高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

末次冰期东海嵊山岛黄土粒度端元分析及其环境意义

赵庆 郑祥民 周立旻 王辉 吕红华 陈圆圆 任少芳

赵庆, 郑祥民, 周立旻, 王辉, 吕红华, 陈圆圆, 任少芳. 末次冰期东海嵊山岛黄土粒度端元分析及其环境意义[J]. 沉积学报, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085
引用本文: 赵庆, 郑祥民, 周立旻, 王辉, 吕红华, 陈圆圆, 任少芳. 末次冰期东海嵊山岛黄土粒度端元分析及其环境意义[J]. 沉积学报, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085
ZHAO Qing, ZHENG XiangMin, ZHOU LiMin, WANG Hui, LÜ HongHua, CHEN YuanYuan, REN ShaoFang. Grain Size End Member Characteristics and Paleoclimatic Significance of Loess Deposit in Shengshan Island during the Last Glacial Period[J]. Acta Sedimentologica Sinica, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085
Citation: ZHAO Qing, ZHENG XiangMin, ZHOU LiMin, WANG Hui, LÜ HongHua, CHEN YuanYuan, REN ShaoFang. Grain Size End Member Characteristics and Paleoclimatic Significance of Loess Deposit in Shengshan Island during the Last Glacial Period[J]. Acta Sedimentologica Sinica, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085

末次冰期东海嵊山岛黄土粒度端元分析及其环境意义

doi: 10.14027/j.issn.1000-0550.2022.085
基金项目: 

国家自然科学基金项目 41871015

详细信息

Grain Size End Member Characteristics and Paleoclimatic Significance of Loess Deposit in Shengshan Island during the Last Glacial Period

Funds: 

National Natural Science Foundation of China 41871015

  • 摘要: 目的 东海岛屿晚更新世风尘黄土堆积是我国黄土在东部长三角及外延海域重要的拓展,深化这一区域风尘黄土沉积的物源特征和后期演化问题研究,对于认识晚更新世区域古环境变化尤为重要。 方法 在OSL测年和磁化率测试基础上,基于东海岛屿典型风尘黄土剖面(嵊山岛黄土)的粒度分析,开展了粒度组成的端元分析,探讨了其蕴含的古环境信息。 结果与结论 嵊山岛黄土沉积可提取出3个粒度端元(EM1~EM3),进一步分析发现EM1可能代表通过高空西风气流传输的远源黏粒组分,EM2可能代表以浮尘形式远距离悬浮搬运并随风力减弱而沉降堆积的细粉砂组分,EM3可能代表冬季风驱动下的近地表短距离搬运堆积的粗粉砂组分。粒度端元分析结果表明,高空西风输送的黏粒端元组分和远距离悬浮运移的浮尘端元组分可能是沉积剖面主要粉尘来源;综合年代学结果、百分频率磁化率和颗粒中值粒径等参数分析,认为东海嵊山岛黄土沉积过程在MIS3阶段先后经历暖湿—冷干—暖湿的旋回波动;并且,所记录的 MIS3阶段气候波动以及MIS2阶段末次冰盛期和冰消期的古环境变化同深海氧同位素和古海平面变化趋势相对应,说明东海陆架区域该时期环境演变与全球性气候波动相协同。
  • 图  1  采样点示意图

    Figure  1.  Location of sampling site

    图  2  嵊山岛黄土剖面图

    Figure  2.  Profile of loess deposit in Shengshan Island

    图  3  嵊山岛黄土剖面粒度特征图

    (a) frequency distribution curve; (b) Shephard’s diagram

    Figure  3.  Characteristics of loess particle size in Shengshan Island loess profile

    Fig.3

    图  4  嵊山岛黄土剖面粒度端元分析结果与判别指标

    (a) coefficients of end⁃member analysis; (b) angle deviation of non⁃parameterized end⁃member analysis; (c) coefficients of parameterized end⁃member analysis; (d) angle deviation of parameterized end⁃member analysis

    Figure  4.  End⁃member analysis of Shengshan Island loess profile and discrimination index

    Fig.4

    图  5  端元粒度频率分布曲线

    Figure  5.  Frequency distribution of end⁃member particle size

    图  6  端元频率累积曲线

    Figure  6.  Frequency cumulative curves of different end⁃members

    图  7  嵊山岛黄土剖面端元组分、百分频率磁化率、中值粒径和铷锶比值特征

    (a) previous estimates of sea levels[5859];(b) oxygen isotope (δ18O) records in Sulu Sea[60]

    Figure  7.  Characteristics of end⁃member content, frequency dependent susceptibility, median size and Rb/Sr value

    Fig.7

    表  1  嵊山岛黄土剖面光释光年代测定结果

    Table  1.   OSL dating results of Shengshan Island loess profile

    剖面深度/cmU/(μg/g)Th/(μg/g)K/%实测含水量/%环境剂量率/(Gy/ka)等效剂量/Gy年龄/ka
    嵊山岛屿剖面102.8314.31.4914.453.051.2±0.30.40±0.1
    1002.9815.11.6911.863.34117±435.03±3
    1502.9414.41.568.183.23137±842.41±4
    2502.9314.31.6216.493.00152±551.67±4
    下载: 导出CSV

    表  2  嵊山岛黄土剖面各端元粒度特征

    Table  2.   Distribution of end⁃member particle size

    端元粒度
    平均粒径/MZ分选系数/σ偏度/SKI峰态/KG
    EM13.38 μm3.240.633.24
    EM210.44 μm2.19-0.132.77
    EM330.56 μm1.610.042.71
    下载: 导出CSV

    表  3  端元组分、中值粒径,及小于2 μm粒级含量间相关关系

    Table  3.   Correlations between end⁃members, median grain size and <2 μm fractions

    EM1EM2EM3Md<2 μm
    EM11
    EM2-0.707**1
    EM3-0.135*-0.797**1
    Md0.020-0.352**0.476**1
    <2 μm0.460**-0.407**0.177**-0.273**1
    注:**置信度0.01水平下显著相关,*置信度0.05水平下显著相关。
    下载: 导出CSV
  • [1] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985.

    Liu Tungsheng. Loess and the environment[M]. Beijing: Science Press, 1985.
    [2] An Z S, Liu T, Lu Y C, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China[J]. Quaternary International, 1990, 7-8: 91-95.
    [3] Maher B A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 154: 23-84.
    [4] 杨石岭,丁仲礼. 黄土高原黄土粒度的空间变化及其古环境意义[J]. 第四纪研究,2017,37(5):934-944.

    Yang Shiling, Ding Zhongli. Spatial changes in grain size of loess deposits in the Chinese Loess Plateau and implications for palaeoenvironment[J]. Quaternary Sciences, 2017, 37(5): 934-944.
    [5] 李徐生,韩志勇,鹿化煜,等. 下蜀黄土底界的年代及其对区域气候变干的指示[J]. 中国科学(D辑):地球科学,2018,48(2):210-223.

    Li Xusheng, Han Zhiyong, Lu Huayu, et al. Onset of Xiashu loess deposition in southern China by 0.9 Ma and its implications for regional aridification[J]. Science China (Seri. D): Earth Sciences, 2018, 48(2): 210-223.
    [6] Li P, Zhang C X, Wu H B, et al. Geochemical characteristics of Holocene loess-paleosol sequences in central Chinese Loess Plateau and their implications for East Asian monsoon evolution[J]. Quaternary International, 2022, 616: 99-108.
    [7] Yang H, Li G Q, Gou S Y, et al. The close-space luminescence dated loess record from SW Junggar Basin indicates persistent aridity during the last glacial-interglacial cycle in lowlands of Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110664.
    [8] Ding Z L, Yu Z W, Yang S L, et al. Coeval changes in grain size and sedimentation rate of eolian loess, the Chinese Loess Plateau[J]. Geophysical Research Letters, 2001, 28(10): 2097-2100.
    [9] 周家兴,于娟,杨丽君,等. 铜川地区早中全新世黄土沉积特征及其古气候意义[J]. 海洋地质与第四纪地质,2020,40(1):160-166.

