高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中元古界沉积物中典型分子标志化合物及其地质意义

肖洪 李美俊 王铁冠 冷筠滢

肖洪, 李美俊, 王铁冠, 冷筠滢. 中元古界沉积物中典型分子标志化合物及其地质意义—以宣隆坳陷下马岭组黑色页岩为例[J]. 沉积学报, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145
引用本文: 肖洪, 李美俊, 王铁冠, 冷筠滢. 中元古界沉积物中典型分子标志化合物及其地质意义—以宣隆坳陷下马岭组黑色页岩为例[J]. 沉积学报, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145
XIAO Hong, LI MeiJun, WANG TieGuan, LENG JunYing. Typical Molecular Marker Assemblage of the Mesoproterozoic Sediments: A case study of the Xiamaling Formation black shales in the Xuanlong Depression[J]. Acta Sedimentologica Sinica, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145
Citation: XIAO Hong, LI MeiJun, WANG TieGuan, LENG JunYing. Typical Molecular Marker Assemblage of the Mesoproterozoic Sediments: A case study of the Xiamaling Formation black shales in the Xuanlong Depression[J]. Acta Sedimentologica Sinica, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145

中元古界沉积物中典型分子标志化合物及其地质意义—以宣隆坳陷下马岭组黑色页岩为例

doi: 10.14027/j.issn.1000-0550.2021.145
基金项目: 

国家自然科学基金 42173054

中国石油大学(北京)科研基金 2462021XKBH001

详细信息
    作者简介:

    肖洪,男,1990年出生,在站博士后,分子有机地球化学,E-mail: xiaohong_cup@hotmail.com

    通讯作者:

    李美俊,男,教授,有机地球化学,E-mail: meijunli@cup.edu.cn

  • 中图分类号: P618.13

Typical Molecular Marker Assemblage of the Mesoproterozoic Sediments: A case study of the Xiamaling Formation black shales in the Xuanlong Depression

Funds: 

National Natural Science Foundation of China 42173054

Science Foundation of China University of Petroleum, Beijing 2462021XKBH001

  • 摘要: 分子标志化合物在前寒武纪古海洋生命演化和古环境的研究中发挥着越来越重要的作用。在华北克拉通宣隆坳陷中元古界下马岭组黑色页岩中检测到一系列典型分子标志化合物,其特征表现为明显的“UCM”鼓包,高丰度的甲基支链烷烃、C24四环萜烷、C19-C2013β(H),14α(H)-三环萜烷、13α(正烷基)-三环萜烷系列以及四类重排藿烷化合物,甾烷系列化合物的缺失,其组成特征及其地质意义明显不同于显生宙沉积物。甾烷系列化合物缺失可能是异养微生物转化和降解的结果,不能否定真核藻类在14亿年前古海洋的局部繁盛,但生物群落仍以原核生物为主。
  • 图  1  宣隆坳陷地理位置和取样剖面位置(a)和下马岭组地层柱状图(b)[15]

    Figure  1.  Geographical location of the Xuanlong Depression and sampling location (a), and the schematic stratigraphic column of the Xiamaling Formation (b)[15]

    图  2  下花园地区下马岭组野外剖面和黑色页岩样品

    Figure  2.  The field section of black shales from the Xiamaling Formation in the Xiahuayuan area (XHY), Hebei province

    图  3  下马岭组黑色页岩中正构烷烃分布特征

    Figure  3.  Distribution of the normal alkanes in the representative Xiamaling black shale

    图  4  下马岭组黑色页岩中甲基支链烷烃系列的分布

    Figure  4.  Distribution of the monomethylalkanes in the representative Xiamaling black shale

    图  5  下马岭组黑色页岩中规则三环萜烷(m/z 191)和13α(正烷基)-三环萜烷(m/z 123)分布图

    Figure  5.  Distribution of regular tricyclic terpanes (a), and 13α(n⁃alkyl)⁃tricyclic terpanes (b) in the representative Xiamaling Formation black shale

    图  6  下马岭组黑色页岩中孕甾烷、重排甾烷、规则甾烷以及甲基甾烷分布图

    Figure  6.  Distribution of pregnanes, diasteranes, regular steranes, and 4⁃methylsteranes in the representative Xiamaling Formation black shale

    表  1  下马岭组页岩总有机碳和热解数据表

    Table  1.   Total organic carbon (TOC) and rock⁃eval data of the black shales from the Xiamaling Formation

    编号 层位 岩性 S 1/(mg/g) S 2/(mg/g) T max/℃ S 1+S 2/(mg/g) TOC/% HI/(mg/g)
    XML-1 下马岭组 黑色页岩 0.43 25.24 434 25.67 6.43 392.35
    XML-2 下马岭组 黑色页岩 1.35 64.67 438 66.02 12.10 534.46
    XML-3 下马岭组 黑色页岩 0.59 35.61 442 36.20 7.36 483.83
    XML-4 下马岭组 黑色页岩 1.74 55.10 436 56.84 12.59 437.65
    XML-5 下马岭组 黑色页岩 1.23 11.08 434 12.31 2.20 503.41
    下载: 导出CSV
  • [1] 王霄鹏,袁训来. 远古世界的分子窗口[J]. 科学通报,2019,64(22):2279-2284.

    Wang Xiaopeng, Yuan Xunlai. A molecular window to the primeval world[J]. Chinese Science Bulletin, 2019, 64(22): 2279-2284.
    [2] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
    [3] Bobrovskiy I, Hope J M, Ivantsov A, et al. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals[J]. Science, 2018, 361(6408): 1246-1249.
    [4] Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999, 400(6744): 554-557.
    [5] 周树青,黄海平,林畅松,等. 生物标志化合物、早期生命和古环境[J]. 地质论评,2007,53(3):389-396.

