高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆架边缘海环境下金属元素与有机质富集关系探讨

裴宇 张生银 房嬛 陈永欣 张顺存 邵明 雷天柱

裴宇, 张生银, 房嬛, 陈永欣, 张顺存, 邵明, 雷天柱. 陆架边缘海环境下金属元素与有机质富集关系探讨—以南黄海表层沉积物为例[J]. 沉积学报, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
引用本文: 裴宇, 张生银, 房嬛, 陈永欣, 张顺存, 邵明, 雷天柱. 陆架边缘海环境下金属元素与有机质富集关系探讨—以南黄海表层沉积物为例[J]. 沉积学报, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
PEI Yu, ZHANG ShengYin, FANG Xuan, CHEN YongXin, ZHANG ShunCun, SHAO Ming, LEI TianZhu. Relationship Between Metallic Elements and Organic Matter Enrichment in Self-margin Seas: Example from surface sediments in the South Yellow Sea[J]. Acta Sedimentologica Sinica, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
Citation: PEI Yu, ZHANG ShengYin, FANG Xuan, CHEN YongXin, ZHANG ShunCun, SHAO Ming, LEI TianZhu. Relationship Between Metallic Elements and Organic Matter Enrichment in Self-margin Seas: Example from surface sediments in the South Yellow Sea[J]. Acta Sedimentologica Sinica, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082

陆架边缘海环境下金属元素与有机质富集关系探讨—以南黄海表层沉积物为例

doi: 10.14027/j.issn.1000-0550.2020.082
基金项目: 

国家自然科学基金 1309RTSA041

甘肃省重点实验室专项基金资助项目 1309RTSA041

详细信息

Relationship Between Metallic Elements and Organic Matter Enrichment in Self-margin Seas: Example from surface sediments in the South Yellow Sea

Funds: 

National Natural Science Foundation of China, No. 41503048; Key Laboratory Project of Gansu Province of China 1309RTSA041

 1309RTSA041

  • 摘要: 陆架边缘海是“河口—陆架”体系重要的碳汇,黏土矿物作为主要载体将有机质与金属元素吸附于表面或层间,通常表现为粒度、有机质和金属元素含量之间高度正相关。本文通过分析南黄海中部沉积物粒度、总有机碳、主微量元素,探讨三者之间分布特征和相互关系,进一步开展金属元素、有机质与黏土矿物吸附模拟实验,结果表明,酸性条件(pH=4)下适量的金属离子(Zn2+、Ni2+、Pb2+)明显促进伊利石对腐殖酸(有机质主要组成部分)吸附,腐殖酸吸附量达到20.06 mg/g,其中金属离子加入使腐殖酸吸附量提高6.25%;同时碱性条件(pH=8)下金属离子也能够促进伊利石对腐殖酸吸附,腐殖酸吸附量达到15.7 mg/g,金属离子加入使腐殖酸吸附量提高38.9%。金属离子的阳离子键桥作用促进伊利石吸附腐殖酸,且酸性环境下腐殖酸的吸附量高于碱性环境。证实了陆架边缘海背下金属元素的参与对黏土矿物吸附腐殖酸具有明显促进作用,有利于在全球碳循环过程形成边缘海“碳库”,同时海洋酸化可能造成海洋溶解有机质降低和重金属离子浓度升高,对陆架边缘海海洋生态系统平衡构成威胁。
  • 图  1  研究区的海域概况和沉积物站位分布图

    Figure  1.  Sea area and sediment distribution map of the study area

    图  2  黏土矿物—金属离子对腐殖酸吸附模拟(a)与黏土矿物—腐殖酸对金属离子吸附模拟(b)实验流程

    Figure  2.  Adsorption simulation of (a) humic acid by clay mineral⁃metal ions and (b) metal ions by clay mineral⁃humic acid

    图  3  南黄海黏土矿物粒度和金属元素的相关性

    Figure  3.  Correlation between clay mineral size and metal elements in the South Yellow Sea

    图  4  南黄海黏土矿物有机质丰度和金属元素的相关性

    Figure  4.  Correlation of organic matter abundance and metallic elements of clay minerals in the South Yellow Sea

    图  5  酸性条件下(pH=4)黏土矿物—金属离子对腐殖酸吸附模拟

    Figure  5.  Adsorption simulation of humic acid by clay mineral⁃metal ions under acidic conditions (pH = 4)

    图  6  碱性条件下(pH=8)黏土矿物—金属离子对腐殖酸吸附模拟

    Figure  6.  Adsorption simulation of humic acid by clay mineral⁃metal ions under alkaline conditions (pH = 8)

    图  7  酸性条件下(pH=4)黏土矿物—腐殖酸对金属离子吸附模拟

    Figure  7.  Adsorption simulation of metal ions by clay mineral⁃humic acid under acidic conditions (pH = 4)

    图  8  碱性条件下(pH=8)黏土矿物—腐殖酸对金属离子吸附模拟

    Figure  8.  Adsorption simulation of metal ions by clay mineral⁃humic acid under alkaline conditions (pH = 8)

    图  9  陆架边缘海金属元素促进黏土矿物吸附有机质键桥模式图

    Figure  9.  Enrichment model of marine clay minerals⁃metal⁃organic matter

    表  1  南黄海表层沉积物Al2O3、粒度、总有机碳与金属元素含量表

    Table  1.   Al2O3, particle size, total organic carbon and metal element content in surface sediments of the South Yellow Sea

    Al2O3/% Md /ϕ TOC/% Pb/(µg/g) Zn/(µg/g) Ni/(µg/g)
    最大值 17.41 7.51 1.2 38.8 112 45.1
    最小值 8.53 2.74 0.09 14.2 27.1 11
    平均值 13.26 5.61 0.51 24.18 70.18 29.49
    中值 13.1 5.96 0.42 22.4 65.1 27
    下载: 导出CSV

    表  2  边缘海沉积物的中值粒径(Md )、总有机碳(TOC)和金属元素含量的相关性系数表

    Table  2.   Correlation coefficients of median particle size (Md ), total organic carbon (TOC) and metal element content of marginal sea sediments

    地区 Md /Pb Md /Zn Md /Ni TOC/Pb TOC/Zn TOC/Ni 参考文献
    南黄海 0.555 0.841 0.863 0.679 0.874 0.858 本研究
    渤海 0.589 0.324 0.513 0.623 0.762 0.355 [31]
    东海 -0.08 0.42 0.64 0.67 [32]
    东海 0.39 0.57 0.37 0.36 [33]
    广东中海岸 0.69 0.62 0.53 0.74 0.53 0.75 [34]
    Portuguese continental shelf AveDouro area 0.60 0.88 0.87 0.63 0.77 0.77 [35]
    Lis area 0.96 0.90 0.97 0.99 0.92 0.97
    摩洛哥大西洋海岸 0.82 0.73 0.94 0.71 [36]
    下载: 导出CSV

    表  3  我国陆架边缘海表层海水与沉积物的pH、金属元素和DOC含量与模拟实验数据对比

    Table  3.   pH, metal elements and DOC content of surface seawater in continental shelf margin sea in China

    地区 pH Pb/(µg/L) Zn/(µg/L) DOC/(mg/L) 参考文献
    东海 8.04 0.52~3.35 32.23~42.35 0.54~1.88 [55-56]
    黄海 8.17 0.28~1.08 6.4~9.8 0.96~4.25 [57-58]
    渤海 7.86~8.3 0.17~9.55 17.3~90 2.01~4.71 [57,59]
    南海 8.2 0.0265~10 1.00~139 0.6~1.6 [60]
    台湾海峡 7.5~8.6 1.10~5.62 4.40~80.80 1.09~1.22 [61-62]
    下载: 导出CSV
  • [1] 宋金明. 海洋碳的源与汇[J]. 海洋环境科学,2003,22(2):75-80.

    Song Jinming. Carbon sources and sinks in oceans[J]. Marine Environmental Science, 2003, 22(2): 75-80.
    [2] 戴民汉,翟惟东,鲁中明,等. 中国区域碳循环研究进展与展望[J]. 地球科学进展,2004,19(1):120-130.

    Dai Minhan, Zhai Weidong, Lu Zhongming, et al. Regional studies of carbon cycles in China: Progress and perspectives[J]. Advance in Earth Sciences, 2004, 19(1): 120-130.
    [3] 姚鹏,郭志刚,于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J]. 海洋学报,2014,36(2):23-32.

    Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Acta Oceanologica Sinica, 2014, 36(2): 23-32.
    [4] 尹红珍,姚鹏,于志刚. 边缘海环境中陆源有机质的化学生物标志物研究进展[J]. 海洋环境科学,2012,31(1):128-135.

    Yin Hongzhen, Yao Peng, Yu Zhigang. Study advances in chemical biomarkers of terrestrial organic matter in marine margins environment[J]. Marine Environmental Science, 2012, 31(1): 128-135.
    [5] 赵玉庭,梁生康,石晓勇,等. 春季黄海海域颗粒有机碳的分布特征及影响因素[J]. 中国海洋大学学报,2013,43(2):48-54.