    Zhou Jiaxing, Yu Juan, Yang Lijun, et al. Sedimentary characteristics of the early and Middle Holocene loess in Tongchuan area and their implications for paleoclimate[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 160-166.
    [10] 鹿化煜,安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学(D辑):地球科学,1998,28(3):278-283.

    Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science China (Seri. D): Earth Sciences, 1998, 28(3): 278-283.
    [11] Chen F H, Bloemendal J, Feng Z D, et al. East Asian monsoon variations during Oxygen Isotope Stage 5: Evidence from the northwestern margin of the Chinese Loess Plateau[J]. Quaternary Science Review, 1999, 18(8/9): 1127-1135.
    [12] Újvári G, Kok J F, Varga G, et al. The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies[J]. Earth-Science Reviews, 2016, 154: 247-278.
    [13] 王兆夺,黄春长,杨红瑾,等. 六盘山东麓晚更新世以来黄土粒度指示的物源特征及演变[J]. 地理科学,2018,38(5):818-826.

    Wang Zhaoduo, Huang Chunchang, Yang Hongjin, et al. Loess provenance characteristics and evolution indicated by grain size since Late Pleistocene at the eastern foot of Liupan Mountains, China[J]. Scientia Geographica Sinica, 2018, 38(5): 818-826.
    [14] 张龙吴,张虎才,常凤琴,等. 云南异龙湖沉积物粒度空间变化特征及其环境指示意义[J]. 第四纪研究,2019,39(5):1159-1170.

    Zhang Longwu, Zhang Hucai, Chang Fengqin, et al. Spatial variation characteristics of sediment size and its environmental indication significance in lake Yilong, Yunnan province[J]. Quaternary Sciences, 2019, 39(5): 1159-1170.
    [15] 翟新伟,李富强,吴松. 会宁剖面黄土粒度记录的MIS3阶段气候变化研究[J]. 干旱区地理,2013,36(5):773-780.

    Zhai Xinwei, Li Fuqiang, Wu Song. Huining MIS3 stage climate change based on the loess grain size record[J]. Arid Land Geography, 2013, 36(5): 773-780.
    [16] 丁仲礼,任剑璋,杨石岭,等. 最后两个冰期旋回季风—沙漠系统不稳定性的高分辨率黄土记录[J]. 第四纪研究,1999,19(1):49-58.

    Ding Zhongli, Ren Jianzhang, Yang Shiling, et al. High-resolution climatic records of the last two glaciations: Evidence from loess-soil sequences, north-central China[J]. Quaternary Sciences, 1999, 19(1): 49-58.
    [17] 鹿化煜,安芷生. 洛川黄土粒度组成的古气候意义[J]. 科学通报,1997,42(1):66-69.

    Lu Huayu, An Zhisheng. Grain-size composition of Luochuan loess and paleoclimate implication[J]. Chinese Science Bulletin, 1997, 42(1): 66-69.
    [18] An Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 171-187.
    [19] Pye K, Tsoar H. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev, Israel[J]. Geological Society, London, Special Publications, 1987, 35: 139-156.
    [20] Pye K, Zhou L P. Late Pleistocene and Holocene aeolian dust deposition in North China and the northwest Pacific Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 73(1/2): 11-23.
    [21] Sun Y B, Wang X L, Liu Q S, et al. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 171-179.
    [22] 安芷生,吴锡浩,汪品先,等. 最近130ka中国的古季风:I. 古季风记录[J]. 中国科学(B辑),1991(10):1076-1081.

    An Zhisheng, Wu Xihao, Wang Pinxian, et al. Palaeomonsoons of China over the last 130,000 years: Palaeomonsoon records[J]. Science in China (Series B), 1991(10):1076-1081.
    [23] Sun Y B, An Z S, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 525-535.
    [24] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
    [25] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549.
    [26] Nottebaum V, Stauch G, Hartmann K, et al. Unmixed loess grain size populations along the northern Qilian Shan (China): Relationships between geomorphologic, sedimentologic and climatic controls[J]. Quaternary International, 2015, 372: 151-166.
    [27] 王兆夺,黄春长,庞奖励,等. 甘肃庄浪全新世黄土土壤物源分析及古气候恢复重建[J]. 沉积学报,2020,38(4):781-789.

    Wang Zhaoduo, Huang Chunchang, Pang Jiangli, et al. Provenance analysis and reconstruction of the climate change for the Holocene loess profile in the Zhuanglang country of Gansu province, China[J]. Acta Sedimentologica Sinica, 2020, 38(4): 781-789.
    [28] 李越,宋友桂,宗秀兰,等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报,2019,74(1):162-177.

    Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74(1): 162-177.
    [29] 陈海涛,孔凡彪,徐树建,等. 庙岛群岛晚更新世以来黄土粒度端元揭示的粉尘堆积过程[J]. 第四纪研究,2021,41(5):1306-1316.

    Chen Haitao, Kong Fanbiao, Xu Shujian, et al. Dust accumulation process indicated by grain size end-members of the coastal loess since the Late Pleistocene in Miaodao islands of Shandong province[J]. Quaternary Sciences, 2021, 41(5): 1306-1316.
    [30] 刘浩,贾佳,路彩晨,等. 则克台黄土粒度组分分离及其记录的末次冰期气候波动[J]. 干旱区地理,2018,41(6):1260-1269.

    Liu Hao, Jia Jia, Lu Caichen, et al. Multi-components separation of loess grain size in Zeketai and the recorded climate fluctuation during the last glacial period[J]. Arid Land Geography, 2018, 41(6): 1260-1269.
    [31] 程良清,宋友桂,李越,等. 粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用[J]. 沉积学报,2018,36(6):1148-1156.

    Cheng Liangqing, Song Yougui, Li Yue, et al. Preliminary application of grain size end member model for dust source tracing of Xinjiang loess and paleoclimate reconstruction[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1148-1156.
    [32] 郑祥民,刘飞. 长江三角洲与东海岛屿黄土研究综述[J]. 华东师范大学学报(自然科学版),2006(6):9-24.

    Zheng Xiangmin, Liu Fei. Review of research on loess in the Yangtze River delta and the East China Sea islands[J]. Journal of East China Normal University (Natural Science), 2006(6): 9-24.
    [33] 陈玉美,舒强,张茂恒,等. 南京下蜀黄土记录的250-100ka期间的环境演化信息[J]. 地质科技情报,2014,33(6):55-59,77.

    Chen Yumei, Shu Qiang, Zhang Maoheng, et al. Environmental evolution information recorded in the Xiashu loess (250-100ka) in Nanjing, China[J]. Geological Science and Technology Information, 2014, 33(6): 55-59, 77.
    [34] 郑祥民,赵健,周立旻,等. 东海嵊山岛风尘黄土中的植物硅酸体与环境研究[J]. 海洋地质与第四纪地质,2002,22(1):25-30.

    Zheng Xiangmin, Zhao Jian, Zhou Limin, et al. Phytolith and its paleoenvironmental significance in aeolian loess of Shengshan Island of the East China Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(1): 25-30.
    [35] 刘力,程婷,吴超,等. 长江三角洲东部岛屿风尘堆积赤铁矿和针铁矿含量及古气候意义[J]. 沉积学报,2020,38(3):518-527.

    Liu Li, Cheng Ting, Wu Chao, et al. Hematite and goethite content in the dust deposition from the eastern islands of the Yangtze River delta and its paleoclimatic significance[J]. Acta Sedimentologica Sinica, 2020, 38(3): 518-527.
    [36] 刘飞. 东海岛屿黄土与下蜀黄土古环境信息研究[D]. 上海:华东师范大学,2006:1-21.