    Zhou Shuqing, Huang Haiping, Lin Changsong, et al. Biomarker, earlier life and the concurrent environment[J]. Geological Review, 2007, 53(3): 389-396.
    [6] Love G D, Zumberge J A, Cárdenas P, et al. Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils[J]. Nature Ecology & Evolution, 2020, 4(1): 34-36.
    [7] Summons R E, Erwin D H. Chemical clues to the earliest animal fossils[J]. Science, 2018, 361(6408): 1198-1199.
    [8] French K L, Rocher D, Zumberge J E, et al. Assessing the distribution of sedimentary C40 carotenoids through time[J]. Geobiology, 2015, 13(2): 139-151.
    [9] Brocks J J, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea[J]. Nature, 2005, 437(7060): 866-870.
    [10] Damsté J S S, Kenig F, Koopmans M P, et al. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1895-1900.
    [11] 王铁冠. 燕山地区震旦亚界油苗的原生性及其石油地质意义[J]. 石油勘探与开发,1980,7(2):34-52.

    Wang Tieguan. The primary property of Sinian Suberathem oil seepages and its petroleum geological significance[J]. Petroleum Exploration and Development, 1980, 7(2): 34-52.
    [12] 郝石生,冯石. 华北地区震旦亚界古地温演化及冀中地区原生油气藏形成条件初探[J]. 华东石油学院学报,1982,6(1):1-17.

    Hao Shisheng, Feng Shi. Paleotemperature evolution of Sinian Sub-Erathem in North China and origin of primary oil and gas pools[J]. Journal of the University of Petroleum China, 1982, 6(1): 1-17.
    [13] 王铁冠,钟宁宁,王春江,等. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析[J]. 石油科学通报,2016,1(1):24-37.

    Wang Tieguan, Zhong Ningning, Wang Chunjiang, et al. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirs in the Xiamaling Formation basal sandstone, Jibei Depression[J]. Petroleum Science Bulletin, 2016, 1(1): 24-37.
    [14] 高林志,丁孝忠,曹茜,等. 中国晚前寒武纪年表和年代地层序列[J]. 中国地质,2010,37(4):1014-1020.

    Gao Linzhi, Ding Xiaozhong, Cao Qian, et al. New geological time scale of Late Precambrian in China and geochronology[J]. Geology in China, 2010, 37(4): 1014-1020.
    [15] 张水昌,张宝民,边立曾,等. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学(D辑):地球科学,2007,37(5):636-643.

    Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. The oil shale formed by the accumulation of the red algae more than 800 million years ago in Xiamaling Formation[J]. Science China (Seri. D): Earth Sciences, 2007, 37(5): 636-643.
    [16] Illing C J, Hallmann C, Miller K E, et al. Airborne hydrocarbon contamination from laboratory atmospheres[J]. Organic Geochemistry, 2014, 76: 26-38.
    [17] Sherman L S, Waldbauer J R, Summons R E. Improved methods for isolating and validating indigenous biomarkers in Precambrian rocks[J]. Organic Geochemistry, 2007, 38(12): 1987-2000.
    [18] Jarrett A J M, Schinteie R, Hope J M, et al. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material[J]. Organic Geochemistry, 2013, 61: 57-65.
    [19] 肖洪,李美俊,杨哲,等. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J]. 地球化学,2019,48(2):161-170.

    Xiao Hong, Li Meijun, Yang Zhe, et al. Distribution patterns and geochemical implications of C19–C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170.
    [20] Xiao H, Li M J, Wang W Q, et al. Identification, distribution and geochemical significance of four rearranged hopane series in crude oil[J]. Organic Geochemistry, 2019, 138: 103929.
    [21] Hedberg H D. Significance of high-wax oils with respect to genesis of petroleum[J]. AAPG Bulletin, 1968, 52(5): 736-750.
    [22] Tegelaar E W, de Leeuw J W, Derenne S, et al. A reappraisal of kerogen Formation[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 3103-3106.
    [23] Brocks J J, Buick R, Logan G A, et al. Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, western Australia[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4289-4319.
    [24] Jackson M J, Powell T G, Summons R E, et al. Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years[J]. Nature, 1986, 322(6081): 727-729.
    [25] Klomp U C. The chemical structure of a pronounced series of iso-alkanes in South Oman crudes[J]. Organic Geochemistry, 1986, 10(4/5/6): 807-814.
    [26] Kelly A E, Love G D, Zumberge J E, et al. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia[J]. Organic Geochemistry, 2011, 42(6): 640-654.
    [27] Grosjean E, Love G D, Kelly A E, et al. Geochemical evidence for an Early Cambrian origin of the ‘Q’ oils and some condensates from north Oman[J]. Organic Geochemistry, 2012, 45: 77-90.
    [28] Jarrett A J M, Cox G M, Brocks J J, et al. Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia[J]. Geobiology, 2019, 17(4): 360-380.
    [29] Luo Q Y, George S C, Xu Y H, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37.
    [30] Han J, Calvin M. Branched alkanes from blue–green algae[J]. Journal of the Chemical Society D: Chemical Communications, 1970, (22): 1490-1491.
    [31] Shiea J, Brassell S C, Ward D M. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments?[J]. Organic Geochemistry, 1990, 15(3): 223-231.
    [32] Robinson N, Eglinton G. Lipid chemistry of Icelandic hot spring microbial mats[J]. Organic Geochemistry, 1990, 15(3): 291-298.
    [33] Kissin Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2445-2457.
    [34] Kenig F, Sinninghe Damsté J S, Kock-van Dalen A C, et al. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2999-3015.
    [35] Kenig F. C16–C29 homologous series of monomethylalkanes in the pyrolysis products of a Holocene microbial mat[J]. Organic Geochemistry, 2000, 31(2/3): 237-241.
    [36] Blumenberg M, Thiel V, Riegel W, et al. Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania[J]. Precambrian Research, 2012, 196-197: 113-127.
    [37] Luo G M, Hallmann C, Xie S C, et al. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation[J]. Geochimica et Cosmochimica Acta, 2015, 151: 150-167.
    [38] Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles[J]. Nature, 1995, 376(6535): 53-56.
    [39] Pawlowska M M, Butterfield N J, Brocks J J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation[J]. Geology, 2013, 41(2): 103-106.
    [40] De Grande S M B, Aquino Neto F R, Mello M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry, 1993, 20(7): 1039-1047.
    [41] Philp R P, Gilbert T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10(1/2/3): 73-84.
    [42] Palacas J G, Anders D E, King J D. South Florida Basin - a prime example of carbonate source rocks of petroleum[M]//Palacas J G. Petroleum geochemistry and source rock potential of carbonate rocks. Tulsa: AAPG, 1984: 71-96.
    [43] Connan J, Bouroullec J, Dessort D, et al. The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: A molecular approach[J]. Organic Geochemistry, 1986, 10(1/2/3): 29-50.
    [44] 王铁冠. 一种新发现的三环萜烷生物标志物系列[J]. 江汉石油学院学报,1989,11(3):117-118.