    Zhao Yuting, Liang Shengkang, Shi Xiaoyong, et al. Distribution of particulate organic carbon in the Yellow Sea in spring[J]. Periodical of Ocean University of China, 2013, 43(2): 48-54.
    [6] 张婷,王作华,石晓勇,等. 黄海、东海溶解有机碳的分布特征[J]. 海洋环境科学,2011,30(2):162-166.

    Zhang Ting, Wang Zuohua, Shi Xiaoyong, et al. Spatial distribution of dissolved organic carbon in the Yellow Sea and East China Sea[J]. Marine Environmental Science, 2011, 30(2): 162-166.
    [7] 范文宏,陈俊,王琼. 胡敏酸对沉积物中重金属形态分布的影响[J]. 环境化学,2007,26(2):224-227.

    Fan Wenhong, Chen Jun, Wang Qiong. Influence of humic acid on species of heavy metals in sediments[J]. Environmental Chemistry, 2007, 26(2): 224-227.
    [8] 张婷. 多参数指标重建东海闽浙沿岸沉积有机质的组成变化[D]. 青岛:中国海洋大学,2012.

    Zhang Ting. Multi-proxies reconstruction for the changes in the composition of the sedimentary organic matter in the Min-Zhe coastal area of East China Sea[D]. Qingdao: Ocean University of China, 2012.
    [9] 陈彬,刘健,范德江,等. 中国东部海域底质沉积物中重金属研究现状[J]. 海洋地质与第四纪地质,2016,36(1):43-56.

    Chen Bin, Liu Jian, Fan Dejiang, et al. Study of heavy metals in bottom sediments of the east China seas (Bohai, Huanghai and the East China Sea): A review of current status[J]. Marine geology & Quaternary Geology, 2016, 36(1): 43-56.
    [10] 宫凯悦. 松花江哈尔滨段河流底泥重金属污染及内源释放规律研究[D]. 哈尔滨:哈尔滨工业大学,2014.

    Gong Kaiyue. Study on the release law and pollution features of heavy metals in the sediments of Harbin section of Songhua River[D]. Harbin: Harbin Institute of Technology, 2014.
    [11] 贺志鹏. 南黄海重金属的演变特征及控制因素[D]. 青岛:中国科学院研究生院(海洋研究所),2008.

    He Zhipeng. Variation characteristics and controlling factors of heavy metals in the South Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2008.
    [12] Keil R G, Tsamakis E, Giddings J C, et al. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast[J]. Geochimica et Cosmochimica Acta, 1998, 62(8): 1347-1364.
    [13] 蔡进功,徐金鲤,杨守业,等. 泥质沉积物颗粒分级及其有机质富集的差异性[J]. 高校地质学报,2006,12(2):234-241.

    Cai Jingong, Xu Jinli, Yang Shouye, et al. The fractionation of an argillaceous sediment and difference in organic matter enrichment in different fractions[J]. Geological Journal of China Universities, 2006, 12(2): 234-241.
    [14] Blattmann T M, Liu Z, Zhang Y, et al. Mineralogical control on the fate of continentally derived organic matter in the ocean[J]. Science2019, 366(6466): 742-745.
    [15] Brindley G W. Formation and properties of clay—polymer complexes. Theng B.K.G., 1979. Developments in Soil Science, 9. Elsevier, Amsterdam, 362 pp., Dfl. 132.00, U.S. $ 58.75[J]. Earth-Science Reviews, 1979, 15(3): 295-296.
    [16] 蔡进功. 泥质沉积物和泥岩中的有机粘土复合体[D]. 上海:同济大学,2003.

    Cai Jingong. Organo-clay complexes in muddy sediments and mudstones[D]. Shanghai: Tongji University, 2003.
    [17] Glaus M A, Frick S, Van Loon L R. A coherent approach for cation surface diffusion in clay minerals and cation sorption models: Diffusion of Cs+ and Eu3+ in compacted illite as case examples[J]. Geochimica et Cosmochimica Acta, 2020, 274: 79-96.
    [18] 何宏平,郭九皋,朱建喜,等. 蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J]. 岩石矿物学杂志,2001,20(4):573-578.

    He Hongping, Guo Jiugao, Zhu Jianxi, et al. An experimental study of adsorption capacity of montmorillonite, kaolinite and illite for heavy metals[J]. Acta Petrologica et Mineralogica, 2001, 20(4): 573-578.
    [19] 廖平凡,吴平霄,吴伟民,等. 粘土矿物对胡敏酸的吸附行为研究[J]. 矿物岩石地球化学通报,2009,28(3):272-277.

    Liao Pingfan, Wu Pingxiao, Wu Weimin, et al. Study of the sorption of humic acids on the clays[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(3): 272-277.
    [20] 吴宏海,张秋云,方建章,等. 高岭石和硅/铝-氧化物对腐殖酸的吸附实验研究[J]. 岩石矿物学杂志,2003,22(2):173-176.

    Wu Honghai, Zhang Qiuyun, Fang Jianzhang, et al. An experimental study of the humic acid sorption on kaolinite and Si/Al-oxide minerals[J]. Acta Petrologica et Mineralogica, 2003, 22(2): 173-176.
    [21] 邓友军. 粘土矿物对有机化合物的吸附行为[D]. 南京:中国科学院南京土壤研究所,1996.

    Deng Youjun. The adsorption behavior of organic compounds onto clay minerals[D]. Nanjing: Institute of Soil Science, Chinese Academy of Sciences, 1996.
    [22] 刘保峰,王强,孟威,等. 酸度对胡敏酸与镉和锌离子络合反应的影响[J]. 西南农业大学学报(自然科学版),2005,27(4):451-455.

    Liu Baofeng, Wang Qiang, Meng Wei, et al. The impact of acidity on the complexation reaction of humic acid with Cd2+ and Zn2+[J]. Journal of Southwest Agricultural University (Natural Science), 2005, 27(4): 451-455.
    [23] 金海燕,林以安,陈建芳,等. 黄海、东海颗粒有机碳的分布特征及其影响因子分析[J]. 海洋学报,2005,27(5):46-53.

    Jin Haiyan, Lin Yi’an, Chen Jianfang, et al. Analysis of driving factors and distribution of particulate organic carbon in the Huanghai Sea and the East China Sea[J]. Acta Oceanologica Sinica, 2005, 27(5): 46-53.
    [24] 张生银,李双林,董贺平,等. 南黄海中部表层沉积物有机质分布与分子组成研究[J]. 沉积学报,2013,31(3):497-508.

    Zhang Shengyin, Li Shuanglin, Dong Heping, et al. Distribution and molecular composition of organic matter in surface sediments from the central part of South Yellow Sea[J]. Acta Sedimentologica Sinica, 2013, 31(3): 497-508.
    [25] 梅西,张训华,刘健,等. 南黄海3.50Ma以来海陆环境演变的元素地球化学记录[J]. 吉林大学学报(地球科学版),2019,49(1):74-84.

    Mei Xi, Zhang Xunhua, Liu Jian, et al. Elemental geochemical record of land and sea environmental evolution since 3.50 Ma in South Yellow Sea[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1): 74-84.
    [26] 卢龙飞,蔡进功,包于进,等. 粘土矿物保存海洋沉积有机质研究进展及其碳循环意义[J]. 地球科学进展,2006,21(9):931-937.

    Lu Longfei, Cai Jingong, Bao Yujin, et al. Summary of processes and significance of clay minerals in marine sedimentary organic matter preservation and in global carbon cycle[J]. Advances in Earth Science, 2006, 21(9): 931-937.
    [27] Guo H, Zhang S Y, Zhang S C, et al. Distribution and controls of heavy metals and organic matter in the surface sediments of the southern Yellow Sea, China[J]. Environmental Science and Pollution Research, 2017, 24(29): 23069-23079.
    [28] 段丽琴,宋金明,许思思. 海洋沉积物中的钒、钼、铊、镓及其环境指示意义[J]. 地质论评,2009,55(3):420-427.

    Duan Liqin, Song Jinming, Xu Sisi. V, Mo, Tl, Ga and their environmental marker function in marine sediment[J]. Geological Review, 2009, 55(3): 420-427.
    [29] 董爱国. 黄、东海海域沉积物的源汇效应及其环境意义[D]. 青岛:中国海洋大学,2011.

    Dong Aiguo. Source, sink and its environmental record of sediments in Yellow Sea and East China Sea[D]. Qingdao: Ocean University of China, 2011.
    [30] 罗晓凡,魏皓. 陆架海碳循环模式研究现状与进展[J]. 海洋科学进展,2014,32(2):277-287.

