高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

九江加积型红土网纹形态特征及其环境意义

汪玲玲 李凤全 吴开钦 王天阳 叶玮 朱丽东 蒋旭霞

汪玲玲, 李凤全, 吴开钦, 王天阳, 叶玮, 朱丽东, 蒋旭霞. 九江加积型红土网纹形态特征及其环境意义[J]. 沉积学报, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
引用本文: 汪玲玲, 李凤全, 吴开钦, 王天阳, 叶玮, 朱丽东, 蒋旭霞. 九江加积型红土网纹形态特征及其环境意义[J]. 沉积学报, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
WANG LingLing, LI FengQuan, WU KaiQin, WANG TianYang, YE Wei, ZHU LiDong, JIANG XuXia. Reticulate Morphologies and Environmental Significance of Red Earth Aggradation in Jiujiang[J]. Acta Sedimentologica Sinica, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
Citation: WANG LingLing, LI FengQuan, WU KaiQin, WANG TianYang, YE Wei, ZHU LiDong, JIANG XuXia. Reticulate Morphologies and Environmental Significance of Red Earth Aggradation in Jiujiang[J]. Acta Sedimentologica Sinica, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097

九江加积型红土网纹形态特征及其环境意义

doi: 10.14027/j.issn.1000-0550.2022.097
基金项目: 

国家自然科学基金项目 41971111

详细信息
    作者简介:

    汪玲玲,女,1997年出生,硕士研究生,自然地理学,E-mail: wllzjnu@qq.com

    通讯作者:

    李凤全,男,教授,E-mail: lygl45@zjnu.cn

  • 中图分类号: P534.63

Reticulate Morphologies and Environmental Significance of Red Earth Aggradation in Jiujiang

Funds: 

National Natural Science Foundation of China 41971111

  • 摘要: 目的 第四纪加积型网纹红土发育具有独特的网纹结构,在长江中下游地区分布较为广泛,是对第四纪环境变化的记录和响应。以往对网纹理化性质关注较多,但对网纹形态特征研究较少,结合理化性质去全面分析网纹特征有利于更为深刻地认识其环境意义。 方法 根据对江西九江网纹红土剖面的网纹形态和理化性质的分析,在理解理化性质可能对形态的影响和网纹化机制的基础上着重讨论了网纹形态特征的环境意义。 结果与结论 (1)该剖面的网纹形态具有较为系统的变化特征,剖面上部的网纹相对较细小,而下部的网纹则相对较粗大;(2)从风化指标ba等和网纹形态指标的对应程度来看,总体上网纹形态与气候由暖湿到冷干的变化趋势具有一定对应性,但网纹形态对气候指示意义具有一定的局限性。
  • 图  1  九江网纹红土剖面位置及剖面图

    Figure  1.  Location and section of reticulate red earth in Jiujiang

    图  2  九江网纹红土频率粒度曲线

    Figure  2.  Frequency curves of reticulate red earth in Jiujiang

    图  3  九江剖面白网纹形态指标及其风化指标随深度变化

    Figure  3.  Vertical variations of morphological index and weathering index of white veins in the Jiujiang section

    图  4  九江剖面红基质的磁学参数

    Figure  4.  Magnetic parameters of red matrix in Jiujiang section

    图  5  九江剖面白网纹磁学参数剖面变化

    Figure  5.  Variation of magnetic parameters of white veins in Jiujiang section

    图  6  九江剖面红基质、白网纹等温剩磁曲线图

    Figure  6.  IRMs of red matrix and white veins in Jiujiang section

    图  7  九江剖面红基质、白网纹色度变化图

    Figure  7.  Variation of chroma of red matrix and white veins in Jiujiang section

    图  8  白网纹风化指标与其形态指标关系的散点图

    Figure  8.  Scatter⁃plots of weathering index vs. morphological index of white veins

    图  9  网纹红土中常见的氧化还原特征及植物根系

    Figure  9.  Common redox characteristics and plant roots in reticulated red earth

    表  1  九江网纹红土粒度组成(%)

    Table  1.   Granularity composition of reticulate red earth in Jiujiang (%)

    沉积物<5 μm5~50 μm10~50 μm>50 μm
    九江红基质24.5369.0150.806.46
    九江白网纹22.3569.9751.637.68
    午城黄土[29]37.7056.3044.105.80
    午城古土壤[29]42.9054.6042.002.50
    下载: 导出CSV