    Wang Tieguan. A novel tricyclic terpane biomarker series[J]. Journal of Jianghan Petroleum Institute, 1989, 11(3): 117-118.
    [45] Xiao H, Wang T G, Li M J, et al. Extended series of tricyclic terpanes in the Mesoproterozoic sediments[J]. Organic Geochemistry, 2021, 156: 104245.
    [46] Aquino Neto F R, Restle A, Connan J, et al. Novel tricyclic terpanes (C19, C20) in sediments and petroleums[J]. Tetrahedron Letters, 1982, 23(19): 2027-2030.
    [47] Aquino Neto F R, Trendel J M, Restlé A, et al. Occurrence and Formation of tricyclic terpanes in sediments and petroleums[M]//Bjorøy M, Albrecht P, Cornford C, et al. Advances in organic geochemistry 1981. New York: Wiley, 1983: 659-667.
    [48] 王铁冠. 燕山东段上元古界含沥青砂岩中一个新三环萜烷系列生物标志物[J]. 中国科学 B辑,1990,20(10):1077-1085.

    Wang Tieguan. A novel tricyclic terpane biomarker series in the Upper Proterozoic bituminous sandstone, eastern Yanshan region[J]. Science in China Series B-Chemistry, Life Sciences & Earth Sciences, 1990, 20(10): 1077-1085.
    [49] Volkman J K, Alexander R, Kagi R I, et al. Demethylated hopanes in crude oils and their applications in petroleum geochemistry[J]. Geochimica et Cosmochimica Acta, 1983, 47(4): 785-794.
    [50] Moldowan J M, Fago F J, Carlson R M K, et al. Rearranged hopanes in sediments and petroleum[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3333-3353.
    [51] Xiao H, Li M J, Wang T G, et al. Four series of rearranged hopanes in the Mesoproterozoic sediments[J]. Chemical Geology, 2021, 573: 120210.
    [52] Talbot H M, Rohmer M, Farrimond P. Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(10): 1613-1622.
    [53] Killops S D, Howell V J. Complex series of pentacyclic triterpanes in a lacustrine sourced oil from Korea Bay Basin[J]. Chemical Geology, 1991, 91(1): 65-79.
    [54] Volkman J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506.
    [55] Shen Y, Thiel V, Suarez-Gonzalez P, et al. Sterol preservation in hypersaline microbial mats[J]. Biogeosciences, 2020, 17(3): 649-666.
    [56] Zhang S C, Wang X M, Wang H J, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736.
    [57] Zhu S X, Zhu M Y, Knoll A H, et al. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China[J]. Nature Communications, 2016, 7: 11500.
    [58] 孙淑芬,朱士兴,黄学光. 天津蓟县中元古界高于庄组宏观化石的发现及其地质意义[J]. 古生物学报,2006,45(2):207-220.