    Luo Xiaofan, Wei Hao. Progress on the study of continental shelf carbon cycle model[J]. Advances in Marine Science, 2014, 32(2): 277-287.
    [31] Zhang J F, Gao X L. Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: Distributions, sources and contamination assessment[J]. Marine Pollution Bulletin, 2015, 98(1/2): 320-327.
    [32] Liu S F, Shi X F, Liu Y G, et al. Concentration distribution and assessment of heavy metals in sediments of mud area from inner continental shelf of the East China Sea[J]. Environmental Earth Sciences, 2011, 64(2): 567-579.
    [33] Guo Y W, Yang S Y. Heavy metal enrichments in the Changjiang (Yangtze River) catchment and on the inner shelf of the East China Sea over the last 150 years[J]. Science of the Total Environment, 2016, 543: 105-115.
    [34] Gu Y G, Wang Z H, Lu S H, et al. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China[J]. Environmental Pollution, 2012, 163: 248-255.
    [35] Mil-Homens M, Stevens R L, Abrantes F, et al. Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf[J]. Continental Shelf Research, 2006, 26(10): 1184-1205.
    [36] Maanan M, Zourarah B, Carruesco C, et al. The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast)[J]. Journal of African Earth Sciences, 2004, 39(3/4/5): 473-483.
    [37] 王昆山,石学法,林振宏. 南黄海和东海北部陆架重矿物组合分区及来源[J]. 海洋科学进展,2003,21(1):31-40.

    Wang Kunshan, Shi Xuefa, Lin Zhenhong. Assemblages, provinces and provenances of heavy minerals on the shelf of the southern Yellow Sea and northern East China Sea[J]. Advances in Marine Science, 2003, 21(1): 31-40.
    [38] 宋召军,张志殉,余继峰,等. 南黄海表层沉积物中粘土矿物分布及物源分析[J]. 山东科技大学学报(自然科学版),2008,27(3):1-4.

    Song Zhaojun, Zhang Zhixun, Yu Jifeng, et al. Study on distribution and material sources of clay minerals in surface sediments of the southern Yellow Sea[J]. Journal of Shandong University of Science and Technology (Natural Science), 2008, 27(3): 1-4.
    [39] 蓝先洪,蜜蓓蓓,李日辉,等. 渤海东部和黄海北部沉积物中重金属分布特征[J]. 中国环境科学,2014,34(10):2660-2668.

    Lan Xianhong, Mi Beibei, Li Rihui, et al. Distribution of heavy metals in surface sediments in the eastern Bohai Sea and the northern Yellow Sea[J]. China Environmental Science, 2014, 34(10): 2660-2668.
    [40] 朱海军. 土壤腐殖酸的提取及其对U、Eu和241Am的吸附[D]. 成都:四川大学,2006.

    Zhu Haijun. Extraction of humic acid from soil and adsorption of uranium, europium and americium-241 by the extracted humic acid[D]. Chengdu: Sichuan University, 2006.
    [41] Mopper K. Organic geochemistry of natural waters: By E. M. Thurman. Martinus Nijhoff/W. Junk, Dordrecht, 1985. xiii + 497 pp., $39.50[J]. Organic Geochemistry, 1987, 11(1): 53.
    [42] 何为红. 重金属离子在粘土矿物—胡敏酸复合体上的吸附研究[D]. 南京:南京农业大学,2007.

    He Weihong. Adsorption of heavy metal on clay mineral-humic acid complexes[D]. Nanjing: Nanjing Agricultural University, 2007.
    [43] 何宏平,郭龙皋,谢先德,等. 蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J]. 矿物学报,1999,19(2):231-235.

    He Hongping, Guo Longgao, Xie Xiande, et al. Experimental studies on the selective adsorption of Cu2+, Pb2+, Zn2+, Cd2+, Cr3+ ions on montmorillonite, illite and kaolinite and the influence of medium conditions[J]. Acta Mineralogica Sinica, 1999, 19(2): 231-235.
    [44] 朱健,王平,罗文连,等. 硅藻土吸附重金属离子研究现状及进展[J]. 中南林业科技大学学报,2011,31(7):183-189.

    Zhu Jian, Wang Ping, Luo Wenlian, et al. Present situation and development of adsorption of diatomite for heavy metal ions[J]. Journal of Central South University of Forestry & Technology, 2011, 31(7): 183-189.
    [45] 袁建民. 粘土矿物对重金属离子的吸附能力研究[D]. 石家庄:河北地质大学,2018.

    Yuan Jianmin. Adsorption ability of clay minerals to heavy metal ions[D]. Shijiazhuang: Hebei Geological University, 2018.
    [46] 卢龙飞,蔡进功,刘文汇,等. 泥岩与沉积物中粘土矿物吸附有机质的三种赋存状态及其热稳定性[J]. 石油与天然气地质,2013,34(1):16-26.

    Lu Longfei, Cai Jingong, Liu Wenhui, et al. Occurrence and thermostability of absorbed organic matter on clay minerals in mudstones and muddy sediments[J]. Oil and & Geology, 2013, 34(1): 16-26.
    [47] 王茂桢,柳少波,任拥军,等. 页岩气储层粘土矿物孔隙特征及其甲烷吸附作用[J]. 地质论评,2015,61(1):207-216.

    Wang Maozhen, Liu Shaobo, Ren Yongjun, et al. Pore characteristics and methane adsorption of clay minerals in shale gas reservoir[J]. Geological Review, 2015, 61(1): 207-216.
    [48] 赵晴. 煤泥水中矿物颗粒表面荷电特性及机理研究[D]. 淮南:安徽理工大学,2012.

    Zhao Qing. Surface charge characteristics and mechanism of slime mineral particles[D]. Huainan: Anhui University of Science and Technology, 2012.
    [49] 王意锟,郝秀珍,王玉军,等. 凹凸棒土—腐植酸复合体对Pb(Ⅱ)的吸附特性及机理研究[J]. 农业环境科学学报,2009,28(11):2324-2327.

    Wang Yikun, Hao Xiuzhen, Wang Yujun, et al. Characteristics and mechanisms of Pb(Ⅱ) adsorption on palygorskite-humic acid complex[J]. Journal of Agro-Environment Science, 2009, 28(11): 2324-2327.
    [50] 何宏平. 黏土矿物与金属离子的作用研究[M]. 北京:石油工业出版社,2001.

    He Hongping. Interaction of clay minerals with metal ions [M]. China Petroleum Industry Press, Beijing, 2001.
    [51] 滕飞. 粘土矿物及粘土矿物—胡敏酸复合体对Cd2+的吸附及对Cd2+和Pb2+的选择性[D]. 南京:南京农业大学,2009.

    Teng Fei. Adsorption of Cd2+ on clay minerals and clay mineral-humic acid complexes and competitive adsorption of Cd2+ and Pb2+[D]. Nanjing: Nanjing Agricultural University, 2009.
    [52] Feng X J, Simpson A J, Simpson M J. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces[J]. Organic Geochemistry, 2005, 36(11): 1553-1566.
    [53] Orsetti S, Quiroga M D L M, Andrade E M. Binding of Pb(II) in the system humic acid/goethite at acidic pH[J]. Chemosphere, 2006, 65(11): 2313-2321.
    [54] Wieland E, Stumm W. Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3339-3355.
    [55] 江锦花,江正玲,陈希方,等. 椒江口海域重金属含量分布及在沉积物和生物体中的富集[J]. 海洋环境科学,2007,26(1):58-62.

    Jiang Jinhua, Jiang Zhengling, Chen Xifang, et al. Distribution of heavy metals and enrichment of it in sediment and organisms in Jiaojiang Estury[J]. Marine Environmental Science, 2007, 26(1): 58-62.
    [56] 李宁,王江涛. 春季东海北部近岸水体中的溶解无机碳和有机碳的分布特征及其影响因素[J]. 海洋科学,2011,35(8):5-10.

    Li Ning, Wang Jiangtao. Dissolved inorganic and organic carbon in the north of East China Sea (ECS) coastal waters in spring[J]. Marine Sciences, 2011, 35(8): 5-10.
    [57] 商荣宁. 2010年黄、渤海有机碳的分布特征及影响因素[D]. 青岛:中国海洋大学,2011.

    Shang Rongning. The distribution and influence factors of organic carbon in the Bohai Sea and Yellow Sea of 2010[D]. Qingdao: Ocean University of China, 2011.
    [58] 田琳,陈洪涛,杜俊涛,等. 北黄海表层海水溶解态重金属的分布特征及其影响因素[J]. 中国海洋大学学报,2009,39(4):617-621.

    Tian Lin, Chen Hongtao, Du Juntao, et al. Factors influencing distribution of soluble heavy metals in North Yellow Sea surface seawaters[J]. Periodical of Ocean University of China, 2009, 39(4): 617-621.
    [59] Peng S T. The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: Temporal–spatial variations, sources, pollution statuses, and ecological risks[J]. Marine Pollution Bulletin, 2015, 95(1): 445-451.
    [60] 李景喜,李俊飞,郑立,等. 南海中南部水域海水中重金属的分布特征[J]. 中国环境监测,2013,29(3):65-71.

    Li Jingxi, Li Junfei, Zheng Li, et al. Distribution of heavy metals in the mid-south part of South China sea water[J]. Environmental Monitoring in China, 2013, 29(3): 65-71.
    [61] 林建杰. 闽江口海域海水中重金属的含量变化趋势研究[J]. 福建水产,2013,35(3):203-210.

