、沉积构造、相序及沉积环境演化过程产生重要影响。

      • 当带来的诸如晶屑、岩屑、玻屑等火山碎屑物质进入到正在沉积的碳酸盐沉积物中,会影响后者岩石成分类型、含量及结构等,进而导致岩石物理响应的差异,通过等时格架内的横向对比这些特征,则可以反演火山活动对碳酸盐岩沉积影响的距离分异特征。例如四川盆地西北部晚二叠世吴家坪组的碳酸盐岩中发现了长石晶屑等火山物质,分选差、磨圆较差,微晶—隐晶质含量约5%(图1a,b)[921]。若火山物质含量高达50%~90%,则形成沉火山碎屑岩。四川盆地北部元坝地区茅三段发育的沉凝灰岩,其储集空间主要是由于凝灰质脱玻化或蚀变作用而形成的矿物收缩孔(图1c),还有受到火山灰沉积影响的黏土矿物层片间微孔隙[16]图1d)。此外,火山灰为方解石向白云石化转化提供充足的Mg2+,有利于白云石晶间孔隙的形成(图1e)。因此,火山碎屑物质具有形成储集岩性的潜力。另外,当火山碎屑与碳酸盐岩碎屑混杂堆积时,徐伟等[19]认为这种组分型的混合属于狭义上的混合沉积。例如在西北太平洋早白垩世发育的半固结碳酸盐台地下发生火山喷发时,碳酸盐泥、碳酸盐岩碎屑与火山物质同时沉积在火山口附近形成狭义的混积岩[20]图1f)。火山物质不仅能够正常地与碳酸盐沉积,还可以经过蚀变形成黏土矿物再沉积下来[21]。例如在陕西汉中梁山吴家坪组底部发现的“王坡页岩”也可称为斑脱岩[22]图1g~i),是峨眉山火山喷发带来的火山灰在海相环境下蚀变的产物[2324]。就岩石物理响应特征而言,火山物质的输入还能够影响碳酸盐岩的电性。在贵州紫云地区,对晚二叠世长兴期生物礁灰岩进行磁化率测试,其结果对火山作用具有指示效应[2526],磁化率数次出现高值说明可能有火山活动[27],磁性矿物的输入对碳酸盐岩沉积过程的干扰较大。

        图  1  火山物质的微观及宏观特征[16,20,22]

        Figure 1.  Microscopic and macroscopic characteristics of volcanic material[16,20,22]

        碳酸盐沉积物的粒度能够根据与火山活动区域的距离进行分异,内部也可能夹杂不同的火山物质,其中火山物质的分布范围也能让我们了解火山喷发时火山物质的分散情况[28]。就如火山碎屑通常集中在某一层位中,而火山灰因为粒度小能够在空中作长距离搬运[29]。Obst et al.[30]在德国北部和丹麦发现了松散的斑脱岩和具有碳酸盐胶结物的火山灰,露头剖面上玄武质熔体在浅海环境中爆发,沿着格陵兰岛和欧洲西北部之间的海洋裂谷的传播,导致大量火山灰传播到距其起源2 000 km的地方。

      • 火山爆发带来的各类火山碎屑进入水体后会干扰甚至中断碳酸盐岩的沉积过程[3132]。由于受到火山碎屑物质输入的影响[33],碳酸盐沉积形成了不同的相组合,组合方式上容易出现透镜体、互层或夹层等形式,杨朝青等[34]将该类组合方式称为广义的混合沉积。例如在北大巴山地区震旦纪—志留纪时期火山作用下,露头剖面上可见火山岩中夹有生物碎屑灰岩透镜体(图2a),并具有向上熔岩减少并以沉积岩为主的火山—沉积组合序列[35]。火山物质沉积易使碳酸盐出现沉积间断,而火山物质又可以构成了新的碳酸盐沉积的基底(图2b)[36]。例如在阿根廷Neuquén盆地Chachil组的火山活动形成了一个广泛的、间歇性的凝灰岩覆盖层,沉积在以碳酸盐岩为主的大陆架上[37];在土耳其东北部特拉布松白垩纪Aayırbağ剖面,可见薄层灰岩与极薄层凝灰岩互层[38];由于水下火山喷发多呈脉动式,往往形成碎屑流沉积物,三塘湖盆地芦草沟组的白云岩与火山岩或熔结凝灰岩呈极细的纹层状接触[39];在奥地利Styrian盆地中新世发现珊瑚藻类和珊瑚石灰岩的碳酸盐岩复合体中嵌入了多个凝灰岩层(图2c),这导致碳酸盐岩演替具有纵向和横向非均一性[31]