    Sun Shufen, Zhu Shixing, Huang Xueguang. Discovery of megafossils from the Mesoproterozoic Gaoyuzhuang Formation in the Jixian section, Tianjin and its stratigraphic significance[J]. Acta Palaeontologica Sinica, 2006, 45(2): 207-220.
    [59] Zhang S C, Su J, Ma S H, et al. Eukaryotic red and green algae populated the tropical ocean 1400 million years ago[J]. Precambrian Research, 2021, 357: 106166.
    [60] Zhang F L, Wang H J, Ye Y T, et al. The environmental context of carbonaceous compressions and implications for organism preservation 1.40 Ga and 0.63 Ga[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573: 110449.
  • [1] 姜在兴, 徐杰, 刘桐, 马代鑫, 牟汉生, 孙守亮.  燕辽裂陷槽辽西坳陷中元古界黑色页岩沉积环境和生烃潜力 . 沉积学报, 2023, 41(6): 1830-1846. doi: 10.14027/j.issn.1000-0550.2023.129
    [2] 王昌勇, 刘帅, 李胡蝶, 常玖, 许兴斌, 范亚楠, 旷红伟.  神农架地区中元古界混合沉积特征及其发育模式 . 沉积学报, 2022, 40(6): 1649-1659. doi: 10.14027/j.issn.1000-0550.2021.051
    [3] 王金艺, 金振奎.  微生物白云岩形成机理、识别标志及存在的问题 . 沉积学报, 2022, 40(2): 350-359. doi: 10.14027/j.issn.1000-0550.2020.135
    [4] 陈治军, 王志伟, 张少清, 高怡文, 韩长春, 李科社.  二连盆地宝勒根陶海凹陷烃源岩生物标志化合物特征与油源对比 . 沉积学报, 2020, 38(2): 451-462. doi: 10.14027/j.issn.1000-0550.2019.034
    [5] 邢智峰, 刘云龙, 付玉鑫, 齐永安, 郑伟.  豫西鲁山中元古界云梦山组微生物成因沉积构造发育特征及古环境意义 . 沉积学报, 2020, 38(1): 46-54. doi: 10.14027/j.issn.1000-0550.2019.072
    [6] 李晓波, 王旖旎, 王晗.  辽宁兴城中元古界常州沟组砂岩中微生物成因沉积构造 . 沉积学报, 2020, 38(1): 32-45. doi: 10.14027/j.issn.1000-0550.2019.022
    [7] 赵梦, 杜晓峰, 王清斌, 冯冲, 庞小军, 李欢.  渤海东部旅大29-1构造沙二段砂砾岩锆石定年及物源示踪 . 沉积学报, 2019, 37(1): 62-71. doi: 10.14027/j.issn.1000-0550.2018.149
    [8] 岳亮, 刘自亮.  冲积扇沉积向滨岸沉积的转变——以华北克拉通南缘中元古界兵马沟组为例 . 沉积学报, 2017, 35(4): 752-762. doi: 10.14027/j.cnki.cjxb.2017.04.009
    [9] 邢智峰.  从微观角度认识微生物席在中元古代的繁盛——以豫西云梦山组为例 . 沉积学报, 2011, 29(5): 857-865.
    [10] 张长青.  四川赤普铅、锌矿床生物标志化合物特征研究 . 沉积学报, 2010, 28(4): 832-848.
    [11] 刘全有, 刘文汇, 孟仟祥, 宋岩, 秦胜飞.  塔里木盆地侏罗系煤岩热模拟生物标志化合物特征研究 . 沉积学报, 2004, 22(4): 724-728.
    [12] 赵红静, 尹凡举, 张敏, 张春明, 梅博文.  利用芳烃化合物预测生物降解原油的粘度 . 沉积学报, 2002, 20(3): 515-518.
    [13] 林金辉, 伊海生, 李勇, 王成善, 彭平安.  藏北高原双湖地区中侏罗统海相油页岩生物标志化合物分布特征及其意义 . 沉积学报, 2001, 19(2): 287-292.
    [14] 孟仟祥, 吉利明.  松粉热模拟轻烃分子生物标志物分布特征 . 沉积学报, 1997, 15(S1): 82-85.
    [15] 许玩宏, 张忠英, 沈平, 孟仟祥.  贵州三都早奥陶世同高组下燕高页岩段的生物标志化合物 . 沉积学报, 1997, 15(3): 72-77.
    [16] M. Schoell, B. R. T. Simoneit, 王铁冠.  广西百色盆地州景矿第三系褐煤有机地球化学与煤岩学研究 Ⅳ.单化合物碳稳定同位素推断生物标志物起源 . 沉积学报, 1995, 13(4): 73-81.
    [17] 周丽清, 邵德艳.  北京十三陵中元古界蓟县系雾迷山组原地风暴沉积的砾屑体 . 沉积学报, 1994, 12(2): 72-76.
    [18] 妥进才, 邵宏舜, 黄杏珍.  柴达木盆地大柴旦盐湖现代沉积物中的生物标志化合物分布特征 . 沉积学报, 1993, 11(2): 118-123.
    [19] 王有孝, 孟仟祥, 范璞, 王春江, 李玉兰.  塔里木盆地古生界油苗的生物标志化合物特征 . 沉积学报, 1990, 8(4): 104-114.
    [20] 罗斌杰, 李新宇, 杨醒华, J.Collen, J.H.Johnston.  新西兰原油生物标记化合物的一般特征 . 沉积学报, 1989, 7(1): 29-37.
  • 加载中
图(6) / 表 (1)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  61
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2021-10-20
  • 刊出日期:  2022-04-10

目录

    中元古界沉积物中典型分子标志化合物及其地质意义

    doi: 10.14027/j.issn.1000-0550.2021.145
      基金项目:

      国家自然科学基金 42173054

      中国石油大学(北京)科研基金 2462021XKBH001

      作者简介:

      肖洪,男,1990年出生,在站博士后,分子有机地球化学,E-mail: xiaohong_cup@hotmail.com

      通讯作者: 李美俊,男,教授,有机地球化学,E-mail: meijunli@cup.edu.cn
    • 中图分类号: P618.13

    摘要: 分子标志化合物在前寒武纪古海洋生命演化和古环境的研究中发挥着越来越重要的作用。在华北克拉通宣隆坳陷中元古界下马岭组黑色页岩中检测到一系列典型分子标志化合物,其特征表现为明显的“UCM”鼓包,高丰度的甲基支链烷烃、C24四环萜烷、C19-C2013β(H),14α(H)-三环萜烷、13α(正烷基)-三环萜烷系列以及四类重排藿烷化合物,甾烷系列化合物的缺失,其组成特征及其地质意义明显不同于显生宙沉积物。甾烷系列化合物缺失可能是异养微生物转化和降解的结果,不能否定真核藻类在14亿年前古海洋的局部繁盛,但生物群落仍以原核生物为主。