    Lin Jianjie. Studies on the content change of heavy metals in seawater of Minjiang Estuary[J]. Journal of Fujian Fisheries, 2013, 35(3): 203-210.
    [62] 丰卫华,钱健,郝喆,等. 闽北海域水体中溶解有机碳的时空变化及其影响因素[J]. 海洋环境科学,2018,37(2):245-251.

    Feng Weihua, Qian Jian, Hao Zhe, et al. Distribution characteristics of dissolved organic carbon and influencing factors in the northern waters of Fujian[J]. Marine Environmental Science, 2018, 37(2): 245-251.
    [63] 赵全基.渤海表层沉积物中粘土矿物研究[J].黄渤海海洋,1987(1):78-84.

    Zhao Quanji. A study of the clay minerals of the surficial deposit in the Bohai Sea[J]. Journal of Oceanography of Huanghai & Bohai seas,1987(1):78-84.
    [64] 朱凤冠.东海陆架区全新世地层中粘土矿物[J].东海海洋,1985(4):32-43.

    Zhu Fengguan. Clay minerals of the East China Sea shelf area in the recent Epoch stratum[J].Donghai Marine Science,1985(4):32-43.
    [65] 谢群,郭楚玲,党志,等. 雷州半岛近海沉积物中腐殖质的分布和腐殖酸特性研究[J]. 热带海洋学报,2016,35(4):112-121.

    Xie Qun, Guo Chuling, Dangzhi, et al. Research on distribution of humus and characterization of humic acids in offshore sediments of Leizhou Peninsula[J].Journal of Tropical Oceanography, 2016, 35(4): 112-121.
    [66] 朱青青,王中良.中国主要水系沉积物中重金属分布特征及来源分析[J].地球与环境,2012,40(3):305-313.

    Zhu Qingqing, Wang Zhongliang. Distribution characteristics and source analysis of heavy metals in sediments of the main river systems in China[J].Earth and Environment,2012,40(3):305-313.
    [67] 程圣东. 黄土高原文安驿流域植被覆盖与土壤侵蚀分布特征研究[D]. 西安理工大学, 2010.

    Cheng Shengdong. Distribution characters of vegetation coverage and soil erosion in Wenanyi watershed on Loess Plateau[D]. Xi’an University of Technology,2010.
    [68] Su J Z, Cai W J, Brodeur J, et al. Chesapeake bay acidification buffered by spatially decoupled carbonate mineral cycling[J]. Nature Geoscience, 2020, 13(6): 441-447.
    [69] Ken Caldeira,Wickett Michael E. Oceanography: anthropogenic carbon and ocean pH[J]. Nature,2003,425(6956):365.
    [70] 谢嘉. 典型重金属(Cd2+、Pb2+)和有机污染物(BaP、BDE-47)对长牡蛎的复合毒性效应研究[D]. 烟台:中国科学院烟台海岸带研究所,2017.

    Xie Jia. Combined toxic effects of heavy metals (Cd2+、Pb2+) and organic pollutants (BaP、BDE-47) on the oyster Crassostrea gigas[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2017.
    [71] 林拓,虞阳,刘泽勤,等. 工业生产与城市生活对近海污水影响的辨识及治理[J]. 世界地理研究,2016,25(5):37-47.

    Lin Tuo, Yu Yang, Liu Zeqin, et al. Identification and control of the impact of industrial production and urban life on offshore sewage[J]. World Regional Studies, 2016, 25(5): 37-47.
    [72] 于宇,宋金明,李学刚,等. 沉积物微量金属元素在重建水体环境变化中的意义[J]. 地质论评,2012,58(5):911-922.

    Yu Yu, Song Jinming, Li Xuegang, et al. Significance of sedimentary trace metals in reconstructing the aquatic environmental changes[J]. Geological Review, 2012, 58(5): 911-922.
  • [1] 朱康乐, 高岗, 刘诗局, 王成云, 程光瑾, 胡丹丹.  缝合线中有机质来源、流体运移以及地质意义 . 沉积学报, 2024, 42(2): 661-674. doi: 10.14027/j.issn.1000-0550.2022.075
    [2] 蔡来星, 杨田, 田景春, 易娟子, 任启强.  致密砂岩储层中黏土矿物发育特征及其生长机理研究进展 . 沉积学报, 2023, 41(6): 1859-1889. doi: 10.14027/j.issn.1000-0550.2023.010
    [3] 吴劲宣, 夏国清, 陈云, 徐为鹏, 伊海生.  西藏伦坡拉盆地渐新世——中新世之交黏土矿物特征及其古气候意义 . 沉积学报, 2022, 40(5): 1265-1279. doi: 10.14027/j.issn.1000-0550.2021.032
    [4] 丁江辉, 张金川, 石刚, 申宝剑, 唐玄, 杨振恒, 李兴起, 李楚雄.  宣城地区龙潭组页岩沉积环境与有机质富集 . 沉积学报, 2021, 39(2): 324-340. doi: 10.14027/j.issn.1000-0550.2020.056
    [5] 宋董军, 妥进才, 王晔桐, 吴陈君, 张明峰.  富有机质泥页岩纳米级孔隙结构特征研究进展 . 沉积学报, 2019, 37(6): 1309-1324. doi: 10.14027/j.issn.1000-0550.2019.030
    [6] 林思达, 关平, 牛小兵, 付玲, 梁小斌.  长庆油田长7段黏土矿物X衍射分析K因子的求取及应用 . 沉积学报, 2017, 35(4): 781-788. doi: 10.14027/j.cnki.cjxb.2017.04.012
    [7] 席雅娟, 师育新, 戴雪荣, 刘朝, 吴紫阳.  杭州湾潮滩沉积物黏土矿物空间差异与物源指示 . 沉积学报, 2016, 34(2): 315-325. doi: 10.14027/j.cnki.cjxb.2016.02.010
    [8] 王尹, 李祥辉, 周勇, 刘玲.  南雄盆地晚白垩世—古新世陆源沉积组份变化的古气候指示 . 沉积学报, 2015, 33(1): 116-123. doi: 10.14027/j.cnki.cjxb.2015.01.012
    [9] 梅西, 张训华, 李日辉, 蓝先洪.  南黄海北部晚更新世以来常量元素记录的化学风化作用 . 沉积学报, 2014, 32(5): 846-854.
    [10] 何梦颖.  长江流域沉积物黏土矿物组合特征及物源指示意义 . 沉积学报, 2011, 29(3): 544-551.
    [11] 刘 艳.  兰州市宛川河中段表层沉积物中重金属元素迁移富集特征 . 沉积学报, 2008, 26(5): 844-849.
    [12] 苗建宇, 祝总祺, 刘文荣, 卢焕勇.  泥质岩有机质的赋存状态及其对泥质岩封盖能力的影响 . 沉积学报, 1999, 17(3): 478-481.
    [13] 谢泰俊.  海相生烃碎屑岩的沉积环境及有机质的分布 . 沉积学报, 1997, 15(2): 14-18.
    [14] 王新明, 盛国英, 傅家谟, 闵育顺.  广州感潮河段底泥有机质特征 . 沉积学报, 1997, 15(2): 232-235.
    [15] 林清, 王国尚, 耿安松, 张干.  青藏高原多年冻土湖沼沉积中的有机质 . 沉积学报, 1997, 15(S1): 24-29.
    [16] 庄汉平, 冉祟英, 何明勤, 卢家烂, 刘金钟.  楚雄盆地有机质、膏盐与砂岩铜矿生成关系的有机地球化学证据与机理 . 沉积学报, 1996, 14(3): 129-138.
    [17] 周中毅, 范善发, 谢觉新.  晶包有机质——认识碳酸盐岩生油机制的另一侧面 . 沉积学报, 1991, 9(S1): 112-119.
    [18] 赵全基, 周希林, 张壮域, 王相芹.  北太平洋锰结核伴生沉积物中某些金属元素的地球化学行为探讨 . 沉积学报, 1990, 8(2): 97-104.
    [19] 鲍根德.  太平洋西部深海沉积物中有机质、氮、磷的初步研究 . 沉积学报, 1987, 5(1): 114-124.
    [20] 杨志琼, 段思宏.  江汉盐湖盆地原油中微量金属元素的分布及应用 . 沉积学报, 1987, 5(4): 137-146.
  • 加载中
图(9) / 表 (3)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  85
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-09-10
  • 刊出日期:  2022-01-10

目录

    陆架边缘海环境下金属元素与有机质富集关系探讨

    doi: 10.14027/j.issn.1000-0550.2020.082
      基金项目:

      国家自然科学基金 1309RTSA041

      甘肃省重点实验室专项基金资助项目 1309RTSA041

      作者简介:

      裴宇,女,1996年出生,硕士研究生,地球化学,E-mail: peiyu18@mails.ucas.ac.cn

      通讯作者: 张生银,男,助理研究员,E­mail: zhangseepage@126.com
    • 中图分类号: P736.41

    摘要: 陆架边缘海是“河口—陆架”体系重要的碳汇,黏土矿物作为主要载体将有机质与金属元素吸附于表面或层间,通常表现为粒度、有机质和金属元素含量之间高度正相关。本文通过分析南黄海中部沉积物粒度、总有机碳、主微量元素,探讨三者之间分布特征和相互关系,进一步开展金属元素、有机质与黏土矿物吸附模拟实验,结果表明,酸性条件(pH=4)下适量的金属离子(Zn2+、Ni2+、Pb2+)明显促进伊利石对腐殖酸(有机质主要组成部分)吸附,腐殖酸吸附量达到20.06 mg/g,其中金属离子加入使腐殖酸吸附量提高6.25%;同时碱性条件(pH=8)下金属离子也能够促进伊利石对腐殖酸吸附,腐殖酸吸附量达到15.7 mg/g,金属离子加入使腐殖酸吸附量提高38.9%。金属离子的阳离子键桥作用促进伊利石吸附腐殖酸,且酸性环境下腐殖酸的吸附量高于碱性环境。证实了陆架边缘海背下金属元素的参与对黏土矿物吸附腐殖酸具有明显促进作用,有利于在全球碳循环过程形成边缘海“碳库”,同时海洋酸化可能造成海洋溶解有机质降低和重金属离子浓度升高,对陆架边缘海海洋生态系统平衡构成威胁。

    English Abstract

    裴宇, 张生银, 房嬛, 陈永欣, 张顺存, 邵明, 雷天柱. 陆架边缘海环境下金属元素与有机质富集关系探讨—以南黄海表层沉积物为例[J]. 沉积学报, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
    引用本文: 裴宇, 张生银, 房嬛, 陈永欣, 张顺存, 邵明, 雷天柱. 陆架边缘海环境下金属元素与有机质富集关系探讨—以南黄海表层沉积物为例[J]. 沉积学报, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
    PEI Yu, ZHANG ShengYin, FANG Xuan, CHEN YongXin, ZHANG ShunCun, SHAO Ming, LEI TianZhu. Relationship Between Metallic Elements and Organic Matter Enrichment in Self-margin Seas: Example from surface sediments in the South Yellow Sea[J]. Acta Sedimentologica Sinica, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
    Citation: PEI Yu, ZHANG ShengYin, FANG Xuan, CHEN YongXin, ZHANG ShunCun, SHAO Ming, LEI TianZhu. Relationship Between Metallic Elements and Organic Matter Enrichment in Self-margin Seas: Example from surface sediments in the South Yellow Sea[J]. Acta Sedimentologica Sinica, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
      • 陆架边缘海是海洋陆地物质能量相互作用的重要区域,也是“河口—陆架”体系主要的碳储库,海洋自生有机碳和外源有机碳进入边缘海后参与海洋碳循环过程,了解有机碳在陆地与海洋中的迁移转换对研究全球碳循环具有重要意义[1-3]。作为陆地与大洋的连接带,尽管陆架边缘海只占全球海洋总面积的7.6%,但是其具有较高的陆源输入和海洋初级生产力,海洋沉积物的有机质埋藏约占全球海洋的80%~85%,陆架边缘海对全球海洋的碳源汇过程起着重要作用[4]。海洋有机碳,包括溶解有机碳(DOC)和颗粒有机碳(POC)[5]。海水中溶解有机碳(DOC)的组成异常复杂,是不同数量和组分的氨基酸、核苷、碳水化合物、油脂类和腐殖酸等的混合物[6]。边缘海环境下有机质主要来源为河流输入的陆源植物和海洋浮游生物,其中以陆源输入为主,陆源高等植物分解后,腐殖酸占据80%左右[7-8]。腐殖酸的主要组成部分是胡敏酸和富里酸,富里酸易溶于水,溶解能力强,移动性大;而胡敏酸,分子量较大,芳化度高而离解度较小,平均停留时间可达80~3 000年,稳定性很强。中国东部边缘海是河流输入重金属的最主是汇聚地[9-10]。金属元素主要来源于陆源输入,大气飘尘沉降及陆地径流输入的废弃重金属是导致邻近海域海水重金属浓度增高的重要因素[10-11]

        现代海洋沉积物中有机质的含量与矿物颗粒密切相关,海洋沉积物中粒度分选效应使得黏土矿物富集于细颗粒沉积物[12-13],黏土矿物作为有机质最主要的载体,直接影响边缘海有机质迁移与分布,而且对有机质长期保存具有重要意义[14]。黏土矿物通过氢键、离子耦合力、静电作用和范德华力等方式将有机质吸附于矿物表面或层间[15-16],与此同时,黏土矿物表面具有较高阳离子交换性能,形成的带电粒子又容易吸附金属元素[17]。因此有机质通常与黏土矿物、金属元素组成复合体存在沉积物或者土壤中。前人对于黏土矿物吸附腐殖酸和金属离子做过不同的研究,何宏平等[18]开展的关于黏土矿物对重金属离子吸附容量的模拟实验表明,黏土矿物的可交换阳离子容量决定它们对重金属离子的吸附容量。廖平凡等[19]、吴宏海等[20]、邓友军[21]对不同黏土矿物吸附胡敏酸的模拟实验表明,pH值的变化一方面影响胡敏酸的分子形态和亲水性,另一方面也影响高岭石表面的荷电性质吸附量。一些学者认为,胡敏酸能促进重金属由非稳定态向稳定态转化,即能钝化沉积物重金属、降低其生物有效性[7,22]。但针对边缘海特殊的沉积环境,金属元素、有机质与黏土矿物的吸附影响少有报道。

        南黄海位于中国大陆与朝鲜半岛之间,是一个典型的受黄河影响的半封闭陆架边缘海[23-25]。一方面,陆源有机质与碎屑矿物深刻影响了海洋沉积物有机质与矿物组成[26],另一方面,岩石风化和人为活动造成金属元素也会随着河流输入进入海洋[27-28]。此外,来自大洋的黄海暖流和海洋自身生产力也会贡献部分有机物源[29-30],最终形成了河口—陆架背景下有机质—金属元素—黏土矿物复合体[31-36]。南黄海表层沉积物分析表明,轻矿物以石英、钾长石和斜长石为主(平均含量分别为59.70%、17.66%和17.90%),重矿物以角闪石类、帘石类和含铁矿物为主(平均含量分别为38.00%、17.70%和13.28%)[37],黏土矿物中伊利石含量最高,蒙皂石或高岭石次之,绿泥石含量最低;黏土矿物的组合类型以伊利石—蒙皂石—高岭石—绿泥石型为主,伊利石—高岭石—蒙皂石—绿泥石型次之[38]。本文通过分析南黄海表层沉积物粒度、金属元素、有机碳三者之间的相互关系,进一步设计不同pH值下伊利石、胡敏酸、金属离子(Pb、Zn和Ni)吸附模拟实验,探讨酸性和碱性水体环境金属元素、有机质(腐殖酸)对黏土矿物的吸附作用,研究陆架边缘海环境下金属元素累积与有机质富集的相互关系,分析河口陆架体系下金属元素对有机碳的迁移影响。

      • 采样点如图1所示。在南黄海陆架边缘海海域使用震动活塞取心器采集100个表层样品,这种取心器可以通过震动获得2.5~3.0 m的岩心样品,而不会对底层产生任何明显的干扰。所有样品均包裹在铝箔中,在-20 ℃下保存。

        图  1  研究区的海域概况和沉积物站位分布图

        Figure 1.  Sea area and sediment distribution map of the study area

      • 粒度分析、有机碳分析、元素分析和腐殖酸分析均在中国科学院西北生态环境资源研究院兰州油气资源研究中心完成。

      • 采用激光粒度分析仪(Mastersize-2000)测定沉积物的粒度。取1 g左右的样品,分别用10%的H2O2和0.5 mol/L HCl处理24 h,去除有机物和碳酸盐,样品测试前,采用超声波震荡30 s分散均匀。黏土矿物的粒度<4 μm,泥的粒度为4~63 μm,砂的粒度>63 μm。重复样品的相对误差<3%(n=4)。

      • 采用元素分析仪测定沉积物的有机碳。称取干燥后的样品1 g左右,用4 mol/L HCl去除碳酸盐,在60 ℃下烘干过夜,放入干燥器中平衡至恒重。取1~10 mg样品使用元素分析仪(Vario EL-III Elemental Analyzer)测定碳的百分含量。然后通过酸洗前与酸洗后重量之差校正碳的百分含量,并最终计算得出原始样品中有机碳的百分含量。

      • 采用飞利浦PW2400X射线荧光测量主量元素(Al2O3)和微量元素(Pb,Ni,Zn)。称取700 mg样品和4 200 mg四硼酸二锂混合,在500 ℃下用NH4NO3进行预氧化处理后和玻璃珠混合。使用国内外标准(黄土和秘鲁上升流沉积物)控制分析的精度和准确性。主量元素的分析误差<1%,微量元素的分析误差<5%。每个约50 mg样品用去离子水清洗去除海盐,在600 ℃下对氧化的有机物灼烧,然后用HF-HNO3-HCl完全溶解。采用电感耦合等离子体质谱法(ICP-MS;热芬尼根元素Ⅱ)测定溶液中的微量元素(Pb,Ni,Zn)[27]