    Liu Fei. Paleo-environmental information study of loess on islands in East China Sea and Xiashu loess[D]. Shanghai: East China Normal University, 2006: 1-21.
    [37] 刘飞,郑祥民,许健,等. 东海浪岗山岛屿黄土的粒度与磁性特征及其环境意义[J]. 海洋地质与第四纪地质,2005,25(4):93-98.

    Liu Fei, Zheng Xiangmin, Xu Jian, et al. Primary research on the material source of aeolian-dust deposition at Langgangshan Island of East China Sea[J]. Marine Geology & Quaternary Geology, 2005, 25(4): 93-98.
    [38] 张岩. 嵊山岛黄土地层古环境信息研究[D]. 上海:华东师范大学,2014:9-10.

    Zhang Yan. Paleo-environmental information research of the loess from the Shengshan Island[D]. Shanghai: East China Normal University, 2014: 9-10.
    [39] 郑祥民, Endo K,赵健,等. 东海岛屿风尘地层的特征与成因分析[C]//2004年全国地貌与第四纪学术会议暨丹霞地貌研讨会. 仁化:中国地理学会,2004:123-126.

    Zheng Xiangmin, Endo K, Zhao Jian, et al. Characteristics and genesis analysis of Aeolian loess of Shengshan Island in the East China Sea[C]//Academic conference of national geomorphology and Danxia geomorphology. Renhua:The Geographical Society of China, 2004: 123-126.
    [40] Murray A S, Wintle A G. The single aliquot regenerative dose protocol: Potential for improvements in reliability[J]. Radiation Measurements, 2003, 37(4/5): 377-381.
    [41] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
    [42] 孙东怀. 黄土粒度分布中的超细粒组分及其成因[J]. 第四纪研究,2006,26(6):928-936.

    Sun Donghuai. Supper-fine grain size components in Chinese loess and their palaeoclimatic implication[J]. Quaternary Sciences, 2006, 26(6): 928-936.
    [43] 李帅,杨胜利,梁敏豪,等. 青藏高原东部黄土粒度分布的端元模型研究[J]. 地球与环境,2018,46(4):331-338.

    Li Shuai, Yang Shengli, Liang Minhao, et al. The end member model analysis on grain size of loess in the eastern Tibetan Plateau[J]. Earth and Environment, 2018, 46(4): 331-338.
    [44] Bronger A, Heinkele T. Mineralogical and clay mineralogical aspects of loess research[J]. Quaternary International, 1990, 7-8: 37-51.
    [45] Sun D H, Su R X, Bloemendal J, et al. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264(1/2): 39-53.
    [46] 刘梦慧,李徐生,韩志勇,等. 下蜀黄土参数化粒度端元分析及其物源示踪[J]. 地球环境学报,2021,12(5):510-525.

    Liu Menghui, Li Xusheng, Han Zhiyong, et al. Parametric end-member analysis of the grain size distribution of the Xiashu loess and its provenance tracing[J]. Journal of Earth Environment, 2021, 12(5): 510-525.
    [47] 管清玉,潘保田,高红山,等. 粘粒含量—夏季风的良好替代指标[J]. 干旱区资源与环境,2004,18(8):17-19.

    Guan Qingyu, Pan Baotian, Gao Hongshan, et al. A good proxy of east Asian monsoon-fine grain size[J]. Journal of Arid Land Resources and Environment, 2004, 18(8): 17-19.
    [48] Tsoar H, Pye K. Dust transport and the question of desert loess formation[J]. Sedimentology, 1987, 34(1): 139-153.
    [49] Qiang M R, Lang L L, Wang Z L. Do fine-grained components of loess indicate westerlies: Insights from observations of dust storm deposits at Lenghu (Qaidam Basin, China)[J]. Journal of Arid Environments, 2010, 74(10): 1232-1239.
    [50] Pye K. Aeolian dust and dust deposits[M]. London: Academic Press, 1987.
    [51] Patterson E M, Gillette D A. Commonalities in measured size distributions for aerosols having a soil-derived component[J]. Journal of Geophysical Research, 1977, 82(15): 2074-2082.
    [52] 孙东怀,鹿化煜, Rea D,等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报,2000,18(3):327-335.

    Sun Donghuai, Lu Huayu, Rea D, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335.
    [53] Prins M A, Vriend M, Nugteren G, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26(1/2): 230-242.
    [54] 乔彦松,郭正堂,郝青振,等. 中新世黄土—古土壤序列的粒度特征及其对成因的指示意义[J]. 中国科学(D辑):地球科学,2006,36(7):646-653.

    Qiao Yansong, Guo Zhengtang, Hao Qingzhen, et al. Grain-size features of a Miocene loess-soil sequence at Qinan: Implications on its origin[J]. Science China (Seri. D): Earth Sciences, 2006, 36(7): 646-653.
    [55] 汪海斌,陈发虎,张家武. 黄土高原西部地区黄土粒度的环境指示意义[J]. 中国沙漠,2002,22(1):21-26.

    Wang Haibin, Chen Fahu, Zhang Jiawu. Environmental significance of grain size of loess-paleosol sequence in western part of Chinese Loess Plateau[J]. Journal of Desert Research, 2002, 22(1): 21-26.
    [56] 刘秀铭,刘东生, Heller F,等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究,1990(1):42-50.

    Liu Xiuming, Liu Tungsheng, Heller F, et al. Frequency-dependent susceptibility of loess and Quaternary paleoclimate[J]. Quaternary Sciences, 1990(1): 42-50.
    [57] 陈骏,汪永进,季峻峰,等. 陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义[J]. 第四纪研究,1997(4):350-356.

    Chen Jun, Wang Yongjin, Ji Junfeng, et al. Rb/Sr variations and its climatic stratigraphical significance of a loess-paleosol profile from Luochuan, Shaanxi province[J]. Quaternary Sciences, 1997(4): 350-356.
    [58] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278(1/2/3/4): 54-76.
    [59] Chappell J, Omura A, Esat T, et al. Reconciliaion of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records[J]. Earth and Planetary Science Letters, 1996, 141(1/2/3/4): 227-236.
    [60] Linsley B K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150, 000 years[J]. Nature, 1996, 380(6571): 234-237.
    [61] 杨彦峰,符超峰,徐新文,等. 青藏高原东北缘尖扎盆地晚中新世地层绝对天文年代标尺的建立[J]. 地球科学与环境学报,2021,43(4):710-723.

    Yang Yanfeng, Fu Chaofeng, Xu Xinwen, et al. Establishment of absolute astronomical time scale of Late Miocene strata in Jianzha Basin, the northeastern margin of Tibetan Plateau, China[J]. Journal of Earth Sciences and Environment, 2021, 43(4): 710-723.
    [62] 陈骏,安芷生,汪永进,等. 最近800ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J]. 中国科学(D辑):地球科学,1998,28(6):498-504.

    Chen Jun, An Zhisheng, Wang Yongjin, et al. Distribution of Rb and Sr in the Luochuan loess- paleosol sequence of China during the last 800 ka[J]. Science China (Seri. D): Earth Sciences, 1998, 28(6): 498-504.
    [63] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
    [64] Yao Z, Wu H, Liang M, et al. Spatial and temporal variations in C3 and C4 plant abundance over the Chinese Loess Plateau since the last glacial maximum[J]. Journal of Arid Environments, 2011, 75(10): 881-889.
    [65] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
    [66] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266.
    [67] 甄治国,钟巍,薛积彬,等. 中国不同区域MIS-3时期气候特征研究进展[J]. 冰川冻土,2008,30(5):814-824.

    Zhen Zhiguo, Zhong Wei, Xue Jibin, et al. Progress in the studies of climatic features in different areas of China during the MIS-3[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 814-824.
    [68] 张茂恒,孟景闻,夏应菲,等. 最近11万年来东亚季风轨道与千年尺度气候变率在南京下蜀黄土中的记录[J]. 地层学杂志,2011,35(3):321-327.