        图  2  火山作用下的岩石组合类型[31,3536,41]

        Figure 2.  Types of rock assemblages with volcanism[31,3536,41]

        根据火山沉积物与碳酸盐沉积物在空间上的组合关系可以判断火山活动的演化。碳酸盐岩的沉积特征可指示火山活动是否频繁,频繁的火山活动会中断碳酸盐岩建造,其内部还夹有火山碎屑[40]。例如在意大利西西里岛Hyblaean山脉中新世的露头上观察到的火山岩与碳酸盐岩组合,记录了至少两期火山喷发[41]图2d)。每个阶段自下而上都有碳酸盐泥(极细)与火山碎屑交互沉积,且火山碎屑含量逐渐减少,碳酸盐含量逐渐增加。以及在中国西北天山东部阿奇山—雅满苏一带,碳酸盐岩沉积物自西向东增加,火山岩与火山碎屑岩则呈相反趋势[42]。因此火山静止期或低火山强度时期,有利于碳酸盐的沉积和生物生长[4344]

      • 碳酸盐岩沉积环境主要为海洋和胡泊,一般具有温暖、清洁、浅水等特征,水体介质需具有适宜的物理、化学、生物等条件。火山作用是一个重要的地质过程,它通过影响差异沉降/隆起、基底形态、热液喷涌以及火山碎屑沉积物的性质和分布,进而影响浅海碳酸盐岩生产者及其周围环境[4546]。火山爆发时喷发的气体、火山灰等能够影响阳光的穿透力使环境恶化,并且进入水体能够引起水体温度上升、水体浑浊、化学性质改变(盐度、pH等),甚至是水体富营养化,这些都会在一定程度上影响碳酸盐岩的沉积[4748]

      • 火山活动对全球生态环境影响比较重大的因素主要是火山气体(CO2)以及火山灰的排放,这可以改变碳酸盐沉积的水体环境;另外,火山活动及其伴生的构造运动可以使碳酸盐沉积环境和沉积机制发生转变。例如在Canary群岛,火山喷发使CO2从正常值(336~341 mg/L,pH 8.09~8.15)上升到高值(886~5 148 mg/L,pH 7.08~7.79),使得火山口附近出现酸性条件,从而抑制碳酸盐岩的沉积[49]。一般而言,典型大火成岩省火山活动,会释放巨量的火山灰、H2S、SO2、CO2、CH4[5053]。二叠纪的火山活动形成了三个大火成岩省:早二叠世塔里木大火成岩省、中二叠世(瓜德鲁普世)晚期的峨眉山大火成岩省、二叠纪—三叠纪之交西伯利亚大火成岩省[54]。其中中期—晚期发生过一次强烈的火山活动,此次火山活动产生的挥发性气体及火山灰可能引发全球性环境气候急剧恶化,进而造成了全球生物大灭绝[55]。又如奥陶纪华南板块运动引起的火山活动导致碳酸盐台地陷落形成深水斜坡;四川盆地吴家坪组火山活动与构造运动造成的盆内局部断陷,使其逐渐发育为深缓坡沉积[56];在渐新世—中新世过渡期间,地中海中部斜坡遭遇碳酸盐沉积危机,火山作用导致台地溺水事件的发生,使得由寡光红藻和LBF主导的系统向一个以无光为主的碳酸盐工厂转变[57]。海底火山活动也能够通过改变源汇体系来改变周缘的斜坡沉积体系,使得火山碎屑物质能与碳酸盐岩混合沉积[5859]。例如在加利福尼亚早中新世,碳酸盐沉积物通过重力流从陆棚边缘迁移到Conejo盆地底部,并与盆地底部由火山喷发带来的火山物质堆积在一起[60]