      • 采用尤尼柯UV-2600紫外可见分光光度计测定腐殖酸含量。利用物质对不同波长光的选择吸收现象进行物质的定性和定量分析,通过对吸收光谱的分析,判断物质的结构及化学组成。根据相对测量原理,即选定某一溶剂(蒸馏水、空气或试样)作为参比溶液,并设定它的透射比(即透射率T)为100%,而被测试样的透射比是相对于该参比溶液而得到的。透射比的变化和被测物质的浓度有一定函数关系,在一定的范围内,它符合朗伯—比耳定律:T=I/I0 A=KCL=-log I/I0 ,其中T是透射比(透射率)、A是吸光度,C是溶液浓度,K是溶液的吸光系数,L是液层在光路中的长度,I是光透过被测试样后照射到光电转换器上的强度,I0 是光透过参比测试样后照射到光电转换器上的强度。

      • 陆架边缘海环境受到人类活动和径流输入影响显著,土地过度利用、化肥大量使用、滩涂围垦、水利修建、水产养殖、工业废水和市政污水的排放会造成海水pH值变化,为了让吸附模拟实验条件更接近于边缘海条件下海水pH的变化,设定pH=4和正常态pH=8两种不同条件的吸附模拟。选用陆架边缘海环境下含量较多的伊利石和稳定性好的胡敏酸进行试验。模拟实验在室温下进行,加入金属离子,黏土矿物对腐殖酸吸附(文中用黏土矿物—金属离子对腐殖酸吸附模拟表示)(图2a)与加入腐殖酸,黏土矿物对金属离子的吸附(文中用黏土矿物—腐殖酸对金属离子吸附模拟表示)(图2b)。

        图  2  黏土矿物—金属离子对腐殖酸吸附模拟(a)与黏土矿物—腐殖酸对金属离子吸附模拟(b)实验流程

        Figure 2.  Adsorption simulation of (a) humic acid by clay mineral⁃metal ions and (b) metal ions by clay mineral⁃humic acid

      • 伊利石—金属离子对腐殖酸吸附体系:

        (1) 取7个10 mL离心试管,加入1 mL 6 g/L伊利石悬浊液和0.6 mL 0.01 mol/L NaCl溶液。

        (2) 向离心试管中分别加入0 mL、0.1 mL、0.2 mL、0.4 mL、0.6 mL、0.8 mL、1.2 mL体积的Ni(NO32、Pb(NO32、Zn(NO32溶液,Ni(NO32、Pb(NO32、Zn(NO32的浓度均为1×10-4 mol/L。静置12 h,使伊利石和金属离子充分络合;加入去离子水定容至6 mL,在12 000 rpm下离心10 min,收集上清液,重复上述步骤,将两次上清液合并,用ICP-OES测量上清液中Ni2+、Zn2+、Pb2+的浓度,被络合金属离子量等于加入金属量减去上清液中重金属离子含量。

        (3) 分别向离心试管中伊利石和重金属络合物加入0.48 mL 500 mg/L HA(胡敏酸)静置12 h,加入去离子水定容至6 mL,调节pH至4,振荡12 h,收集上清液,再次调节pH至4,震荡24 h后在1 200 rpm下离心30 min,收集上清液,合并两次上清液,用分光光度法测上清液腐殖酸浓度。被吸附的腐殖酸含量等于加入量减去测得含量。

        伊利石—腐殖酸对金属离子吸附体系:

        (1) 取7个10 mL离心试管,加入1 mL 6 g/L伊利石悬浊液和0.6 mL 0.01 mol/L NaCl溶液。

        (2) 向离心试管中分别加入0 mL、0.06 mL、0.12 mL、0.24 mL、0.36 mL、0.48 mL、0.6 mL体积的500 mg/L HA(胡敏酸)溶液。静置12 h,使伊利石和胡敏酸充分络合;加入去离子水定容至6 mL,在12 000 rpm下离心10 min,重复上述步骤,将两次上清液合并,用分光光度法测上清液腐殖酸浓度。被吸附的腐殖酸含量等于加入量减去测得含量。

        (3) 分别向离心试管中的伊利石和腐殖酸络合物加入0.6 mL浓度均为1×10-4 mol/L的Ni(NO32、Pb(NO32Zn(NO32溶液,加入去离子水定容至6 mL,调节pH至4,振荡12 h,收集上清液,再次调节pH至4,震荡24 h后在1 200 rpm下离心30 min,收集上清液,合并两次上清液,用ICP-OES测量上清液中Ni2+、Zn2+、Pb2+的浓度,被络合金属离子量等于加入金属量减去上清液中重金属离子含量。

      • pH=8的条件下,伊利石—金属离子对腐殖酸吸附体系与伊利石—腐殖酸对金属离子吸附体系的模拟实验流程分别与1.3.1中(1)(2)(3)类同。

      • 样品中Al2O3的最大值为17.41,最小值为8.53,沉积物中的Al主要来源于含水铝硅酸盐矿物(黏土矿物)。因此,Al2O3可以近似反映黏土矿物相对含量,粒径越小,Al2O3含量越高;样品中TOC最大值为1.2,最小值为0.09,平均为0.51;样品以黏土质粉砂为主,其中值粒径最大值为7.51,最小值为2.74,平均为5.61,且50%的中值粒径分布在4.30~7.06之间。金属元素Pb含量剔除4个异常值外,最大值为38.8 µg/g,最小值为14.2 µg/g,50%的样品中Pb含量在均值附近;Zn的变化范围最大,最大值为112 µg/g,最小值为27.1 µg/g,样品中50%的Zn分布在52.8~88.4 µg/g之间;Ni的变化范围较Pb大,最大值为45.1 µg/g,最小值为11 µg/g,50%的样品Ni含量分布在22.2~38.2 µg/g之间(表1)。

        表 1  南黄海表层沉积物Al2O3、粒度、总有机碳与金属元素含量表

        Table 1.  Al2O3, particle size, total organic carbon and metal element content in surface sediments of the South Yellow Sea

        Al2O3/% Md /ϕ TOC/% Pb/(µg/g) Zn/(µg/g) Ni/(µg/g)
        最大值 17.41 7.51 1.2 38.8 112 45.1
        最小值 8.53 2.74 0.09 14.2 27.1 11
        平均值 13.26 5.61 0.51 24.18 70.18 29.49
        中值 13.1 5.96 0.42 22.4 65.1 27

        研究区表层沉积物黏土矿物的粒度(Md )、总有机碳(TOC)均与Pb、Zn、Ni显著正相关(图34),同时代表黏土矿物含量的Al2O3与三者也表现出良好的正相关性,反映了细颗粒的沉积物更易于富集有机质和金属离子,而黏土矿物作为有机质和金属元素载体,其含量(总比表面积)决定了沉积物的吸附容量,也反映该区域“元素的粒度控制率”[39]。事实上,黏土矿物、总有机碳与粒度显著正相关特征并非仅存在于南黄海表层沉积物,我国渤海[31]、东海[32-33]、南海[34]、以及大西洋的葡萄牙陆架[35]与摩洛哥近海[36]均具有类似特征(表2)。总之,沉积物的粒度、TOC与Pb、Zn、Ni均显著相关,且主要富集于细粒沉积物,表明有机质、金属元素及黏土矿物之间吸附过程具有相似的物理化学性质,而且这种富集特征主要依赖于沉积动力学分选。

        图  3  南黄海黏土矿物粒度和金属元素的相关性

        Figure 3.  Correlation between clay mineral size and metal elements in the South Yellow Sea

        图  4  南黄海黏土矿物有机质丰度和金属元素的相关性

        Figure 4.  Correlation of organic matter abundance and metallic elements of clay minerals in the South Yellow Sea

        表 2  边缘海沉积物的中值粒径(Md )、总有机碳(TOC)和金属元素含量的相关性系数表

        Table 2.  Correlation coefficients of median particle size (Md ), total organic carbon (TOC) and metal element content of marginal sea sediments

        地区 Md /Pb Md /Zn Md /Ni TOC/Pb TOC/Zn TOC/Ni 参考文献
        南黄海 0.555 0.841 0.863 0.679 0.874 0.858 本研究
        渤海 0.589 0.324 0.513 0.623 0.762 0.355 [31]
        东海 -0.08 0.42 0.64 0.67 [32]
        东海 0.39 0.57 0.37 0.36 [33]
        广东中海岸 0.69 0.62 0.53 0.74 0.53 0.75 [34]
        Portuguese continental shelf AveDouro area 0.60 0.88 0.87 0.63 0.77 0.77 [35]
        Lis area 0.96 0.90 0.97 0.99 0.92 0.97
        摩洛哥大西洋海岸 0.82 0.73 0.94 0.71 [36]