    English Abstract

    肖洪, 李美俊, 王铁冠, 冷筠滢. 中元古界沉积物中典型分子标志化合物及其地质意义—以宣隆坳陷下马岭组黑色页岩为例[J]. 沉积学报, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145
    引用本文: 肖洪, 李美俊, 王铁冠, 冷筠滢. 中元古界沉积物中典型分子标志化合物及其地质意义—以宣隆坳陷下马岭组黑色页岩为例[J]. 沉积学报, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145
    XIAO Hong, LI MeiJun, WANG TieGuan, LENG JunYing. Typical Molecular Marker Assemblage of the Mesoproterozoic Sediments: A case study of the Xiamaling Formation black shales in the Xuanlong Depression[J]. Acta Sedimentologica Sinica, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145
    Citation: XIAO Hong, LI MeiJun, WANG TieGuan, LENG JunYing. Typical Molecular Marker Assemblage of the Mesoproterozoic Sediments: A case study of the Xiamaling Formation black shales in the Xuanlong Depression[J]. Acta Sedimentologica Sinica, 2022, 40(2): 547-556. doi: 10.14027/j.issn.1000-0550.2021.145
      • 中元古代不仅具有大气含氧量低、生物演化低级和物种单一等生物地质特征,所形成的化石形态和结构相对简单,而且地层经历了多期的构造破坏和长期的高温深埋,难以保存有效古生物化石,导致地球早期古海洋生物群落和水体环境演化的认识受到限制。此时,生物标志化合物提供的生物地质证据就显得十分重要了[1]。生物体死亡后,其生物有机分子会在合适的沉积环境中部分随沉积物沉积下来,并在一定的地质条件下转化为更稳定的地质分子—生物标志化合物[2]。生物标志化合物的直接继承性,有利于追溯到产生该类化合物的生物门类,在研究前寒武纪生物群落组成和演化及其与古环境的相互关系时,发挥着越来越重要的作用[3-5]。不同类型的生物标志化合物常具有特定的生物前身物[6-8],而生物群落的繁盛又与其生存环境(氧化还原性、温度、含氧量、水体深度等)密切相关[9-10]。因此,通过对沉积有机质中生物标志化合物组成的系统分析,可判识原始有机质的生物来源、生物组成以及沉积古环境特征。

        本次研究采集了华北克拉通宣隆坳陷下花园剖面下马岭组黑色页岩样品,对饱和烃中分子标志化合物进行了系统检测和鉴定,明确了典型的分子标志化合物组成及其地质—地球化学意义,为古海洋生物演化和沉积环境重建提供地质依据。

      • 燕辽裂陷带是华北克拉通的活动构造单元,可划分为七个次级构造单元,具有“五坳—两隆”的区域构造特征,“两隆”分别为密怀隆起和山海关隆起,而“五坳”包括京西坳陷、冀东坳陷、宣龙坳陷、冀北坳陷和辽西坳陷(图1a)[11]。作为我国最古老的含油气构造带,区内油苗分布广且数量多(>200)[11-12],但钻井尚未见商业性油气流。此外,区内发育近万米厚的中—新元古界海相地层[13],包括中元古界长城系、蓟县系、待建系以及新元古界青白口系[14]。冀北和辽西坳陷作为研究区中—新元古代主要沉积中心,其地层发育完整且厚度大。而下马岭组的沉积中心位于宣龙坳陷(例如,下花园地区),沉积了一套局限海湾沉积的碎屑岩,往东至宽城—平泉、蓟县及遵化一带,地层逐渐变薄至完全缺失。下马岭组可进一步划分为四段,其中下三段地层以黑色和黑灰色页岩为主,有机质含量高,总有机碳含量可到20%以上[15],是区内一套潜在的烃源岩(图1b)。在下花园地区,由于上覆地层青白口系、古生界和三叠系的缺失,使得下马岭组与侏罗系煤系地层(下花园组)呈角度不整合接触。

        图  1  宣隆坳陷地理位置和取样剖面位置(a)和下马岭组地层柱状图(b)[15]

        Figure 1.  Geographical location of the Xuanlong Depression and sampling location (a), and the schematic stratigraphic column of the Xiamaling Formation (b)[15]

      • 下马岭组样品取自宣隆坳陷下花园剖面,主要为黑色页岩。考虑到野外露头长期暴露易遭受风化和植被覆盖,先除去表层植被和风化土壤层后,再采集新鲜的岩石样品(图2a)。本次研究共选取了5件岩样进行了系统的分析,首先将露头样品用蒸馏水进行多次清洗(图2b),然后烘干并粉碎,进行总有机碳(TOC)和岩石热解(Rock-Eval)实验测试。由表1可知,5件黑色页岩样品均表现出高的TOC值,平均值为8.14%,最大值可达到12.59%;S 1+S 2的分布范围为12.31~66.02 mg/g,平均值为197.04 mg/g;最高热解峰温(T max,℃)的分布范围为434 ℃~442 ℃,平均值仅为436.8 ℃,表明仍处于生油窗早期阶段。

        图  2  下花园地区下马岭组野外剖面和黑色页岩样品

        Figure 2.  The field section of black shales from the Xiamaling Formation in the Xiahuayuan area (XHY), Hebei province