    表  2  九江剖面网纹红土层主量元素组成(%)

    Table  2.   Composition of major elements of reticulate red earth in Jiujiang section (%)

    样品(数量)SiO2Fe2O3Al2O3K2ONa2OCaOMgOTiO2
    红基质(305~455 cm,n=15)
    平均值57.2613.0812.871.080.880.200.581.03
    最小值49.3910.1611.780.990.750.170.480.89
    最大值64.1818.4514.211.170.980.220.651.11
    红基质(455~615 cm,n=17)
    平均值59.0110.8612.961.170.90.210.291.02
    最小值54.898.1111.801.060.830.190.240.98
    最大值62.6213.8414.381.430.970.220.331.08
    白网纹(305~455 cm,n=15)
    平均值70.622.9914.881.341.150.290.881.16
    最小值60.312.4012.251.060.910.240.650.92
    最大值75.154.0317.681.611.260.331.061.28
    白网纹(455~615 cm,n=17)
    平均值71.672.4518.941.621.260.291.061.21
    最小值66.671.8916.081.401.230.240.951.15
    最大值76.643.0221.421.861.280.331.161.26
    UCC[35]71.672.4518.941.621.260.291.061.21
    下载: 导出CSV

    表  3  白网纹风化指标与其形态指标相关性分析

    Table  3.   Correlation between weathering index and morphological index of white veins

    网纹密度数量宽度
    CIAPearson's r-0.670-0.7120.657
    Sig.(2-tailed)0.000 0270.000 0050.000 044
    R20.4490.5060.432
    baPearson's r0.6150.661-0.624
    Sig.(2-tailed)0.000 1790.000 0380.000 135
    R20.3790.4370.389
    下载: 导出CSV
  • [1] 黄镇国,张伟强. 中国红土期气候期构造期的耦合[J]. 地理学报,2000,55(2):200-208.

    Huang Zhenguo, Zhang Weiqiang. Coupling relationship between the red earth evolution, climate change and tectonic movement in China[J]. Acta Geographica Sinica, 2000, 55(2): 200-208.
    [2] 邓黄月,郑祥民,杨立辉,等. 长江中下游地区第四纪红土磁学特征及其环境意义[J]. 沉积学报,2015,33(2):285-298.

    Deng Huangyue, Zheng Xiangmin, Yang Lihui, et al. Magnetic properties of Quaternary red earth profile in Yangtze River valley and its paleo-environmental implications[J]. Acta Sedimentologica Sinica, 2015, 33(2): 285-298.
    [3] 吴开钦,李凤全,王天阳,等. 浙江金华红土网纹成因的磁学证据[J]. 沉积学报,2023,41(3):706-719.

    Wu Kaiqin, Li Fengquan, Wang Tianyang, et al. Magnetic characteristics evident in the formation of the reticulate structure of red paleosol in Jinhua, Zhejiang[J]. Acta Sedimentologica Sinica,2023,41(3):706-719.
    [4] 杨浩,赵其国,李小平,等. 安徽宣城风成沉积—红土系列剖面ESR年代学研究[J]. 土壤学报,1996,33(3):293-300.

    Yang Hao, Zhao Qiguo, Li Xiaoping, et al. ESR dating of eolian sediment and red earth series from Xuancheng profile in Anhui province[J]. Acta Pedologica Sinica, 1996, 33(3): 293-300.
    [5] 邓黄月,高悦,郑祥民,等. 我国南方红土岩石磁学特征及其磁化率增强机制[J]. 海洋地质与第四纪地质,2015,35(4):163-175.

    Deng Huangyue, Gao Yue, Zheng Xiangmin, et al. Rock-magnetic characteristics of the red soils in southern China and the magnetism for enhancing magnetic susceptibility[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 163-175.
    [6] 刘彩彩,邓成龙. 南方红土的磁性矿物组成及其区域性差异[J]. 第四纪研究,2012,32(4):626-634.

    Liu Caicai, Deng Chenglong. Magnetic mineralogy of the red soil sequences in southern China and its variety[J]. Quaternary Sciences, 2012, 32(4): 626-634.
    [7] Hu X F, Wei J, Xu L F, et al. Magnetic susceptibility of the Quaternary red clay in subtropical China and its paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279(3/4): 216-232.
    [8] Liu C C, Deng C L, Liu Q S. Mineral magnetic studies of the vermiculated red soils in southeast China and their paleoclimatic significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330: 173-183.
    [9] 朱丽东,周尚哲,李凤全,等. 庐山JL红土剖面的色度气候意义[J]. 热带地理,2007,27(3):193-197,202.