        南黄海沉积物轻矿物主要为石英和长石,而重矿物以角闪石类、帘石类和含铁矿物为主,沉积物矿物对Pb、Zn和Ni贡献非常有限,因此,金属元素与有机质的相关性很大程度上取决于其在黏土矿物上的吸附。在某些情况下,有机化合物可以构成某些金属的良好载体,从而成为沉积物污染的良好指示物[36]。土壤中的腐殖酸能够与重金属离子络合,影响其在水环境中的化学形态、氧化还原行为、迁移沉降以及生物可利用性[40-41]。自然条件下,腐殖酸可以单独存在,但大部分腐殖酸可与矿物结合形成矿物—腐殖酸复合体。因为溶解态腐殖酸能与重金属络合形成不溶性絮状而与矿物竞争重金属离子,从而难以区分吸附在矿物上的腐殖酸对矿物吸附重金属的贡献[42]。为了探讨金属离子—腐殖酸—黏土矿物体系中腐殖酸与重金属离子相互吸附的影响,我们设计了金属元素、有机质与黏土矿物吸附模拟实验。

      • 模拟实验主要有两大类,分别是两类酸碱环境下(pH=4、pH=8)黏土矿物—金属离子络合物对腐殖酸的吸附模拟和黏土矿物—腐殖酸络合物对金属离子的吸附模拟,以期探讨金属离子是否促进黏土矿物吸附腐殖酸及腐殖酸对黏土矿物吸附金属离子的影响。

      • 伊利石悬浊液中加入不同浓度不同种类的金属离子后,形成黏土矿物—金属离子络合物,该络合物对腐殖酸吸附模拟的实验结果有如下特征:酸性环境(pH=4)下,金属离子添加量为0时,伊利石对腐殖酸的初始吸附量为18.88 mg/g;黏土矿物吸附金属离子后,其吸附能力会快速提高,当络合物中金属离子Pb2+、Zn2+、Ni2+的含量分别为4.58 mol/g、2.29 mol/g、0.79 mol/g时,腐殖酸吸附量达到最高(20.06 mg/g),而后,随着络各物金属离子含量增加,腐殖酸的吸附量开始下降(图5)。碱性环境(pH=8)下,金属离子添加量为0时,伊利石对腐殖酸初始吸附量为11.30 mg/g;与酸性环境(pH=4)不同,腐殖酸的吸附量随着络合物中金属离子含量的增加而增加,最终达到15.70 mg/g(图6)。实验表明,酸性条件下金属离子的加入使腐殖酸吸附量提高了6.25%,而碱性条件下金属离子使腐殖酸吸附量提高38.9%,且酸性环境下,伊利石对腐殖酸的吸附量整体高于碱性条件。

        图  5  酸性条件下(pH=4)黏土矿物—金属离子对腐殖酸吸附模拟

        Figure 5.  Adsorption simulation of humic acid by clay mineral⁃metal ions under acidic conditions (pH = 4)

        图  6  碱性条件下(pH=8)黏土矿物—金属离子对腐殖酸吸附模拟

        Figure 6.  Adsorption simulation of humic acid by clay mineral⁃metal ions under alkaline conditions (pH = 8)

      • 伊利石悬浊液中加入不同浓度的腐殖酸后,形成黏土矿物—腐殖酸络合物,该络合物对金属离子吸附模拟的实验结果有如下特征:酸性环境(pH=4)下,腐殖酸的添加量为0时,金属离子Pb2+、Zn2+、Ni2+的吸附量分别是5.79 mol/g、2.74 mol/g、1.60 mol/g。络合物中腐殖酸的含量达到5.978 mg/g时,Pb2+、Zn2+、Ni2+的吸附量分别从5.79 mol/g、2.74 mol/g、1.60 mol/g降到3.83 mol/g、1.72 mol/g、0.59 mol/g,达到“平衡点”后,酸性溶液中腐殖酸与金属离子形成络合物,金属离子的吸附量再次增加。

        pH=8时,伊利石表层结构吸附的OH-增多,即其表层的负电荷数量增多,因此,金属离子的吸附量较酸性环境明显提高。腐殖酸添加量为0时,伊利石对Pb2+、Zn2+、Ni2+的吸附量分别是10.92 mol/g、14.55 mol/g、9.48 mol/g,但随着腐殖酸—黏土矿物络合物中腐殖酸含量增加,金属离子Pb2+、Zn2+、Ni2+吸附量并未产生明显变化。当络合物中腐殖酸的含量达到15.66 mg/g时,金属离子的吸附量明显出现不同程度的降低,Pb2+、Zn2+、Ni2+的吸附量分别从10.92 mol/g、14.55 mol/g、9.48 mol/g降到7.72 mol/g、11.76 mol/g、5.40 mol/g,达到“平衡点”后,金属离子的吸附量再次增加。

      • 黏土矿物具有大的比表面积、特殊的孔道结构、表面负电荷及大量的吸附位点,常具有吸附固体、气体、液体及溶液中溶质的能力[43-46]。此次研究的主黏土矿物伊利石属于2∶1型硅酸盐矿物,其比表面积(m2/g)是14.17,阳离子交换容量(CEC,mmol/100 g)为9.7,介于蒙脱石和高岭石之间[18]。伊利石表面的负电荷主要分为永久电荷和表面电荷。永久电荷一般来源于类质同象置换,伊利石的净电荷主要来自硅氧四面体中四价硅离子(Si4+)被三价铝离子(Al3+)替代,所以每个单位晶胞中的负电荷为0.6~1,分布在晶层的晶面上,这种负电荷与环境的pH无关。而表面电荷由表面离子的吸附产生,与pH有关,由黏土矿物结构表面的Si-O断键、Al-HO断键等的水解作用产生,如O2-和H+形成HO-,这些表面羟基是两性的,既能作为酸也能作为碱[16,47-48]。黏土矿物一般都带有净负电荷,伊利石的等电点为3.2,随pH增加,矿物表面动电位均呈负增加[49]

        黏土矿物—金属离子对腐殖酸的吸附模拟中,pH=4的腐殖酸吸附量大于pH=8(图56)。由于pH=4时,胡敏酸发生凝聚作用,吸着量较高,pH=8时,伊利石表面负电性密度随溶液pH值的增大而增强。胡敏酸从酸性到碱性环境的过程是羧基、醛基等活性基团解离,黏土矿物端面因去质子化使负电性增强,静电排斥使原来吸附在黏土矿物表面的胡敏酸部分解吸到溶液中,所以胡敏酸吸附量相应减少[19-20]。之后,腐殖酸吸附量随着金属离子的增加而增加(图6),因为受不同离子固—液界面吸附性质(层电荷分布、重金属离子的水化热、电价、离子半径、有效离子半径等)影响[32,50],相同条件形成的金属离子—腐殖酸络合物参与的金属离子差异明显,但相同浓度形成的络合物,其吸附腐殖酸的含量大致相近,这说明在未达到“平衡点”之前,金属离子的加入加强了伊利石与腐殖酸间的阳离子键桥作用,增强了腐殖酸在矿物表面的吸附。但在酸性环境后期,腐殖酸吸附量随着络各物金属离子含量增加而开始下降(图5),因为溶液中的H+被吸附在伊利石表面,与金属阳离子竞争吸附点位,从而导致腐殖酸吸附量降低。

        黏土矿物—腐殖酸对金属离子的吸附模拟实验显示,碱性环境伊利石对金属离子的吸附量大于酸性环境(图78),因为伊利石吸附金属元素时,离子交换受黏土矿物所带的永久电荷量控制,矿物层间阳离子与溶液中金属离子发生交换,不随pH的变化而变化,且吸附金属离子量有限。表明随pH增加,伊利石与金属离子间的配位吸附(重金属离子进入黏土矿物层间与 S O 4 - 发生配位反应)和共沉淀作用(通过黏土矿物自身溶解作用所产生的阴离子与重金属离子产生共沉淀作用)增强[51]。pH=4时,金属离子吸附量Pb2+>Zn2+>Ni2+,Pb的水合能最小,最先置换层间阳离子[18,47],此外金属离子以表面配位吸附方式吸附于黏土矿物层间;而pH=8时,伊利石表面负电性密度增加,从而导致吸附阳离子的活性位点增加。金属离子吸附量Zn2+>Pb2+>Ni2+,除了受水合能和配位吸附的影响外,主要为共沉淀作用控制。碱性环境下,Zn2+的溶度积最小,最先发生沉淀吸附于伊利石。相对而言,腐殖酸的增加并未引起黏土矿物对金属离子吸附量增加,而络合物中腐殖酸造成了黏土矿物吸附点位减小。在黏土矿物—腐殖酸对金属离子吸附模拟实验后期(图78),当腐殖酸含量超过“平衡点”后,即pH=4腐殖酸含量达到5.978 mg/g、pH=8腐殖酸含量达到15.66 mg/g后,金属离子的吸附方式主要为腐殖酸—金属离子络合,为配位络合反应。主要原因在于腐殖酸分子量较大,黏土矿物吸附腐殖酸后,吸附点位损失较多,而所增加电子量非常有限,但是腐殖酸本身具有吸附特性,当其覆盖了大部分吸附点位后,形成了黏土矿物—腐殖酸—金属离子的络合物。当体系pH值较低时,溶液中H+相对较多,胡敏酸中某些弱酸性结合位点被饱和,使得金属离子与胡敏酸结合受到抑制;体系pH值升高,游离的官能团,特别是弱酸性羧基增加,使胡敏酸分子表面静电斥力增大,胡敏酸由低pH时的团聚状态变为伸展网状结构,位阻减小,金属离子较易进入内表面与内部结合位点结合,使其反应稳定性增强[7]