        表 1  下马岭组页岩总有机碳和热解数据表

        Table 1.  Total organic carbon (TOC) and rock⁃eval data of the black shales from the Xiamaling Formation

        编号 层位 岩性 S 1/(mg/g) S 2/(mg/g) T max/℃ S 1+S 2/(mg/g) TOC/% HI/(mg/g)
        XML-1 下马岭组 黑色页岩 0.43 25.24 434 25.67 6.43 392.35
        XML-2 下马岭组 黑色页岩 1.35 64.67 438 66.02 12.10 534.46
        XML-3 下马岭组 黑色页岩 0.59 35.61 442 36.20 7.36 483.83
        XML-4 下马岭组 黑色页岩 1.74 55.10 436 56.84 12.59 437.65
        XML-5 下马岭组 黑色页岩 1.23 11.08 434 12.31 2.20 503.41
      • 生物标志化合物作为古生物学研究的新手段,特别是对于实体化石相对稀少的前寒武纪有着显而易见的重要意义,但同时也有明显不足之处。主要表现为前寒武系沉积物往往是贫有机质的地质样品,少量的外源烃类,甚至空气中的痕量甾、萜类化合物,都会对实验分析结果造成干扰,从而误导后期分析工作[16]。因此,利用生物标志化合物探讨前寒武纪的古沉积环境、古生态系统以及早期生命演化,其前提条件是保证前寒武系沉积物中烃类的原生性[17-18]

        然而,本次所采集的下马岭组三段黑色页岩样品,明显不同于绝大多数有机质丰度低且成熟高的前寒武系样品。相反,其不仅具有高的有机质丰度,而且仍处于生油早期热演化阶段,显然不易遭受外源烃类的污染,这为前寒武系生物标志化合物的研究提供了良好的地质样品。

      • 将采集的黑色页岩样品放入大烧杯中,用蒸馏水清洗多次,然后放于锡箔纸上,转置烘箱烘干水分。将烘干后的样品粉碎至粒径小于80目,使用约400 mL二氯甲烷进行可溶有机质索氏抽提,并对抽提物进行族组分分离,详细的详细实验条件和分析步骤见肖洪等[19]。采用气相色谱—质谱联用仪器进行饱和烃生物标志化合物分析,仪器型号为Agilent 6980 GC-5975i MS,详细的实验条件和分析步骤见Xiao et al. [20]。以上实验均在中国石油大学(北京)油气资源与探测国家重点实验室完成。

      • 下马岭组黑色页岩中正构烷烃的碳数分布范围为C14-C29,主峰碳为nC17,为单峰态前峰型,表现出强烈的低碳数优势,无奇偶优势(图3)。在现代沉积物中,正构烷烃被认为可源自高等植物蜡[21]、真核藻类的聚亚甲基生物聚合物[22]以及细菌或真核生物细胞膜中的磷脂等[2]。根据生物演化特征,首先可以明确下马岭组黑色页岩中正构烷烃不可能源自高等植物。其次,Brocks et al.[23]指出来自聚亚甲基生物聚合物的正构烷烃在中元古界分布极少。因此,细菌或古细菌细胞膜是下马岭组黑色页岩中正构烷烃最具潜力的生物来源。

        图  3  下马岭组黑色页岩中正构烷烃分布特征

        Figure 3.  Distribution of the normal alkanes in the representative Xiamaling black shale

      • 中—新元古界沉积物饱和烃总离子流图中往往富含一系列甲基支链烷烃[24-29],这一特征似乎是前寒武系地质样品区别于显生宙地质样品的典型特征之一。由图3可知,下马岭组黑色页岩中甲基支链烷烃以低碳数为主,集中分布在C15-C20之间,主要为单甲基和二甲基支链烷烃(图4)。低位单甲基取代的支链烷烃(2-甲基和3-甲基支链烷烃)出峰明显且易于识别,而高位取代的单甲基支链烷烃具有共溢出峰的特征(图4)。单甲基支链烷烃最早在蓝绿藻中被发现和检测[30],随后在蓝细菌席中检测到单甲基支链烷烃,逐渐认为单甲基支链烷烃是直接来自于生物体合成[31-32]。也有研究指出,在热裂解过程中烯烃受酸性黏土矿物催化作用(无机反应过程)也可形成甲基支链烷烃[33]

        图  4  下马岭组黑色页岩中甲基支链烷烃系列的分布

        Figure 4.  Distribution of the monomethylalkanes in the representative Xiamaling black shale

        总之,关于地质样品中甲基支链烷烃的生物来源,或者说是否具有生物前身物还存在争议。但中—新元古界烃源岩和原油均富含单甲基支链烷烃的特征,其极可能与古海洋沉积环境和有机质组成特征密切相关。作为中—新元古界地质样品的典型分子标志化合物特征之一,高丰度的单甲基支链烷烃,尤其是高碳数的单甲基支链烷烃,可能来自微生物群落中一种或多种蓝藻与异氧细菌的混合生物质[34-35]

      • 众所周知,当油藏埋藏深度较浅时,原油往往会遭受异养细菌的降解,使得正构烷烃被优先消耗,发生基线抬升隆起而形成明显的驼峰(“UCM”鼓包)。前人研究表明,全球不同盆地的中—新元古界沉积有机质和原油的饱和烃总离子流图中普遍存在“UCM”鼓包[25-26,28,36-37],本次所分析的下马岭组黑色页岩也不例外(图3)。因此,这也被认为是前寒武系地质样品的典型特征之一。