    Zhu Lidong, Zhou Shangzhe, Li Fengquan, et al. Climatic implication of the chroma of JL red earth section in the Lushan Mountain[J]. Tropical Geography, 2007, 27(3): 193-197, 202.
    [10] 朱丽东,刘名瑜,谷喜吉,等. 金衢盆地网纹红土色度及其环境意义[J]. 海洋地质与第四纪地质,2014,34(3):133-141.

    Zhu Lidong, Liu Mingyu, Gu Xiji, et al. Envionmental implication of the color index of the plinthitic red earth in Jinhua-Quzhou Basin[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 133-141.
    [11] 张智,凌超豪,贾玉连,等. 多重理化指标揭示的中国南方更新世网纹红土网纹化机制[J]. 地层学杂志,2020,44(1):95-103.

    Zhang Zhi, Ling Chaohao, Jia Yulian, et al. Multi-physico chemical evidences for formation of Pleistocene reticulated soil and its environmental implication in South China[J]. Journal of Stratigraphy, 2020, 44(1): 95-103.
    [12] Hu X F, Du Y, Guan C L, et al. Color variations of the Quaternary red clay in southern China and its paleoclimatic implications[J]. Sedimentary Geology, 2014, 303: 15-25.
    [13] 朱丽东,周尚哲,李凤全,等. 南方更新世红土氧化物地球化学特征[J]. 地球化学,2007,36(3):295-302.

    Zhu Lidong, Zhou Shangzhe, Li Fengquan, et al. Geochemical behavior of major elements of Pleistocene red earth in South China[J]. Geochimica, 2007, 36(3): 295-302.
    [14] 许良峰,魏骥,姜伟. 皖南网纹红土的剖面风化特征及其古气候意义[J]. 土壤通报,2010,41(1):7-12.

    Xu Liangfeng, Wei Ji, Jiang Wei. The weathering characteristics of the reticulate red clay in southern Anhui province and its paleo-environmental significance[J]. Chinese Journal of Soil Science, 2010, 41(1): 7-12.
    [15] Hong H L, Gu Y S, Yin K, et al. Red soils with white net-like veins and their climate significance in South China[J]. Geoderma, 2010, 160(2): 197-207.
    [16] Hong H L, Gu Y S, Li R B, et al. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China[J]. Journal of Quaternary Science, 2010, 25(5): 662-674.
    [17] Hong H L, Li Z H, Yang M Z, et al. Kaolin in the net-like horizon of laterite in Hubei, South China[J]. Clay Minerals, 2009, 44(1): 51-66.
    [18] 徐传奇,廖富强,贾玉连,等. 中国南方网纹红土元素地球化学特征及其对网纹化过程的指示意义[J]. 古地理学报,2016,18(5):865-878.

    Xu Chuanqi, Liao Fuqiang, Jia Yulian, et al. Element geochemical characteristics of the reticulate red clay in southern China and its significance for the formation proccess of reticulated mottles[J]. Journal of Palaeogeography, 2016, 18(5): 865-878.
    [19] 朱景郊. 网纹红土的成因及其研究意义[J]. 地理研究,1988,7(4):12-20.

    Zhu Jingjiao. Genesis and research significance of the plinthitic horizon[J]. Geographical Research, 1988, 7(4): 12-20.
    [20] 熊尚发,丁仲礼,刘东生. 南方红土网纹:古森林植物根系的土壤学证据[J]. 科学通报,2000,45(12):1317-1321.

    Xiong Shangfa, Ding Zhongli, Liu Tungsheng. The worm-shaped veins in the red earth of South China: Pedological evidence for root traces of past forest[J]. Chinese Science Bulletin, 2000, 45(12): 1317-1321.
    [21] 王春林. 湖南第四系蠕虫状网纹红土的成因及其对新构造运动研究的意义[J]. 湖南师范大学(自然科学学报),1986,9(1):100-106.

    Wang Chunlin. On the origin of Quaternary worm-likenet-veined red (laterite) soil in Hunan province and its significantin neotectonic studies[J]. Journal of Natural Science of Hunan Normal University, 1986, 9(1): 100-106.
    [22] 朱丽东. 中亚热带加积型红土及其所记录的第四纪环境变化探讨[D]. 兰州:兰州大学,2007.