    Zhang Maoheng, Meng Jingwen, Xia Yingfei, et al. Orbital and millennial scale periodicity of eastern Asian monsoon variation during the past 110 ka recorded in the Xiashu loess, Nanjing[J]. Journal of Stratigraphy, 2011, 35(3): 321-327.
    [69] 汪永进,吴江滢,吴金全,等. 末次冰期南京石笋高分辨率气候记录与GRIP冰芯对比[J]. 中国科学(D辑):地球科学,2000,30(5):533-539.

    Wang Yongjin, Wu Jiangying, Wu Jinquan, et al. Correlation between high-resolution climate records from a Nanjing stalagmite and GRIP ice core during the last glaciation[J]. Science China (Seri. D): Earth Sciences, 2000, 30(5): 533-539.
    [70] 田庆春,尹佳男,郝晓龙. 临汾盆地黄土沉积记录的MIS3气候变化[J]. 干旱区研究,2022,39(1):10-20.

    Tian Qingchun, Yin Jianan, Hao Xiaolong. MIS3 climate change assessed according to loess deposition in the Linfen Basin, China[J]. Arid Zone Research, 2022, 39(1): 10-20.
    [71] 刘卫国,夏慧敏,曹光杰. 末次盛冰期以来长江镇江段古河槽沉积特征[J]. 地球环境学报,2016,7(6):570-576.

    Liu Weiguo, Xia Huimin, Cao Guangjie. The Yangtze river's paleo-valley sedimentary characteristics in Zhenjiang reach since the last glacial maximum[J]. Journal of Earth Environment, 2016, 7(6): 570-576.
    [72] 刘兴起,沈吉,王苏民,等. 青海湖16ka以来的花粉记录及其古气候古环境演化[J]. 科学通报,2002,47(17):1351-1355.

    Liu Xingqi, Shen Ji, Wang Sumin, et al. A 16000-year pollen record of Qinghai Lake and its paleo-climate and paleoenvironment[J]. Chinese Science Bulletin, 2002, 47(17): 1351-1355.
    [73] Jouzel J, Lorius C, Petit J R, et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160, 000 years)[J]. Nature, 1987, 329(6138): 403-408.
    [74] Shackleton N J, An Z S, Dodonov A E, et al. Accumulation rate of loess in Tadjikistan and China: Relationship with global ice volume cycles[J]. Quaternary Proceeding, 1995, 4: 1-6.
    [75] 孙东怀,安芷生,吴锡浩,等. 最近150 ka黄土高原夏季风气候格局的演化[J]. 中国科学(D辑),1996,26(5):417-422.

    Sun Donghuai, An Zhisheng, Wu Xihao, et al. Evolution of the summer monsoon regime over the Loess Plateau of the last 150 ka[J]. Science in China (Series D ), 1996,26(5):417-422.
    [76] Liu T, Guo Z T, Liu J Q, et al. Variations of eastern Asian monsoon over the last 140, 000 years[J]. Bulletin de la Société Géologique de France, 1995, 166(2): 221-229.
  • [1] 陈公哲, 陈仕涛, 刘笑, 赵侃, 王真军, 张振球, 汪永进.  倒数第三次冰消期气候变化的石笋多指标分析 . 沉积学报, 2023, 41(4): 992-1001. doi: 10.14027/j.issn.1000-0550.2022.020
    [2] 赵倩, 谢远云, 郝冬梅, 迟云平, 康春国, 吴鹏, 刘硕.  松嫩平原中更新世以来气候干旱化 . 沉积学报, 2022, 40(6): 1702-1717. doi: 10.14027/j.issn.1000-0550.2021.054
    [3] 张晗, 黄伟, 蒋莹, 陈子元, 沈川洲, 董进国.  亚洲夏季风DO12气候事件的响应模式 . 沉积学报, 2022, 40(3): 765-773. doi: 10.14027/j.issn.1000-0550.2021.005
    [4] 薛红盼, 曾方明.  青海湖东岸全新世风成沉积地球化学特征及其古气候意义 . 沉积学报, 2021, 39(5): 1198-1207. doi: 10.14027/j.issn.1000-0550.2020.066
    [5] 朱海, 张玉芬, 李长安.  端元分析在长江武汉段古洪水识别中的应用 . 沉积学报, 2020, 38(2): 297-305. doi: 10.14027/j.issn.1000-0550.2019.039
    [6] 王兆夺, 黄春长, 庞奖励, 刘安娜, 周亚利, 查小春.  甘肃庄浪全新世黄土土壤物源分析及古气候恢复重建 . 沉积学报, 2020, 38(4): 781-789. doi: 10.14027/j.issn.1000-0550.2019.077
    [7] 林镇坤, 王爱军, 叶翔.  南流江河口水下三角洲表层沉积物端元分析及其沉积动力环境意义 . 沉积学报, 2019, 37(1): 124-134. doi: 10.14027/j.issn.1000-0550.2018.113
    [8] 陈杰, 杨太保, 曾彪, 何毅, 冀琴.  中国帕米尔地区黄土上部色度变化特征及古气候意义 . 沉积学报, 2018, 36(2): 333-342. doi: 10.14027/j.issn.1000-0550.2018.043
    [9] 程良清, 宋友桂, 李越, 张治平.  粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用 . 沉积学报, 2018, 36(6): 1148-1156. doi: 10.14027/j.issn.1000-0550.2018.087
    [10] 赵占仑, 温小浩, 汤连生, 李保生, 牛东风, 孟洁, 杨庆江.  化学蚀变指数指示古气候变化的适用性探讨 . 沉积学报, 2018, 36(2): 343-353. doi: 10.14027/j.issn.1000-0550.2018.026
    [11] 龙进, 贾玉连, 张智, 彭学敏, 凌超豪, 王朋岭.  末次冰期以来鄱阳湖东北缘下蜀黄土常量元素地球化学特征及其物源指示 . 沉积学报, 2015, 33(5): 932-940. doi: 10.14027/j.cnki.cjxb.2015.05.009
    [12] 末次间冰期以来沙漠边缘黄土沉积的地球化学特征初探 . 沉积学报, 2012, 30(2): 356-365.
    [13] 中亚昭苏黄土剖面粒度记录的末次冰期以来气候变化历史 . 沉积学报, 2011, 29(6): 1170-1179.
    [14] 末次间冰期东亚季风气候不稳定的神农架洞穴石笋记录 . 沉积学报, 2008, 26(1): 139-143.
    [15] 管清玉.  末次冰期东亚季风快速波动的模式与成因 . 沉积学报, 2007, 25(3): 429-436.
    [16] 徐树建, 潘保田, 李琼, 高红山, 王均平, 胡春生.  陇西盆地末次冰期黄土粒度特征及其环境意义 . 沉积学报, 2005, 23(4): 702-708.
    [17] 张美良, 林玉石, 覃嘉铭, 章程, 涂林玲, 程海.  黔南七星洞石笋古气候变化记录及末次间冰期终止点的确定 . 沉积学报, 2003, 21(3): 473-481.
    [18] 张美良, 袁道先, 林玉石, 覃嘉铭.  云南宣威4.6万年以来洞穴石笋古气候变化记录 . 沉积学报, 2002, 20(1): 124-128.
    [19] 张成君, 陈发虎, 王琪, 施祺, 孙维贞.  西北干旱区石羊河流域末次冰期晚期气候不稳定性记录 . 沉积学报, 2000, 18(4): 646-650.
    [20] 郝吉生, 葛宝勋, 谢洪波.  “灰成分端元分析法”及其在聚煤环境分析中的应用 . 沉积学报, 2000, 18(3): 460-464.
  • 加载中
图(7) / 表 (3)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  86
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-07-10
  • 录用日期:  2022-08-11
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2024-02-04

目录

    末次冰期东海嵊山岛黄土粒度端元分析及其环境意义

    doi: 10.14027/j.issn.1000-0550.2022.085
      基金项目:

      国家自然科学基金项目 41871015

      作者简介:

      赵庆,男,1982年出生,博士,工程师,地球化学与古环境,E-mail: zhaoq@admin.ecnu.edu.cn

      通讯作者: 郑祥民,男,教授,E-mail: xmzheng@re.ecnu.edu.cn
    • 中图分类号: P532

    摘要: 目的 东海岛屿晚更新世风尘黄土堆积是我国黄土在东部长三角及外延海域重要的拓展,深化这一区域风尘黄土沉积的物源特征和后期演化问题研究,对于认识晚更新世区域古环境变化尤为重要。 方法 在OSL测年和磁化率测试基础上,基于东海岛屿典型风尘黄土剖面(嵊山岛黄土)的粒度分析,开展了粒度组成的端元分析,探讨了其蕴含的古环境信息。 结果与结论 嵊山岛黄土沉积可提取出3个粒度端元(EM1~EM3),进一步分析发现EM1可能代表通过高空西风气流传输的远源黏粒组分,EM2可能代表以浮尘形式远距离悬浮搬运并随风力减弱而沉降堆积的细粉砂组分,EM3可能代表冬季风驱动下的近地表短距离搬运堆积的粗粉砂组分。粒度端元分析结果表明,高空西风输送的黏粒端元组分和远距离悬浮运移的浮尘端元组分可能是沉积剖面主要粉尘来源;综合年代学结果、百分频率磁化率和颗粒中值粒径等参数分析,认为东海嵊山岛黄土沉积过程在MIS3阶段先后经历暖湿—冷干—暖湿的旋回波动;并且,所记录的 MIS3阶段气候波动以及MIS2阶段末次冰盛期和冰消期的古环境变化同深海氧同位素和古海平面变化趋势相对应,说明东海陆架区域该时期环境演变与全球性气候波动相协同。

    English Abstract

    赵庆, 郑祥民, 周立旻, 王辉, 吕红华, 陈圆圆, 任少芳. 末次冰期东海嵊山岛黄土粒度端元分析及其环境意义[J]. 沉积学报, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085
    引用本文: 赵庆, 郑祥民, 周立旻, 王辉, 吕红华, 陈圆圆, 任少芳. 末次冰期东海嵊山岛黄土粒度端元分析及其环境意义[J]. 沉积学报, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085
    ZHAO Qing, ZHENG XiangMin, ZHOU LiMin, WANG Hui, LÜ HongHua, CHEN YuanYuan, REN ShaoFang. Grain Size End Member Characteristics and Paleoclimatic Significance of Loess Deposit in Shengshan Island during the Last Glacial Period[J]. Acta Sedimentologica Sinica, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085
    Citation: ZHAO Qing, ZHENG XiangMin, ZHOU LiMin, WANG Hui, LÜ HongHua, CHEN YuanYuan, REN ShaoFang. Grain Size End Member Characteristics and Paleoclimatic Significance of Loess Deposit in Shengshan Island during the Last Glacial Period[J]. Acta Sedimentologica Sinica, 2024, 42(2): 521-533. doi: 10.14027/j.issn.1000-0550.2022.085
      • 我国黄土沉积分布广泛,黄土沉积中蕴含着丰富的环境变化信息,记录了古气候和古环境的变迁[17]。粒度作为黄土沉积的一项基本特征,受到沉积物源、搬运动力和沉积环境等因素影响,是古环境研究的重要指标,对重塑古环境演化过程、揭示古气候变化具有重要作用[815]。通过对黄土粒度的研究,可以分析黄土沉积的搬运动力特征、传输途径和源区范围等,进而表征季风变化[1623]。黄土沉积的不同粒级对环境变化的敏感程度不同[24],因此依托粒度特征的精细解构,提取黄土沉积的敏感粒级组分开展物源追踪、古环境重建也显得更加重要。粒度端元分析技术就是其中的重要部分,粒度端元分析模型[25]可以分离不同沉积动力作用下的沉积物粒度组分,揭示沉积动力组合和物源信息,进而提取敏感粒级组分反演环境变迁,该技术已在黄土研究中取得系列成果[2631]

        末次冰期以来,长江三角洲平原以及东海海域广泛存在风尘黄土沉积,对晚更新世以来长江三角洲及东海岛屿黄土沉积的相关研究,也成为反演末次冰期以来我国东部季风区古环境变迁和古气候变化的重要内容[3235]。与西部黄土相比,东海岛屿黄土沉积的厚度较小[32],黄土沉积除接受西北内陆远源风尘物质外,来自东海陆架的近源风尘物质对岛屿黄土沉积也有一定贡献[3637]。对东海嵊山岛黄土沉积物源、沉积动力和沉积区域环境演变的研究,一直是东海岛屿黄土研究的重要内容。通过粒度端元分析方法对东海岛屿黄土沉积过程研究,有利于深入分析嵊山岛黄土沉积动力组合特征、判别物源信息变化,对末次冰期以来我国季风区东海岛屿黄土沉积区域古气候演变研究具有重要意义。本研究以位于我国季风区风尘堆积东缘的典型东海岛屿风尘黄土堆积剖面(嵊山岛黄土)为对象,聚焦剖面风尘黄土样品中的粒度特征,在端元分析方法基础上结合年代学、环境磁学等指标,探讨东海嵊山岛黄土的沉积动力特征和区域古环境演变信息。

      • 嵊山岛位于浙江沿海舟山群岛外缘区域,处于东海马鞍列岛核心位置,隶属舟山市嵊泗县(图1)。嵊山岛属浙江东部天台山脉东延伸,地势东部高西南低,岛屿面积约4.22 km2,海岸线总长度约19.26 km,地貌类型多低山丘陵。该区域位于东亚季风区的东缘,气候属北亚热带海洋季风气候,受海洋气流作用明显,夏季盛行东南风,高温多雨;冬季盛行西北风,低温干燥,年均气温15 °C~17 °C,降水量达1 072 mm,嵊山岛最高峰为陈钱山,海拔约213 m[38]。嵊山岛主要由花岗岩组成,大部分区域基岩直接出露地表,在岛屿的山坡、山谷以及低洼地带形成第四纪松散堆积物,片状黄土覆盖在基岩山坡上,并随岛屿地势起伏而变化[39]。嵊山岛黄土沉积也是开展我国东亚季风区域古环境变化研究的重要载体[32]

        图  1  采样点示意图

        Figure 1.  Location of sampling site

        所选黄土剖面位于舟山群岛东北缘嵊山岛的陈钱山东北坡位置(30.730° N,122.817° E),海拔约150 m(图2)。剖面整体呈黄棕色和黄褐色,剖面黄土颗粒较细,无明显层理,沉积剖面上未见花岗岩风化残留物。剖面上部30 cm多植物根系,顶部10 cm土质较为疏松受人为活动影响较大,整个剖面深度约280 cm,剖面底部为花岗岩基岩风化壳,可见部分花岗岩风化颗粒与黄土沉积相混合,黄土沉积剖面底部与该花岗岩风化壳呈不整合接触关系。综合该研究区域的地形地貌和黄土沉积的剖面信息,可知该研究剖面为东海嵊山岛一处典型的风尘堆积。为获取高分辨率古环境信息,同时考虑到人为活动影响,由地表以下5 cm至275 cm剖面深度以1 cm为间隔获取黄土沉积样品。

        图  2  嵊山岛黄土剖面图

        Figure 2.  Profile of loess deposit in Shengshan Island

      • 本次研究共获取样品271个。将野外采集的样品按照样品编号置于30 ℃烘箱内烘干,对经恒温烘干后的样品进行有机质和碳酸盐的去除。首先,称取0.1 g的黄土沉积样品置于烧杯中,加入5%的双氧水5 mL,并加热煮沸使其充分反应,静置冷却后再加入0.2 mol/L的盐酸并加热煮沸,充分反应冷却后,再注入适量去离子水静置24 h。静置后的样品溶液,去除去离子水并加入0.05 mol/L的六偏磷酸钠试剂后进行超声震荡,经10~15 min的充分震荡使样品分散,冷却后用于粒度的测定。样品的粒度测试在华东师范大学地理科学学院全球环境变化实验室进行,采用Mastersizer2000 激光粒度仪进行测定,测试范围在0.02~2 000 μm,测试误差小于2%。