        火山爆发后形成的火山锥可以为后期孤立碳酸盐台地的发育提供一个隆起的古地貌条件[6162]。另外,火山灰等物质喷发降落于海底,能够在海底形成火山丘。火山丘顶部的平台与温暖的水体环境,为碳酸盐岩台地的建造提供了良好的条件。例如位于波兰西部的Zielin孤立碳酸盐台地就是形成于遭受部分侵蚀的古火山锥上[63]。在我国南海水域分布的礁滩孤立型台地,大部分是在海底火山爆发形成的火成岩之上发育而成的[64]。台地发育过程中构造的变动、断裂作用、火山活动可以进一步引起地形变化,进而改变沉积环境,造成沉积物的变化,使得台地逐渐演变。例如在Mozambique南部海峡,火山活动影响碳酸盐岩台地的发育,并在火山口形成包含碳酸盐岩碎屑的凝灰岩沉积层,其中包括碳酸盐岩碎屑,伴随后期的构造沉降,最终在台地周围形成环礁[6566]图3)。根据碳酸盐岩建造基底的成因,还可将以火山丘为基底的碳酸盐岩台地归为火山垫高型(VEP)[40]

        图  3  Mozambique南部海峡新生代碳酸盐岩台地的演化历史[65]

        Figure 3.  Evolution history of Cenozoic carbonate platform in the southern channel, Mozambique[65]

      • 相对于海洋环境,湖相碳酸盐岩一般沉积于湖泊咸化的初级阶段。火山物质进入湖盆后不但会改变水体化学条件[67],大量的火山物质可以使水体富营养化[6869]。比如准噶尔盆地玛湖凹陷早二叠世风城组,火山物质为碳酸盐提供了金属离子,并且释放大量CO2,碳酸盐岩更易沉积于湖泊盐度更高的浅水区(图4),即湖泊边缘区域[70]。凝灰碎屑、热液与咸化湖水的混合作用,使得湖盆水体富集 Mg2+、Ca2+、Fe2+等,可以为微—粉晶白云石的形成提供物质基础。在东非基伍湖,水下火山活动引起的浮力热液羽流,可能是提高生物生产力和有机质保存的触发因素,而持续的热液活动增加了水体碱度,则有利于碳酸盐的保存[71]。美国内华达州南部米德湖地区晚渐新世—中新世早期Rainbow Gardens组和中新世Horse Spring组的湖相碳酸盐岩也沉积于封闭的高盐度碱性湖盆[72]

        图  4  准噶尔盆地玛湖凹陷湖盆边缘碳酸盐矿物沉淀模式(据文献[1,70]修改)

        Figure 4.  Model chart of carbonate mineral precipitation at the edge of lake basin in Mahu Depression, Junggar Basin (modified from references[1,70])

      • 碳酸盐岩主要是生物和生物化学成因,所以火山作用对碳酸盐建造者及其生长条件[73]图5)的影响,会间接影响碳酸盐岩的沉积,而这种影响机制通常具有双面性:破坏性和建设性作用。

        图  5  火山活动对环境和生态效应的影响[73]

        Figure 5.  Effects of volcanic activities on the environment and on the ecology[73]

      • 前面提到火山喷发引起二氧化碳排放量的增加会使海水酸化[74],酸化对浅海海底生态系统有重大影响[75],包括生物群落的改变、富含钙质的生物被取代,钙质有孔虫、珊瑚类、腹足类及双壳类等等都会显著减少[7677]。栖息于在火山口周围的物种大多对自然高浓度CO2具有抗御能力,表明海洋酸化可能更有利于高侵袭性的非原生藻类物种生长。就如地中海西北部高CO2浓度的火山口附近,海藻取代珊瑚藻类成为主导地位。沿海生态系统的碳和碳酸盐的生物地球化学循环发生转变,通过高CaCO3产生率和溶解率成为CO2通量的主要贡献者[78]。这些结果表明,二氧化碳含量的增加在很大程度上可以影响多种底栖生物的生长[79]。海水中CO2的上升导致钙化生物更易被腐蚀,使它们更难建造和维护其碳酸盐骨架[8084]