    Zhu Lidong. Aggradation red earth sediments in mid-subtropics of China and their recorded environmental changes during Quaternary[D]. Lanzhou: Lanzhou University, 2007.
    [23] 张硕. 宣城向阳剖面网纹红土微区地球化学特征及网纹成因研究[D]. 芜湖:安徽师范大学,2020.

    Zhang Shuo. The study of micro-area geochemical characteristics and genesis of reticulated red clay in Xiangyang Xuancheng profile[D]. Wuhu: Anhui Normal University, 2020.
    [24] 刘海丽. 宣城官塘村红土剖面的网纹成因浅析[D]. 南京:南京大学,2012.

    Liu Haili. Formation of vermiculated mottles in the laterite at Guantangcun of Xuancheng[D]. Najing: Najing University, 2012.
    [25] 张姗姗. 基于监督分类的中国南方网纹红土色彩与形态研究[D]. 金华:浙江师范大学,2015.

    Zhang Shanshan. Researches on plinthitic red earth colors and forms of southern China based on supervised classification[D]. Jinhua: Zhejiang Normal University, 2015.
    [26] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
    [27] 胡雪峰,朱煜,沈铭能. 南方网纹红土多元成因的粒度证据[J]. 科学通报,2005,50(9):918-925.

    Hu Xuefeng, Zhu Yu, Sheng Mingneng. Grain-size evidence for multiple origins of the reticulate red clay in southern China[J]. Chinese Science Bulletin, 2005, 50(9): 918-925.
    [28] 朱丽东,叶玮,周尚哲,等. 中亚热带第四纪红粘土的粒度特征[J]. 地理科学,2006,26(5):586-591.

    Zhu Lidong, Ye Wei, Zhou Shangzhe, et al. Grain-size features of red earth in mid-subtropics[J]. Scientia Geographica Sinica, 2006, 26(5): 586-591.
    [29] 叶玮,朱丽东,李凤全,等. 中国中亚热带网纹红土的地球化学特征与沉积环境[J]. 土壤学报,2008,45(3):385-391.

    Ye Wei, Zhu Lidong, Li Fengquan, et al. Sedimentary environment of vermicular red earth in mid-subtropical China[J]. Acta Pedologica Sinica, 2008, 45(3): 385-391.
    [30] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985.

    Liu Tungsheng. Loess and environment[M]. Beijing: Science Press, 1985.
    [31] 张晓,朱丽东,李凤全,等. 0.44Ma以来南方风尘加积型红土物源分析:重矿物和碎屑锆石年代学证据[J]. 沉积学报,2022,40(2):494-507.

    Zhang Xiao, Zhu Lidong, Li Fengquan, et al. Provenance analysis of eolian red earth aggradation in southern China since 0.44 Ma: Heavy minerals and detrital zircon geochronology[J]. Acta Sedimentologica Sinica, 2022, 40(2): 494-507.
    [32] 黄颖,朱丽东,张晓,等. 庐山北麓JL红土剖面粉砂粒级元素地球化学特征及其物源意义[J]. 第四纪研究,2019,39(5):1092-1102.

    Huang Ying, Zhu Lidong, Zhang Xiao, et al. Geochemical characteristics and their provenance implications of the silt fraction from JL red erath section in Lushan region, Jiujiang, South China[J]. Quaternary Sciences, 2019, 39(5): 1092-1102.
    [33] 凌超豪,张智,贾玉连,等. 元素地球化学揭示的长江中游鄱阳湖地区中更新世以来粉尘堆积的物源特征及其环境意义[J]. 第四纪研究,2019,39(5):1103-1115.

    Ling Chaohao, Zhang Zhi, Jia Yulian, et al. Geochemical evidence for provenance of aeolian depostion from poyang lake region in the middle reaches of Yangtze River since the Middle Pleistocene and its environmental significance[J]. Quaternary Sciences, 2019, 39(5): 1103-1115.
    [34] 黄翡,熊尚发. 江西九江第四纪红土中的植物硅酸体及孢粉[J]. 微体古生物学报,2001,18(2):203-210.