        通常,“UCM”鼓包仅分布在遭受生物降解的原油样品中,而在中—新元古界沉积物样品中为何普遍存在“UCM”鼓包呢?如果是微生物对可溶有机质的降解作用所致,但完整分布的正构烷烃系列又与之相悖。此外,其又是在何时、何种条件下遭受到何种微生物降解呢?这无疑也是一个值得思考的问题。1995年,Logan et al.[38]指出,由于在元古宙古海洋水柱中缺乏可依附粪粒,原始有机质在水柱中会缓慢下沉,从而遭受厌氧细菌长时间的降解改造。此外,元古宇海洋普遍发育底栖微生物垫,使得沉积有机质在微生物垫表面堆积后也会遭受底栖异养微生物群落的降解改造,导致饱和烃中普遍发育“UCM”鼓包[39]。最近研究指出“UCM”鼓包可能是地层长期埋藏过程中,烃类分子异构化增强所致[37]。关于前寒武系地质样品中广泛存在的“UCM”鼓包,虽然暂无统一的认识,但可以明确其并非是微生物直接作用可溶有机质的结果,可能是生物大分子在水柱下降过程中的异养微生物改造、或在微生物垫表层的异养微生物改造、亦或是长期埋藏而导致异构化增强等所致。

      • 13β(H),14α(H)-三环萜烷(TT)广泛分布在沉积物和原油中,具有较强的热稳定性,其碳数范围主要为C19-C29TT,最高碳数可延伸至C54TT[40]。近年,肖洪等[19]系统地对比分析了200余件不同盆地、不同地质年代、不同岩性的烃源岩及原油样品中三环萜烷分布特征,指出海相和咸水湖相沉积物呈现C23TT优势,淡水湖相沉积物则以C21TT为主煤系地层或以高等植物输入为主的陆相沉积物常表现为C19-C20短链三环萜烷的优势。在本次分析的下马岭组黑色页岩中,C19-C23TT的分布特征与典型的海相沉积有机质截然不同,表现为低碳数C19-C20TT的明显优势(图5),指示以陆源有机质输入为主的生源特征,这显然不符合地质背景。非洲西北部Mauritania的Taoudeni盆地中元古代也发育一套高有机质丰度的低熟黑色页岩(TOC>20%;%R o≤0.6%),在其样品中也检测到高丰度的低碳数C19-C20TT[36],与下马岭组黑色页岩极为相似,表明高丰度的C19-C20TT在全球部分盆地的中元古界地层中具有可对比性。作者认为,中元古界黑色页岩中高丰度的C19-C20TT不可能源自陆源高等植物,也可以排除热裂解成因,而更可能是源自某些原始藻类或细菌的贡献。

        图  5  下马岭组黑色页岩中规则三环萜烷(m/z 191)和13α(正烷基)-三环萜烷(m/z 123)分布图

        Figure 5.  Distribution of regular tricyclic terpanes (a), and 13α(n⁃alkyl)⁃tricyclic terpanes (b) in the representative Xiamaling Formation black shale

      • C24四环萜烷(C24TeT)也称为C24 17,21-断藿烷(脱-E-藿烷),可能是藿烷系列化合物或其前身物受热裂解作用而断去E环的产物[2]。在下马岭组黑色页岩中检测到高丰度的C24TeT(图5)。然而,关于C24TeT的生物来源也一直未有定论,常在煤系地层或富含高等植物输入的沉积有机质中检测到高丰度的C24TeT,推测其可能与高等植物的输入密切相关[41];其次,高丰度的C24TeT还可能指示碳酸盐岩或蒸发岩的沉积环境[42-43]。显然,下马岭组黑色页岩中高丰度的C24TeT与以上两种解释都不相符(图5)。同样,在非洲西北部Taoudeni盆地中元古界Touirist组(1.1Ga)黑色页岩有机质中也检测到高丰度的C24TeT[36]。由此可知,即便C19-C20TT和C24TeT的生物来源尚不明确,但结合样品的地化特征及其地质背景,下马岭组黑色页岩中高丰度的C19-C20TT和C24TeT不可能是源自高等植物,而更可能源自某些原始藻类或细菌的贡献。

      • 1989年,在燕辽裂陷带龙潭沟(LTG)地区中元古界下马岭组底部沥青砂岩中,首次发现了一类新的三环萜烷系列化合物,并被命名为13α(正烷基)-三环萜烷,是华北克拉通中元古界沉积物中特征性分子标志化合物之一[44]。通过化合物出峰时间和质谱图对比,在下马岭组页岩也中检测到C18-C2313α(正烷基)-三环萜烷(图5),其最高碳数可延伸至C33 [45]。13α(正烷基)-三环萜烷的基峰离子为m/z 123,而规则三环萜烷的基峰离子为m/z 191,且13α(正烷基)-三环萜烷具有高丰度的特征离子碎片m/z 247。此外,C18-C2313α(正烷基)-三环萜烷系列连续分布,从C19至C33相对丰度逐渐递减,未出现C22和C27同系物的缺失[45]。可知,13α(正烷基)-三环萜烷系列化合物在C-22和C-27位上不存在甲基支链取代,进一步明确了C-13位的侧链不是类异戊二烯烷基取代基,而是直链的正烷基。