      • 在沉积剖面10 cm、100 cm、150 cm和250 cm深度取样,在暗室红光条件下完成样品前处理,取出采集的样品,除去两端可能曝光部分,剩余样品依次使用30%双氧水和10%的盐酸去除样品中有机质和碳酸盐,经过湿筛和去除重矿物,以及氢氟酸刻蚀等步骤,获得测年所需石英颗粒。采样管两端样品用于U、Th、K以及含水量指标测定,利用单片再生剂量法(Single Aliquot Regenerative-dose,SAR)完成所提取石英等效剂量De测定[40]。样品含水量为实测含水量,样品的U、Th、K含量以中子活化法(NAA)测试,样品光释光年代测量在南京大学地理与海洋科学学院光释光测年实验室完成。

      • 将所采集样品置于35 ℃的烘箱内恒温烘干。称取7 g烘干的样品用塑料保鲜膜包起来,装入体积为10 mL的磁学专用塑料盒中,使用华东师范大学河口海岸学国家重点实验室英国制造的Bartington双频磁化率仪MS2进行磁化率的测定。分别对样品低频质量磁化率(χlf)和高频质量磁化率(χhf)进行测定,并计算百分频率磁化率(χfd%),计算公式为:χfd%=(χlfhf)/χlf×100%。

      • 将采集黄土样品置于玛瑙研磨碗中研磨后过50 μm筛。称取约5 g研磨后的过筛样品倒入直径约4 cm、厚约0.5 cm的圆形模具中央,将样品送至压样机压制。压样机加压并保持在37.5 t/M2约30 s后,自然泄压,待测样品制备完成。将制作好的样品置于X荧光光谱仪(XRF)(日本)进行测试,完成所需Rb、Sr等元素测定,测试过程中使用GSD-9标准物质进行质量控制,样品分析误差小于5%。

      • 端元分析可以把粒度数据分解为多个端元,并认为不同的端元是由不同物源在特定的动力机制和沉积环境下分选而来[25]。本研究采用Paterson端元分析软件[41],在MATLAB R2019环境下加载Analysize-Masters程序,在假定1~10个端元前提下,分别通过程序中非参数化选项和参数化选项(在参数化分析选项下选择Gen.Weibull分布函数),对嵊山岛黄土沉积剖面粒度数据进行端元分析。

      • 嵊山岛黄土沉积在剖面深度10 cm、100 cm、150 cm和250 cm处光释光年代测试结果分别为0.4±0.1 ka、35.03±3 ka、42.41±4 ka和51.67±4 ka(表1)。嵊山岛黄土沉积的采样剖面质地均一,未发现明显的地层倒置情况,结合光释光年代测定结果,嵊山岛黄土堆积于末次冰期时期。

        表 1  嵊山岛黄土剖面光释光年代测定结果

        Table 1.  OSL dating results of Shengshan Island loess profile

        剖面深度/cmU/(μg/g)Th/(μg/g)K/%实测含水量/%环境剂量率/(Gy/ka)等效剂量/Gy年龄/ka
        嵊山岛屿剖面102.8314.31.4914.453.051.2±0.30.40±0.1
        1002.9815.11.6911.863.34117±435.03±3
        1502.9414.41.568.183.23137±842.41±4
        2502.9314.31.6216.493.00152±551.67±4
      • 选取嵊山岛黄土剖面20 cm、30 cm、50 cm、100 cm、150 cm、200 cm、250 cm深度样品粒度频率分布曲线为典型代表(图3a):不同深度样品粒度频率分布曲线特征基本一致,剖面粒度频率曲线呈现显著的“三峰”分布特征;第一众数组粒径主要集中在16~36 μm,第一众数组粒径向粗粒端减少较快,向细粒端减少较缓慢,指示较弱的搬运动力条件下粗粒物质堆积较少;第一众数组在向细粒端减少过程中,在3~10 μm出现第二众数组,该众数组颗粒较细,粒度均小于20 μm,是通过风力悬浮搬运的重要组分;在0.2~2 μm出现第三众数组,成为剖面的超细粒组分,黄土高原黄土和古土壤中也普遍存在超细粒组分,该超细颗粒组分一定程度上与成壤作用有关[42]。根据粒度分析结果,嵊山岛黄土剖面黏土(小于5 μm)含量为26.45%,细粉砂含量(5~16 μm)32.25%,中粉砂含量(16~32 μm)25.24%,粗粉砂含量(32~63 μm)14.37%,砂(大于63 μm)含量均值为1.69%。根据谢帕德三角分类法在沉积物分类研究中的应用,对嵊山岛黄土沉积剖面粒度特征进行分类(图3b),嵊山岛黄土沉积粒径集中分布在粉砂和黏土质粉砂中,黄土沉积颗粒整体较细,结合黄土剖面粒度分布频率曲线,黄土沉积以粉砂级粒径为主,这也反映嵊山岛黄土属风尘堆积。

        图  3  嵊山岛黄土剖面粒度特征图

        Figure 3.  Characteristics of loess particle size in Shengshan Island loess profile

      • 基于Analysize-Masters的粒度端元分析程序,对嵊山岛黄土沉积样品粒度数据进行非参数化和参数化端元分析,并在此基础上,确定嵊山岛黄土沉积粒度端元。根据以下原则确定粒度端元[29,43],在最优端元确定过程中体现粒度数据集和端元总体相关度的线性相关系数应大于0.9,以达到最优拟合效果;体现粒度曲线与端元拟合形状误差的角度偏差值应越小越好,当角度偏差在5度以下,满足端元曲线形状拟合要求,同时体现各个端元独立性的端元相关度应尽量的小,端元相关度大说明端元之间分布重合,存在过度拟合情况,在分析中满足以上拟合原则基础上,尽量选择少的端元数量。

        通过综合比较参数化和非参数化端元分析结果,确定嵊山岛黄土剖面粒度端元。非参数化端元模型分析显示当端元数大于等于2时,角度偏差均小于5°,线性相关系数均在0.9以上,端元相关系数波动上升。根据角度偏差小于5°,线性相关系数大于0.9,端元数和端元相关系数取小原则,非参数化模型分解端元数应取2,此时线性相关系数为0.993,角度偏差为4°,端元相关度为0.499(图4a,b)。通过参数化端元模型分析,当端元数大于等于3时,角度偏差、线性相关度满足要求,端元相关度有所波动。按照端元数确定原则,在参数化分析条件下,分解端元数取3,线性相关度为0.995,角度偏差为3.1°,端元相关度为0.045(图4c,d)。此时参数化端元分解的线性相关度好于非参数化分解结果,同时角度偏差和端元相关度也均小于非参数化分析结果,故应对嵊山岛黄土剖面粒度选择参数化端元分解方法,最终确定3个端元进行深入分析。

        图  4  嵊山岛黄土剖面粒度端元分析结果与判别指标

        Figure 4.  End⁃member analysis of Shengshan Island loess profile and discrimination index

        参数化端元分解的端元粒度频率分布曲线显示(图5),EM1的众数粒径为3.88 μm,是黄土剖面细粒端元,处于黏土粒级范围;EM2的众数粒径为11.25 μm,处于细粉砂粒级范围;EM3的众数粒径为31.70 μm,属中粉砂向粗粉砂过渡范围。3个端元粒度组分特征显示(表2),EM1、EM2、EM3平均粒径分别为3.38 μm、10.44 μm和30.56 μm,和每个端元的众数粒径较为一致。3个分解端元粒度频率分布特征均为单峰分布,EM1、EM3呈正偏特征,EM2呈负偏特征。随着端元粒度组分粒径的增大,峰态呈现高和窄的特征,分选性增强,细粒端元EM1峰态相对宽平,峰值较低,分选较差,EM2、EM3峰态高窄,峰值陡峭,分选性增强。