    Huang Fei, Xiong Shangfa. Phytolith and pollen records of Quaternary red earth in Jiujiang city, Jiangxi province[J]. Acta Micropalaeontologica Sinica, 2001, 18(2): 203-210.
    [35] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford : Blackwell, 1985.
    [36] Nesbitt H W Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [37] Pendleton R L, Jenny H. Factors of soil formation: A system of quantitative pedology[J]. Geographical Review, 1945, 35(2): 336.
    [38] 袁国栋,龚子同. 第四纪红土的土壤发生及其古地理意义[J]. 土壤学报,1990,27(1):54-62.

    Yuan Guodong, Gong Zitong. Soil genesis of Quaternary red earth and its paleogeographic implication[J]. Acta Pedologica Sinica, 1990, 27(1): 54-62.
    [39] 熊尚发,刘东生,丁仲礼. 南方红土的剖面风化特征[J]. 山地学报,2000,18(1):7-12.

    Xiong Shangfa, Liu Tungsheng, Ding Zhongli. The weathering sequence of the red earth over southern China[J]. Journal of Mountain Science, 2000, 18(1): 7-12.
    [40] 凌超豪,龙进,贾玉连,等. 赣北鄱阳湖地区土塘剖面第四纪红土地球化学特征及古气候意义[J]. 古地理学报,2015,17(5):699-708.

    Ling Chaohao, Long Jin, Jia Yulian, et al. Geochemical characteristics and palaeoclimate significance of the Quaternary laterite of Tutan section in Poyang Lake region, northern Jiangxi province[J]. Journal of Palaeogeography, 2015, 17(5): 699-708.
    [41] 李荣彪. 长江中下游网纹红土中氧化铁矿物相及其气候环境意义:以安徽宣城红土剖面为例[D]. 武汉:中国地质大学, 2014.

    Li Rongbiao. Iron oxide minerals and their palaeoclimatic significance in laterite profile in the middle to lower reaches of the Yangtze River: A case study in Xuancheng laterite profile[D]. Wuhan: China University of Geosciences, 2014.
    [42] 刘彩彩. 南方红土岩石磁学和古地磁学研究[D]. 北京:中国科学院地质与地球物理研究所,2010.

    Liu Caicai. Rock magnetism and paleomagnetism of the red soil sequences in southern China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2010.
    [43] 卢升高. 亚热带富铁土的磁学性质及其磁性矿物学[J]. 地球物理学报,2000,43(4):498-504.

    Lu Shenggao. Magnetic properties of subtropical ferrisols and its magnetic mineralogical study[J]. Chinese Journal of Geophysics, 2000, 43(4): 498-504.
    [44] Deng C L, Shaw J, Liu Q S, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 248-259.
    [45] Liu C C, Deng C L, Liu Q S, et al. Mineral magnetism to probe into the nature of palaeomagnetic signals of subtropical red soil sequences in southern China[J]. Geophysical Journal International, 2010, 181(3): 1395-1410.
    [46] 刘秀铭,夏敦胜,刘东生,等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J]. 第四纪研究,2007,27(2):210-220.

    Liu Xiuming, Xia Tungsheng, Liu Tungsheng, et al. Discussion on two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese loess[J]. Quaternary Sciences, 2007, 27(2): 210-220.
    [47] 陈梓炫,吕镔,郑兴芬,等. 基于漫反射光谱和色度的土壤中赤铁矿和针铁矿半定量探讨[J]. 土壤,2020,52(5):1083-1091.

    Chen Zixuan, Bin Lü, Zheng Xingfen, et al. Semi-quantitative study on hematite and goethite in soils based on diffuse reflectance spectrum and chroma[J]. Soils, 2020, 52(5): 1083-1091.
    [48] 李徐生,杨达源,鹿化煜. 皖南风尘堆积序列氧化物地球化学特征与古气候记录[J]. 海洋地质与第四纪地质,1999,19(4):75-82.

    Li Xusheng, Yang Dayuan, Lu Huayu. Oxide-geochemistry features and paleoclimatic record of the aeolian-dust depositional sequence in southern Anhui[J]. Marine Geology & Quaternary Geology, 1999, 19(4): 75-82.
    [49] 龙进. 庐山WJ剖面第四纪网纹红土特征及其古气候意义初探[D]. 南昌:江西师范大学,2015.