        在浅海正常沉积的火山灰对海洋生态系统造成严重破坏,导致诸如腕足动物在内的海洋生物出现生存危机[22]。一方面火山灰能够掩埋生物使其窒息死亡(图6图7a)。这是由于氧在埋藏沉积物中的扩散受到抑制,在海洋或湖底沉积的火山物质可能会形成对底栖生物群落不利的缺氧条件[8586]。在贵州晚二叠世可见丰富的原始石英晶体和火山玻璃嵌入藻类—有孔虫层中,并可见以火山玻璃为核心形成的石英次生加大边[8788];新近纪南苏拉威西岛西部临近火山口的浅水区沉积了大量火山碎屑,它们很可能迅速掩埋碳酸盐生物并使其窒息死亡;然而,在更远的地区或火山静止期间,当火山碎屑流入速度小于浅水碳酸盐岩沉积速度时,碳酸盐岩的沉积能够与火山活动同时发生[89]。另一方面,由于火山物质进入水体使水温变高、缺氧,也有可能会导致部分生物死亡。例如在鄂尔多斯盆地西、南缘奥陶纪火山作用下形成的凝灰质碎屑进入湖盆或者海洋后,不但会改变水体的化学条件,也在短时间内提高了水体的温度,加剧了生物死亡[90]

        图  6  中新世奥地利Styrian盆地火山灰对生物的影响[31,86]

        Figure 6.  Influence of volcanic ash on organisms in Styrian Basin, Austria, in the Miocene[31,86]

        图  7  火山灰对海藻生存环境的扰动恢复模型[86]

        Figure 7.  Disturbance recovery model for volcanic ashfall into a seagrass environment[86]

      • 尽管火山活动破坏了碳酸盐建造者的生存环境、抑制了碳酸盐沉积,但火山碎屑沉积事件对生产碳酸盐的底栖生物群落的结构没有长期影响。短期(十年尺度)破坏是火山碎屑沉积事件引起的生物演替:前期碳酸盐生产者被迅速埋藏并死亡;而后期火山碎屑沉积物被重新分配,火山灰溶解并释放出磷酸盐、二氧化硅、铁和锰等离子,使浅海环境更加肥沃[86,9194]图7b,c)。就微生物而言,火山喷发通常会带来利于微生物生长的营养物质,如硅酸盐矿物质等。微生物通过氧化还原等一系列复杂生理机制促进这些营养物质的溶解和矿物成岩作用,从而有利于碳酸盐矿物的沉淀[95]。以在鄂西地区二叠纪和三叠纪的交界处发现的一套微生物岩为例[96],二叠纪晚期微生物在火山作用下引起的生物大灭绝之后重新开始发育、繁盛[97],这是由于后期进入水体的火山物质富含微生物生长所需的营养物质,为微生物复苏提供了物质条件[98];在阿根廷圣胡安州古生代晚期的San Ignacio组,虽然火山喷发中断了微生物碳酸盐岩的发育,甚至破坏了部分碳酸盐沉积物,但新沉积的火山物质则为微生物碳酸盐岩的生长提供丰富的营养物质[35];美国内华达州南部米德湖地区晚渐新世—中新世早期封闭高盐度碱性湖盆虽然不利于大型动、植物的生长,但促进了重要微生物群落的生长[72]。另外微生物所需营养物质的来源也可能是海山,海山内部火山喷发将导致火山碎屑、火山玻璃等产量增加,对地球化学通量产生重大影响并为微生物生长提供有利的营养基底[99100]。就宏观生物而言,当火山物质沉积在水体中时,可以成为浮游生物营养物质的直接来源[50],其中中酸性火山灰含铁盐等营养物质,可促使硅藻生长[80]。钙藻—有孔虫灰岩常在火山期沉积,表明火山作用对钙藻、有孔虫生物群的破坏性较小[87]。例如在墨西哥中心一湖盆,随着后期火山活动逐渐平息,硅藻的生长过程也趋于稳定,并且在露头剖面上可以观察到火山灰沉积贯穿了厚层硅藻岩的底部[101]