        图  7  酸性条件下(pH=4)黏土矿物—腐殖酸对金属离子吸附模拟

        Figure 7.  Adsorption simulation of metal ions by clay mineral⁃humic acid under acidic conditions (pH = 4)

        图  8  碱性条件下(pH=8)黏土矿物—腐殖酸对金属离子吸附模拟

        Figure 8.  Adsorption simulation of metal ions by clay mineral⁃humic acid under alkaline conditions (pH = 8)

        黏土矿物腐殖酸重金属复合体的结合方式主要取决于形成三元复合体后的稳定性,一般都是以更稳定的方式结合。许多学者[52-53]认为,在矿物吸附腐殖酸的实验中加入高价阳离子可以加强矿物与腐殖酸间的阳离子键桥作用,进而增强腐殖酸在矿物表面的吸附,同时,胡敏酸含有大量的羧基和酚羟基等活性基团,吸附在伊利石上的胡敏酸增加了其表面吸附点。因此,黏土矿物、腐殖酸和金属离子复合体三相体系中的吸附行为可用下面两个反应式表示[54]

        S⁃Mem+ + HA(n⁃1)- <=>S⁃Me⁃HA(n⁃m⁃1)- (1)
        S⁃HA(n⁃1)- + Mem+ <=>S⁃HA(n⁃m⁃1)⁃Me (2)

        式中:S、Mem+、HA(n-1)-分别表示矿物表面、重金属离子和腐殖酸。

        但是模拟实验表明上述吸附反应的发生需要一定的条件,且吸附过程应当在黏土矿物的可容纳空间范围之内。酸性条件黏土矿物—金属离子—腐殖酸模拟实验显示为先增加后减少的趋势,说明当足够数量的金属离子占据了黏土矿物表面吸附点,腐殖酸与金属离子产生竞争吸附现象,(1)式吸附反应并不足以完全反映整个吸附过程,黏土矿物—金属离子—腐殖酸可能并非简单的单线联系。碱性环境黏土矿物—腐殖酸—金属离子的吸附模拟实验显示先不变(或变化不大),接着急剧减少,然后增加的特征,说明腐殖酸吸附量达到一定数量后才能进行(2)式的吸附反应,少量的腐殖酸甚至阻碍金属离子吸附。

      • 我国东部陆架边缘海表层海水pH均呈弱碱性(7.5~8.6),表层海水Pb含量普遍较低(0.026 5~10 µg/L),Zn含量变化较大(1.00~139 µg/L),其中东海Zn含量为32.23~42.35 µg/L,而黄海仅为6.4~9.8 µg/L;海水溶解有机碳(DOC)含量范围0.54~4.71 mg/L,其中渤海含量最高2.01~4.71 mg/L,而南海最低0.6~1.6 mg/L(表3)。黏土矿物—金属离子对腐殖酸吸附模拟实验中,Pb2+、Zn2+最大浓度分别4.14 mg/L和1.30 mg/L,对腐殖酸吸附量为40 mg/L,浓度高于实际海水值。因此,我国东部陆架边缘海水有机质、金属离子与黏土矿物吸附过程与图6趋势一致,随着络合物中金属离子含量增加,腐殖酸的吸附量也逐渐增加,其结合模式为S-Mem++HA(n-1)-<=>S-Me-HA(n-m-1)-。这也说明,黏土矿物吸附未饱和时,金属离子参与有助于黏土矿物吸附有机质,主要通过金属离子的阳离子键桥作用来实现(图9)。所以,从全球碳循环的角度看,陆架边缘海环境下金属离子有利于边缘海“碳库”的形成。

        表 3  我国陆架边缘海表层海水与沉积物的pH、金属元素和DOC含量与模拟实验数据对比

        Table 3.  pH, metal elements and DOC content of surface seawater in continental shelf margin sea in China

        地区 pH Pb/(µg/L) Zn/(µg/L) DOC/(mg/L) 参考文献
        东海 8.04 0.52~3.35 32.23~42.35 0.54~1.88 [55-56]
        黄海 8.17 0.28~1.08 6.4~9.8 0.96~4.25 [57-58]
        渤海 7.86~8.3 0.17~9.55 17.3~90 2.01~4.71 [57,59]
        南海 8.2 0.0265~10 1.00~139 0.6~1.6 [60]
        台湾海峡 7.5~8.6 1.10~5.62 4.40~80.80 1.09~1.22 [61-62]

        图  9  陆架边缘海金属元素促进黏土矿物吸附有机质键桥模式图

        Figure 9.  Enrichment model of marine clay minerals⁃metal⁃organic matter

        南黄海表层沉积物样品中,黏土矿物占沉积物约18%,其中伊利石占黏土矿物为57%[63-64]。TOC介于0.09%~1.2%,腐殖质约占TOC的60%,腐殖酸约占腐殖质的65%[65],因此沉积物中腐殖酸介于0.034~0.456 mg/g;沉积物中Pb含量范围为0.66×10-6~1.8×10-6 mol/g(14.2~38.8 µg/g),Zn含量变化为4.04×10-6~16.69×10-6 mol/g(27.1~112 µg/g),Ni含量介于1.83×10-6~7.49×10-6 mol/g(11~45.1 µg/g)之间。显然,南黄海样品中腐殖酸、Pb、Zn和Ni的含量远小于吸附模拟实验时黏土矿物—金属离子—腐殖酸复合体中腐殖酸、Pb、Zn和Ni的含量(图5~8),因此,海洋环境中黏土矿物对腐殖酸和金属离子的吸附远未达到饱和点,金属离子和腐殖酸不存在竟争性吸附情况。考虑到金属离子分布更为广泛,特别是黄河流域岩石风化和水土流失较为强烈,而植被覆盖稀少[66-67],可提供的有机质有限,河口—陆架体系吸附顺序可能更多为黏土矿物—金属离子—腐殖酸(图69)。

        自工业革命以来,化石燃料燃烧和土地利用方式的改变导致大气二氧化碳(CO2)浓度显著增高。海洋从大气中吸收人为CO2导致表层海水pH和碳酸钙饱和度降低的现象被称作海洋酸化[68]。2003年Caldeira et al.[69]Nature上首次提出了“Ocean Acidification”(海洋酸化,OA)。海洋酸化会直接影响有水体H+或OH-含量,前之述及,黏土矿物铝氧八面体片中的Al-OH键在酸性环境中,氢氧根易电离,使得黏土矿物表面带正电荷,一方面造成了腐殖酸吸附量增加,另一方面抑制了金属离子的吸附。实验证实(图56):金属离子相同浓度下,碱性环境金属吸附量可达到30 mol/g,而酸性环境中最高值不到7 mol/g;同时,酸性环境可以加速近海矿物风化溶解,引起水体重金属离子浓度升高,对海洋生物的生存构成严重威胁。因此,保持海水环境弱碱性可以有效控制金属污染,维持海洋生态系统的健康发展。近年来,我国沿海城市得到高速发展,居民生活和工业排放污染物对近海环境影响明显,有机污染物和重金属污染对边缘海生态环境构成严重威胁[70-72]。陆架边缘海已经成为海洋—陆地有机无机物质交汇的重要场所,将陆架边缘海黏土矿物吸附有机质的实际情况与模拟得到的机理相结合,进而建立共生吸附模式,具有重要意义。

      • (1) 与国内外陆架边缘海相似,南黄海黏土矿物、金属元素、有机质长期共存且三者具有良好相关性(均介于0.78左右),说明黏土矿物是金属元素和有机质的重要载体。

        (2) 酸性环境下,黏土矿物对腐殖酸吸附明显高于碱性环境,而碱性环境黏土矿物则更易于吸附金属离子;黏土矿物吸附未饱和状态时,酸碱性环境金属离子参与明显增加黏土矿物对有机质的吸附量,形成黏土矿物—金属—腐殖酸较为稳定的结合方式。

        (3) 现代海洋海水pH、金属离子、DOC含量及南黄海表层样品中TOC、金属离子的含量表明陆架边缘海的黏土矿物吸附未达到饱和,金属离子和腐殖酸不存在竟争性吸附,金属离子的参与促进了黏土矿物对有机质吸附,有利于全球边缘海“碳库”的形成。而海洋酸化,则可能造成海洋重金属离子浓度升高,因此,保持现代海洋弱碱性,有利于维持海洋生态系统平衡。

    参考文献 (72)

    目录

      /

      返回文章
      返回