    Long Jin. A preliminary study on characteristics of the Quaternary vermicular red clay and its paleoclimate significance from WJ section in Lushan area[D]. Nanchang: Jiangxi Normal University, 2015.
    [50] Hu X F, Wei J, Yan D, et al. Regional distribution of the Quaternary red clay with aeolian dust characteristics in subtropical China and its paleoclimatic implications[J]. Geoderma, 2010, 159(3/4): 317-334.
    [51] 尹秋珍,郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期[J]. 科学通报,2006,51(2):186-193.

    Yin Qiuzhen, Guo Zhengtang. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 2006, 51(2): 186-193.
    [52] 谢树成,易轶,刘育燕,等. 中国南方更新世网纹红土对全球气候变化的响应:分子化石记录[J]. 中国科学(D辑):地球科学,2003,33(5):411-417.

    Xie Shucheng, Yi Yi, Liu Yuyan, et al. The Pleistocene vermicular red earth in South China signaling the global climatic change: The molecular fossil record[J]. Science China (Seri. D): Earth Sciences, 2003, 33(5): 411-417.
    [53] 来红州,莫多闻,李新坡. 洞庭盆地红土地层中网纹的成因探讨[J]. 北京大学学报(自然科学版),2005,41(2):240-248.

    Lai Hongzhou, Mo Duowen, Li Xinpo. Genesis of reticulate clay in the laterite of the Dongting Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(2): 240-248.
    [54] 王琳怡,朱丽东,于红梅,等. 加积型红土剖面成壤特征及网纹化成因的土壤微形态证据[J]. 土壤学报,2022,59(5):1306-1320.

    Wang Linyi, Zhu Lidong, Yu Hongmei, et al. Micromorphological evidence on the pedogenic characteristics and reticulated mechanism of aggradation red earth[J]. Acta Pedologica Sinica, 2022,59(5):1306-1320.
    [55] Vepraskas M J. Redoximorphic features for identifying aquic conditions[J]. North Carolina Agricultural Research Service. Technical Bulletin, 1994, 64:301.
    [56] 郭海珊. 红色风化壳形成过程中铁的地球化学行为研究:以粤北地区为例[D]. 广州:华南师范大学,2014.

    Guo Haishan. The geochemistry behavior of iron in the formation of red weathering crust: Take northern Guangdong as an example[D]. Guangzhou: South China Normal University, 2014.
    [57] Chen C M, Barcellos D, Richter D D, et al. Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity[J]. Journal of Soils and Sediments, 2019, 19(2): 785-797.
    [58] 洪祎君. 中国南方网纹红土的形成机制及网纹成熟度研究[D]. 南昌:江西师范大学,2015.

    Hong Yijun. Research on the formation mechanism of reticulated red clay and growth of reticulated mottles[D]. Nanchang: Jiangxi Normal University, 2015.
    [59] Peterschmitt E, Fritsch E, Rajot J L, et al. Yellowing, bleaching and ferritisation processes in soil mantle of the western Ghaˆts, South India[J]. Geoderma, 1996, 74(3/4): 235-253.
    [60] 张中彬,彭新华. 土壤裂隙及其优先流研究进展[J]. 土壤学报,2015,52(3):477-488.

    Zhang Zhongbin, Peng Xinhua. A review of researches on soil cracks and their impacts on preferential flow[J]. Acta Pedologica Sinica, 2015, 52(3): 477-488.
    [61] 杨立辉,叶玮,朱丽东,等. 第四纪加积型红土与黄土的风成相似性探讨[J]. 干旱区地理,2008,31(3):341-347.