      • 不同类型的火山物质含不同元素、矿物等,导致成岩流体性质发生变化从而影响碳酸盐沉积物的成岩作用。在富CO2流体的作用下,火山岩、火山碎屑等物质通过水解释放出的金属离子越多,就越有利于碳酸盐矿化的发生,从而形成白云石、方解石、菱铁矿等自生碳酸盐矿物[102103]。同时,富硅热液对碳酸盐岩影响极大,岩浆热液沿着断裂带喷出使海水中SiO2含量极大提高,在重庆石柱上二叠统吴家坪组灰岩中所发育的硅质条带、结核就与火山作用有关[104]。硅质来源可通过Fe、Mn、Al、Ti等元素来判别[105],研究表明Fe、Mn的富集可能主要与热水沉积作用有关(图8)。因此,还可根据不同的元素如Fe、Si、Mn、Sr、Nd等来判断是否与火山活动存在关联。例如,神农架地质公园中元古代发育的巨型穹隆状叠层石沉积于碳酸盐岩台地之上,岩石中富含海底火山活动带来的Fe、Si、Mn等元素[106];在巴彦鄂博矿床中元古生代发育的白云质大理石中的白云石晶粒富含SrO、FeO、MnO[107]。地中海中西部碳酸盐岩的Sr、Nd同位素记录显示了与俯冲相关的西地中海火山活动,并其对海水化学特征产生强烈影响[108109]

        图  8  重庆石柱吴家坪组硅质岩Al⁃Fe⁃Mn判别图解[104]

        Figure 8.  Al⁃Fe⁃Mn discriminant diagram for siliceous rocks of Wujiaping Formation in Shizhu, Chongqing[104]

      • 受到火山作用及其碎屑物质等影响,碳酸盐岩中不仅容易发生硅质交代及胶结、白云石化、溶蚀等作用类型,形成“结核”、“团块”、“条带”等地质现象,而且容易对海水成岩环境中的胶结作用等产生影响。以四川盆地西北部地区中上二叠统为例,中二叠统茅口组的凝灰岩、凝灰质石灰岩中,火山物质的Mg2+促进了白云石化作用的发生[110],进而形成晶间孔等;上二叠统吴家坪组硅质交代、胶结、白云石化等作用特征更明显(图9a,b),“硅质条带”、“硅质结核”、“鞍状白云石”等发育(图9c,d)[111112]。在塔里木盆地、渤海地区,火山喷发带来的火山热液通过裂缝通道参与对碳酸盐岩储层的改造,主要依靠的是溶蚀作用和交代作用[113115]。此外,在浅海成岩环境中,火山活动引起海水温度升高则可能导致碳酸钙含量达到饱和状态,从而形成大量纤维状碳酸盐胶结物[87]

        图  9  川西北部吴家坪组成岩作用类型

        Figure 9.  Diagenesis types, Wujiaping Formation, northwestern Sichuan

      • (1) 碳酸盐岩的沉积伴随火山活动发生时,内部岩石组分、孔隙特征、沉积结构甚至电性都可能发生改变,并且在沉积过程中火山物质具有粒度分异特征。宏观上,火山物质与碳酸盐岩具有多种组合形式,导致碳酸盐岩在横向与纵向上具有非均一性,并记录了火山活动的演化特征。

        (2) 火山作用带来的火山物质、气体等进入海洋或者湖盆后,不但会改变水体的化学条件,也可能在短时间内提高了水体的温度,从而改变碳酸盐岩的沉积环境。同时,火山活动控制着碳酸盐台地的生长与消亡。

        (3) 火山作用能够通过影响碳酸盐建造者及其生长条件来影响碳酸盐岩的沉积,这种作用机制具有破坏性与建设性。前期火山喷发释放大量CO2及火山灰等破坏了生态环境,加剧了生物死亡;后期火山物质的溶解释放出营养物质,为微生物群落、浮游生物甚至是后生动物提供有利的生长条件。

        (4) 火山喷发带来了大量赋存于热液与火山物质中的金属元素,对碳酸盐岩的成岩作用具有重大的影响,如碳酸盐矿化、硅质交代、硅质胶结、白云石化等多种成岩作用类型,这在一定程度上是控制碳酸盐岩储层物性的主要因素之一。

    参考文献 (115)

    目录

      /

      返回文章
      返回