        图  5  端元粒度频率分布曲线

        Figure 5.  Frequency distribution of end⁃member particle size

        表 2  嵊山岛黄土剖面各端元粒度特征

        Table 2.  Distribution of end⁃member particle size

        端元粒度
        平均粒径/MZ分选系数/σ偏度/SKI峰态/KG
        EM13.38 μm3.240.633.24
        EM210.44 μm2.19-0.132.77
        EM330.56 μm1.610.042.71
      • EM1众数粒径为3.88 μm,处于黏粒级范畴,沉积剖面该组分含量范围0.32%~40.63%,平均含量25.00%。黄土沉积中黏粒组分受到成壤作用影响,相关研究显示风化成壤作用产生的细粒组分粒径小于1 μm[44],EM1端元中大于1 μm组分约占87%(图6)。根据EM1与其他端元以及小于2 μm粒级含量关系(表3),EM1与EM2呈负相关,指示EM1也不是黏附于EM2搬运而来。通过对黄土高原黄土和长江中下游下蜀黄土粒度端元分解,显示均存在2~8 μm的众数粒径分布端元,并认为该端元组分可以代表高空西风气流传输的远源组分[4546]。因此,嵊山岛黄土沉积EM1端元相对于黄土高原和下蜀黄土较为相似的端元组分和众数粒径,可以代表高空西风远源输送组分;同时EM1与小于2 μm粒级含量显著正相关,考虑黄土风化成壤作用影响的粒度组分多在2 μm以下,黏粒组分反映黄土堆积时较暖湿的气候条件[47],嵊山岛黄土剖面粒度端元EM1可能代表了高空西风输送的远源组分,该组分同时也可能受湿沉降的影响。

        图  6  端元频率累积曲线

        Figure 6.  Frequency cumulative curves of different end⁃members

        表 3  端元组分、中值粒径,及小于2 μm粒级含量间相关关系

        Table 3.  Correlations between end⁃members, median grain size and <2 μm fractions

        EM1EM2EM3Md<2 μm
        EM11
        EM2-0.707**1
        EM3-0.135*-0.797**1
        Md0.020-0.352**0.476**1
        <2 μm0.460**-0.407**0.177**-0.273**1
        注:**置信度0.01水平下显著相关,*置信度0.05水平下显著相关。

        EM2众数粒径为11.25 μm,属于细粉砂粒级范畴,沉积剖面该组分含量范围31.92%~78.14%,平均含量为45.60%,占比较高。黄土沉积中平均粒径在20 μm以下的细粒组分,可以在高空气流作用下进行远距离悬浮搬运[48],也可以来自邻近粉尘源区,同时也可随浮尘作用过程以细颗粒物形式直接沉降[49]。根据EM2端元粒度频率累积曲线,该粒度端元中20 μm以下的细粒组分占比超过80%(图6),同时与EM1显著负相关,指示与剖面细粒组分传输方式的差异性,与EM3的显著负相关指示该组分同剖面中的粗粒组分传输方式也有不同,与沉积剖面中值粒径的显著负相关,也进一步揭示较强的风力作用可能对EM2端元组分沉积具有一定的阻滞作用。因此,嵊山岛黄土剖面粒度端元EM2可能代表了以浮尘形式搬运传输并随风力减弱而发生沉降的粒级组分。

        EM3众数粒径为31.70 μm,基本属于粗粉砂粒级范畴,沉积剖面该组分含量范围2.10%~42.23%,平均含量为29.39%。黄土沉积中20~70 μm颗粒组分多伴随尘暴作用,以低空短距离悬移方式传输[50],相关研究显示20~100 μm颗粒组分为近地面短距离搬运组分,黄土中21~54 μm沉积组分也与冬季风强度呈正相关关系[5152]。黄土粒度端元分解显示,37 μm颗粒组分为黄土高原冬季风搬运组分[53]。根据EM3端元粒度频率累积曲线,该粒度端元中20 μm以上的颗粒组分占比近80%(图6)。EM3端元组分颗粒较粗,从端元粒度频率分布曲线可以看出,粒度频率分布曲线峰值较高、峰区较窄,反映该端元组分搬运距离较小,距离物源较近。同时,EM3同沉积剖面中值粒径显著正相关,指示该端元组分也是冬季风变化的指示组分,推测嵊山岛黄土剖面EM3端元组分可能代表了冬季风驱动下的近地表短距离搬运沉积组分。

      • 黄土沉积过程受沉积动力和沉积环境综合影响,黄土沉积中值粒径变化与沉积速率、古气候变化等关系密切[5455],黄土粒度可以指示冬季风强度的变化[10]。频率磁化率反映沉积地层中超顺磁颗粒含量情况,进而指示沉积时古气候的温湿程度和持续时间[56]。同时,黄土沉积中元素比值可以作为古气候变化的代用指标,其中铷锶比值反映黄土沉积时段湿热条件,可以作为古季风气候要素中夏季风环流强度指标[57]。嵊山岛黄土剖面铷锶比值总体呈现随剖面深度减小,先波动降低,然后有所升高后再波动降低的变化特征。结合嵊山岛黄土沉积光释光年代测定结果,同时对比深海氧同位素记录和古海平面变迁情况[5860],认为嵊山岛黄土剖面大体堆积于末次冰期阶段。在此基础上,对嵊山岛黄土沉积粒度端元所揭示的剖面沉积过程及其古环境意义进行综合分析(图7)。

        图  7  嵊山岛黄土剖面端元组分、百分频率磁化率、中值粒径和铷锶比值特征

        Figure 7.  Characteristics of end⁃member content, frequency dependent susceptibility, median size and Rb/Sr value

        嵊山岛黄土沉积从剖面底部至75 cm深度附近,大体对应深海氧同位素MIS3阶段。该沉积时段,铷锶比值随剖面深度减小呈现波动减小后又波动上升的变化规律,剖面铷锶比(Rb/Sr)平均值为1.24,标准偏差0.06,存在高值波动区域。剖面百分频率磁化率(χfd%)平均值为11.17%,略高于剖面平均数值,标准偏差2.63。中值粒径(Md)平均值为13.91 μm,与剖面整体平均值相比变化不大,同时存在低数值波动区域,标准偏差1.59。该沉积时段,黄土沉积剖面EM1端元组分平均含量24.45%,标准偏差5.62,呈波动上升变化趋势并出现高值波动区域。EM3端元组分平均含量为29.75%,标准偏差6.07,存在明显的低数值波动区域,在一定程度上指示冬季风强度的减弱和尘暴活动的减少,EM2端元组分平均含量为45.83%,标准偏差8.72,存在高值波动区间,反映此沉积阶段冬季风活动强度的减弱,更多以浮尘形式搬运的EM2端元组分沉降堆积。黄土沉积的频率磁化率与东亚夏季风关系密切,也是古降水量的代用指标[61],铷锶比值反映风化成壤强度,记录夏季风环流强度[62]。剖面铷锶比值的高值波动,百分频率磁化率值的波动上升,以及EM3端元组分的低值波动和EM1端元组分的波动上升,一定程度上也指示了末次冰期间冰阶时期夏季风活动的增强和嵊山岛黄土沉积所经历的较暖湿的沉积环境。