        前人指出,规则13β(H),14α(H)-三环萜烷在自然条件下,可以由细菌和藻类的六类异二烯醇(Hexaprenol)经环化作用和加氢还原作用形成[46-47]。13α(正烷基)-三环萜烷与规则三环萜烷系列具有相似的分子结构骨架,推测二者具有相似的前身物,即源自某种或多种原始藻类[48]。根据13α(正烷基)-三环萜烷的结构特征,作者认为由六类异二烯醇经环化作用和加氢还原作用的成因机理,有待进一步研究。如果13α(正烷基)-三环萜烷是来源于六类异戊二烯醇,那么在六类异戊二烯醇向13α(正烷基)-三环萜烷转化的过程中,C-13位侧链的类异戊二烯支链取代基转变为直链正烷基结构,这必然是一个极其困难的化学反应过程[45]。因此,作者认为,13α(正烷基)-三环萜烷系列化合物具有与规则三环萜烷不同的生源,可能是源自局限环境下的某些原始菌藻类,且其前身物在显生宙已灭绝。

      • 在下马岭组黑色页岩中检测到了四类重排藿烷,分别为18α(H)-新藿烷(Ts和C29Ts)、17α(H)-重排藿烷(C29-C30D)、早洗脱重排藿烷(C30E)以及21-甲基-28-降藿烷(C29Nsp)(图5)。关于重排藿烷的成因和来源,目前尚无统一的认识。早期认为,重排藿烷系列化合物代表了陆源高等植物的贡献[41,49]。Moldowan et al.[50]指出重排藿烷与规则藿烷具有相似的结构和相近的稳定碳同位素值,表明二者具有相似的生物前驱物,属于细菌来源;且认为重排藿烷是细菌藿类先质在弱氧化条件下,经黏土矿物酸性催化而发生重排反应所形成的产物。根据本次分析样品的地质背景,首先可以否定高等植物对高丰度重排藿烷的贡献;其次,如果重排藿烷属于细菌来源,那么为何无处不在的细菌并没有使得重排藿烷像规则藿烷一样普遍分布?Xiao et al.[51]发现中元古界洪水庄组黑色页岩中重排藿烷的相对含量与伽马蜡烷指数呈良好的负相关关系,指出高盐度或水体分层环境可能会抑制重排藿烷前生物的生长与繁盛。因此,作者初步认为,中元古界沉积物中高丰度的重排藿烷并非源自广泛存在的细菌,而是源自局限环境的部分细菌种类[52-53]

      • 甾烷系列化合物作为真核生物的生物标志化合物,前身物甾醇主要源自真核生物的细胞膜[54]。本次分析的下马岭组黑色页岩中孕甾烷、重排甾烷、规则甾烷以及甲基甾烷均未达到检测下限(图6),表明下马岭组沉积期生物组成以原核生物为主,真核藻类对可溶有机质的贡献极小。值得注意的是,张水昌等[15]在河北下花园地区下马岭组三段黑色页岩中,发现了大量红藻所特有的四分孢子囊化石,表明在下马岭组沉积期底栖真核红藻已经繁盛,但这显然与可溶有机质中甾烷系列化合物的缺失现象不一致。

        图  6  下马岭组黑色页岩中孕甾烷、重排甾烷、规则甾烷以及甲基甾烷分布图

        Figure 6.  Distribution of pregnanes, diasteranes, regular steranes, and 4⁃methylsteranes in the representative Xiamaling Formation black shale

        因此,有待进一步探讨为何富含底栖红藻化石的下马岭组,却未检测到甾烷系列化合物?Logan et al.[38]指出元古宙生物演化与环境的变化之间必然存在紧密联系,但是具体的、详细的相互作用机制暂不清楚。在探讨中-新元古代生物组成和演化时,大量的真核藻类可能在海水缓慢下沉过程[38]或在底栖微生物垫表面[39]被异养微生物选择性消耗降解,从而在可溶有机质中无法检测真核甾烷系列化合物。最近,Shen et al.[55]对太平洋中Kiritimati岛上2号盐水湖泊中微生物垫分析发现,98%的真核藻类可在沉积过程中被微生物降解消耗。考虑到底栖红藻化石的分布[15]、大气含氧量的升高[56]和埋藏学的偏差[55],以及前人在高于庄组(15.6亿年)发现的大量厘米级别的多细胞藻类化石[57-58],作者认为,下马岭组黑色页岩中甾烷系列化合物缺失不能直接否定真核藻类在华北克拉通14亿年前古海洋的存在[59-60],但生物群落组成仍以原核生物为主。

      • (1) 华北克拉通宣隆坳陷中元古界下马岭组黑色页岩中典型分子标志化合物包括明显的“UCM”鼓包,高丰度的甲基支链烷烃、C24四环萜烷、C19-C2013β(H),14α(H)-三环萜烷、13α(正烷基)-三环萜烷系列以及四类重排藿烷化合物,低丰度的无环类异戊二烯烷烃和甾烷系列化合物的缺失。

        (2) 下马岭组黑色页岩中高丰度的低碳数正构烷烃、甲基支链烷烃和藿烷类化合物等表明古海洋生物群落以蓝藻等原核生物为主。高丰度的C19-C20TT和C24TeT不可能是源自高等植物,可能指示某些原始藻类或细菌的贡献。13α(正烷基)-三环萜烷系列化合物与规则三环萜烷的生源不同,可能源自局限环境的原始菌藻类。重排藿烷与规则藿烷的生源并不完全相同,其并非源自广泛存在的细菌,而可能是源自局限环境的细菌种类。

        (3) 普遍分布的“UCM”鼓包和甾烷系列化合物的缺失可能是原始有机质在水柱中缓慢下沉和/或在底栖微生物垫表层遭受异养微生物改造所致。结合真核藻类化石的发现可知,真核藻类在中元古代古海洋已经局部繁盛,但仍以原核生物为主。

    参考文献 (60)

    目录

      /

      返回文章
      返回