        结合沉积剖面铷锶比(Rr/Sr)、百分频率磁化率(χfd%)和中值粒径(Md)变化,对嵊山岛黄土剖面分离出的3个端元组分进一步分析。第一,从剖面底部275 cm至155 cm深度附近,大体对应MIS3c阶段。此时段深海氧同位素偏轻,古海平面上升,嵊山岛黄土沉积剖面铷锶比处于高值区域波动,平均值为1.27,标准偏差0.05,随剖面深度减小呈波动下降的趋势;百分频率磁化率处于高值波动区域,平均值为10.85%,标准偏差2.36,与此同时中值粒径平均值为13.45 μm,标准偏差1.58,更多在低值区域波动,铷锶比值和百分频率磁化率共同指示嵊山岛黄土沉积在MIS3c时段较暖湿的气候特征。该沉积时段,剖面EM1端元组分上升并在相对高值区间波动,此时代表冬季风活动强度的EM3端元组分出现低值波动区域,平均值为28.01%,标准偏差6.37,指示冬季风活动的减弱,这也使得浮尘形式传输的EM2端元组分沉降通量增加,出现高值波动,剖面平均含量达48.04%,标准偏差8.86。第二,从剖面深度155~100 cm,大体可以对应MIS3b阶段。此时段深海氧同位素偏重,古海平面下降,嵊山岛黄土剖面铷锶比值波动降低至低数值区间,平均值降至1.19,标准偏差0.04;百分频率磁化率平均值为10.97%,标准偏差2.07,同样出现低值区域,后呈波动上升的趋势;中值粒径波动上升,平均值为14.75 μm,标准偏差1.51,铷锶比值和百分频率磁化率的降低,以及中值粒径的增大,均指示该沉积时段的冰阶气候特征。此时,EM1端元组分略显低值波动,但较前一阶段变化不十分明显,代表冬季风强度的EM3端元组分处于高值区域并波动上升,平均值达33.14%,标准偏差4.33,指示冬季风强度的增加。冬季风活动的增强对浮尘组分EM2的沉降起到一定阻滞作用,该阶段EM2组分平均含量41.07%,标准偏差6.04,较上一阶段有所降低。第三,从剖面深度100~75 cm,大体可以对应MIS3a阶段。此时段深海氧同位素偏轻,古海平面上升,嵊山岛黄土剖面铷锶比值波动升高,平均值为1.24,标准偏差0.04;剖面百分频率磁化率该阶段同样呈现一定的高值波动,平均值达13.16%,标准偏差3.81;中值粒径呈波动下降特征,平均值为14.18 μm,标准偏差0.90。剖面铷锶比值的升高和百分频率磁化率的高值波动,均指示该阶段较为暖湿的气候特征。此时,EM1端元组分呈现波动上升趋势,代表冬季风强度的EM3端元组分含量波动减小,平均值降至30.02%,标准偏差4.39,指示冬季风活动强度减弱,这也使得更多的EM2端元组分发生沉降,EM2端元组分平均含量达46.13%,标准偏差8.56,较前一阶段有所上升。第四,从剖面深度75~25 cm,大体可以对应MIS2阶段。末次盛冰期阶段海平面下降,陆架出露面积扩大,洞穴石笋和陆地植被记录指示季风活动减弱[6364],末次冰消期全球气温波动上升,季风活动增强,并伴随千年尺度的气候波动[6566]。该时段深海氧同位素由偏重向偏轻波动,古海平面下降至低点后又快速回升,嵊山岛黄土剖面中铷锶比值、百分频率磁化率和中值粒径波动显著。此时反映冬季风强度的EM3端元组分含量先波动增大后减小,EM2端元组分呈现先下降后波动上升的变化趋势,共同指示冬季风活动由强至弱的变化过程;EM1端元组分呈现波动上升的变化趋势,在一定程度上指示夏季风活动不断波动增强的变化情况。

        对我国不同地区MIS3阶段气候研究显示,该时段气候总体呈现间冰阶时期的暖湿特征,气候变化呈现“两峰夹一谷”的波动特点,MIS3a和MIS3c阶段气候相对暖湿或温湿,MIS3b阶段气候相对冷干[67]。通过对南京下蜀黄土研究,显示我国东部季风区在末次冰期回暖期MIS3阶段气候呈现早期暖湿至中期冷干和晚期相对暖湿的演变特征[68],南京葫芦洞石笋δ18O曲线显示MIS3时段东亚季风的波动加强[69]。甘肃会宁黄土和陕西渭南黄土等研究显示,黄土沉积均记录了MIS3时期气候所经历的温湿至冷干再至温湿的旋回波动[15,70]。MIS2阶段经历的末次盛冰期至冰消期的气候条件改变在长江古河槽沉积和高原湖泊中均有记载[7172]。结合嵊山岛黄土沉积剖面铷锶比值、百分频率磁化率和中值粒径变化特征,沉积剖面粒度端元组分也反映了末次冰期东海嵊山岛区域MIS3时段古气候早中晚三个阶段的旋回波动,同时对MIS2阶段末次冰盛期和冰消期古环境变化有一定响应,表明末次冰期东海嵊山岛古环境演变与全球气候变化关系密切。黄土、冰芯、海洋沉积均记录MIS2阶段气候变化情况,以及MIS3时段季风活动增强气候暖湿程度呈现“两峰夹一谷”的波动特征[21,60,73],在黄土高原西峰等区域,黄土记录显示MIS3阶段气候暖湿程度与深海氧同位素变化较一致,均显示MIS3c阶段相比MIS3a阶段更加暖湿的气候特征。嵊山岛位于北亚热带季风区,气候变化受东亚季风系统影响,黄土沉积剖面铷锶比值、百分频率磁化率以及粒度端元组分,均显示MIS3c阶段更加暖湿的气候特征。东亚季风系统的演化受到全球冰量和太阳辐射等自然因素的调控,太阳辐射和全球冰量影响季风强度变化,进而对黄土沉积速率等产生影响[22,74]。孙东怀等[75]对黄土高原黄土研究显示黄土磁化率与全球冰量变化关系较为密切,渭南等黄土沉积所反演的气候变化情况与深海氧同位素所反映的全球冰量变化具有一致性,同时季风气候变化的趋势幅度也受到太阳辐射变化的影响[21,76]。嵊山岛黄土沉积剖面端元组分、铷锶比值和百分频率磁化率等所指示的末次冰期气候波动与深海氧同位素总体变化较为一致,变化幅度略有差异,在一定程度上指示了地处东亚季风区的嵊山岛末次冰期气候变化可能是对全球冰量变化的响应,说明末次冰期东海嵊山岛古环境演变在体现区域性特征基础上,与全球气候变化密切相关。

      • (1) 嵊山岛黄土沉积主要由粉砂和黏土质粉砂构成,黄土沉积颗粒整体较细。EM1端元可能代表高空西风远距离搬运的黏粒组分;EM2端元可能代表以浮尘形式搬运传输并随风力减弱而发生沉降的细粉砂组分;EM3端元可能代表冬季风驱动下近地表短距离搬运沉积的粗粉砂组分。通过高空西风远距离传输的EM1端元组分,受到湿沉降的影响;以浮尘形式搬运沉降的EM2端元可以间接指示区域冬季风强度变化;EM3端元可以作为冬季风强度变化的敏感指标。结合各端元组分在沉积剖面中的含量变化,推测高空西风输送的黏粒端元组分和远距离悬浮运移的浮尘端元组分可能是嵊山岛黄土沉积剖面主要粉尘来源。

        (2) 嵊山岛黄土沉积剖面铷锶比值、百分频率磁化率和中值粒径变化及剖面粒度端元组分进一步揭示了末次冰期MIS3阶段东海嵊山岛黄土沉积过程大体经历暖湿至冷干再至暖湿的旋回波动,以及对MIS2阶段末次冰盛期和冰消期古环境变化的响应;并且,同深海氧同位素和古海平面变化趋势形成对应,指示末次冰期嵊山岛区域气候变化也与全球气候变化密切相关。初步表明参数化粒度端元分析方法在开展东海嵊山岛黄土沉积动力和沉积环境等研究中具有一定的可行性。

    参考文献 (76)

    目录

      /

      返回文章
      返回