    Yang Lihui, Ye Wei, Zhu Lidong, et al. Aeolian-genesis comparability of aggraded red earth in South China with loess in North China[J]. Arid Land Geography, 2008, 31(3): 341-347.
  • [1] 王吉, 朱丽东, 禹蕊斐, 杜广琴.  南方加积型红土化学风化的非纬向地带性特征及其成因分析 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.097
    [2] 时志强, 彭深远, 王美玲, 乔丹.  假泥裂:上扬子地区下三叠统飞仙关组灰岩薄层中的网纹沉积构造 . 沉积学报, 2024, 42(4): 1200-1211. doi: 10.14027/j.issn.1000-0550.2023.032
    [3] 郭忠雪, 王天阳, 李凤全, 蒋旭霞, 朱丽东, 叶玮.  砂岩网纹化元素地球化学微区分析及指示意义 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.008
    [4] 侯心茹, 谢远云, 康春国, 迟云平, 吴鹏, 孙磊, 孙杨, 孙建华.  大兴安岭东麓白土山组地层的沉积学特征 . 沉积学报, 2023, 41(3): 720-734. doi: 10.14027/j.issn.1000-0550.2022.011
    [5] 吴开钦, 李凤全, 王天阳, 叶玮, 贾佳, 朱丽东, 汪玲玲.  浙江金华红土网纹成因的磁学证据 . 沉积学报, 2023, 41(3): 706-719. doi: 10.14027/j.issn.1000-0550.2021.120
    [6] 刘文锋, 张小栓, 刘瑾铭, 艾力曼·道尔吉null, 杨远峰.  玛湖凹陷西斜坡区三叠系白碱滩组沉积特征 . 沉积学报, 2022, 40(1): 192-202. doi: 10.14027/j.issn.1000-0550.2020.074
    [7] 廖纪佳, 马思豪, 廖明光, 肖雪薇, 林丹, 贺文亮, 廖继昊.  奥陶系宝塔灰岩网纹构造成因研究进展及新发现 . 沉积学报, 2017, 35(2): 241-252. doi: 10.14027/j.cnki.cjxb.2017.02.004
    [8] 邓黄月, 郑祥民, 杨立辉, 任少芳, 刘飞.  长江中下游地区第四纪红土磁学特征及其环境意义 . 沉积学报, 2015, 33(2): 285-298. doi: 10.14027/j.cnki.cjxb.2015.02.008
    [9] 郭强, 李子颖, 秦明宽, 钟大康, 张放东, 贾翠, 邬军.  内蒙古二连盆地白音查干凹陷热水沉积序列探讨 . 沉积学报, 2014, 32(5): 809-815.
    [10] 白音查干凹陷桑合地区腾格尔组储层特征及主控因素分析 . 沉积学报, 2013, 31(2): 350-357.
    [11] 东濮凹陷白庙地区深层天然气成藏期次研究 . 沉积学报, 2012, 30(4): 779-786.
    [12] 李凤全.  第四纪网纹红土的类型与网纹化作用 . 沉积学报, 2010, 28(2): 346-355.
    [13] 岳信东.  二连盆地白音查干凹陷下白垩统腾格尔组沉积相 . 沉积学报, 2008, 26(4): 593-601.
    [14] 来红州, 莫多闻, 李新坡.  洞庭盆地第四纪红土地层及古气候研究 . 沉积学报, 2005, 23(1): 130-137.
    [15] 罗小平, 沈忠民, 彭渤莹, 王又杰, 林壬子.  东濮凹陷白庙地区天然气及凝析油地球化学特征及成因 . 沉积学报, 2004, 22(S1): 50-55.
    [16] 许书堂, 马维民, 王德仁, 靳广兴, 李继东, 杨玉娥.  二连盆地白音查干凹陷下白垩统层序地层研究 . 沉积学报, 2004, 22(4): 644-650.
    [17] 薛祥煦, 鹿化煜, 周杰.  陕西旬邑新近系红土剖面粒度组成的古气候意义 . 沉积学报, 2002, 20(1): 118-123.
    [18] 黄杏珍, 何明喜, 李振西, 邵宏舜, 妥进才, 罔田博有, 坂井卓, 千千和一丰.  中国河南省白湾盆地的白垩系特征 . 沉积学报, 1996, 14(S1): 38-48.
    [19] 廖士范, 梁同荣, 张月恒.  论我国铝土矿床类型及其红土化风化壳形成机制问题 . 沉积学报, 1989, 7(1): 1-10.
    [20] 赵景波.  西安、山西保德第三纪晚期红土的研究 . 沉积学报, 1989, 7(3): 113-120.
  • 加载中
图(9) / 表 (3)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  191
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 修回日期:  2022-07-30
  • 录用日期:  2022-08-25
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2024-02-04

目录

    九江加积型红土网纹形态特征及其环境意义

    doi: 10.14027/j.issn.1000-0550.2022.097
      基金项目:

      国家自然科学基金项目 41971111

      作者简介:

      汪玲玲,女,1997年出生,硕士研究生,自然地理学,E-mail: wllzjnu@qq.com

      通讯作者: 李凤全,男,教授,E-mail: lygl45@zjnu.cn
    • 中图分类号: P534.63

    摘要: 目的 第四纪加积型网纹红土发育具有独特的网纹结构,在长江中下游地区分布较为广泛,是对第四纪环境变化的记录和响应。以往对网纹理化性质关注较多,但对网纹形态特征研究较少,结合理化性质去全面分析网纹特征有利于更为深刻地认识其环境意义。 方法 根据对江西九江网纹红土剖面的网纹形态和理化性质的分析,在理解理化性质可能对形态的影响和网纹化机制的基础上着重讨论了网纹形态特征的环境意义。 结果与结论 (1)该剖面的网纹形态具有较为系统的变化特征,剖面上部的网纹相对较细小,而下部的网纹则相对较粗大;(2)从风化指标ba等和网纹形态指标的对应程度来看,总体上网纹形态与气候由暖湿到冷干的变化趋势具有一定对应性,但网纹形态对气候指示意义具有一定的局限性。

    English Abstract

    汪玲玲, 李凤全, 吴开钦, 王天阳, 叶玮, 朱丽东, 蒋旭霞. 九江加积型红土网纹形态特征及其环境意义[J]. 沉积学报, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
    引用本文: 汪玲玲, 李凤全, 吴开钦, 王天阳, 叶玮, 朱丽东, 蒋旭霞. 九江加积型红土网纹形态特征及其环境意义[J]. 沉积学报, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
    WANG LingLing, LI FengQuan, WU KaiQin, WANG TianYang, YE Wei, ZHU LiDong, JIANG XuXia. Reticulate Morphologies and Environmental Significance of Red Earth Aggradation in Jiujiang[J]. Acta Sedimentologica Sinica, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
    Citation: WANG LingLing, LI FengQuan, WU KaiQin, WANG TianYang, YE Wei, ZHU LiDong, JIANG XuXia. Reticulate Morphologies and Environmental Significance of Red Earth Aggradation in Jiujiang[J]. Acta Sedimentologica Sinica, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
      • 加积型网纹红土在长江中下游地区分布较为广泛,其形成、发育和分布与季风的建立、发展等有关,是我国南方环境对全球性重大地质—环境变化的响应[1],蕴含了较为丰富的第四纪气候与环境变化的信息[25]。网纹红土剖面的顶部为棕黄色土层,上部为均质红土层,中—下部为网纹层,底部为砂砾石层,部分剖面缺失棕黄色土层或均质红土层。网纹层中的网纹犹如一枚硬币,其一方面表现为理化性质,另一方面表现为几何形态,两者从不同角度反映了网纹特征。以往研究多关注网纹红土的理化性质,如利用磁学方法揭示地层中磁性矿物的类型、磁学特征及气候意义[28];色度指标的变化特征及环境意义[912];采用地球化学手段阐明红基质和白网纹的元素分异特征,以及网纹红土的风化特征[1318]等。近年来,作为网纹红土醒目标志的网纹形态引起了较多关注[1924]。有研究发现网纹发育的强弱与气候变化可能存在对应关系,与世界其他地区相比我国的网纹可能指示了极其温暖潮湿的成土期[15]。然而,也有研究认为网纹可能与浅层地下水位变动有关[25],而非指示古气候的变化[12]。总而言之,目前对网纹形态的定量化分析较为少见,且其环境意义还有待验证和进一步探讨。为此,本文以九江加积型网纹红土的网纹作为研究对象,在对网纹形态进行定量表征与分析的基础上,将形态特征与磁学分析、地球化学及色度等指标相结合,进一步验证和探析网纹形态的环境意义。

      • 研究剖面(29°42′12″ N,116°01′57″ E)位于江西省九江市濂溪区五里街道,地处九江东部地区。采样剖面是庐山余脉的低矮丘陵,因乡间公路开挖露出,海拔50 m,剖面厚约6.2 m(图1)。其中,0~50 cm为现代土壤层,质地松软,植物根系发育,颜色偏暗棕色;50~150 cm为黄棕色土层,可见植物根系;150 cm开始出现铁锰胶膜,其下网纹多密集细小,形态多呈蠕虫状、点状,420~600 cm为棕红色网纹红土层,夹杂圆点状网纹,600 cm以下为暗红色网纹红土层,网纹较稀疏,呈条带状,有植物根系和地下水渗出。

        图  1  九江网纹红土剖面位置及剖面图

        Figure 1.  Location and section of reticulate red earth in Jiujiang

      • 根据研究目的和网纹分布特点,在该剖面选择纵深3~6.2 m、横长50 cm处布置采样区,纵向上再以50 cm为间隔拉红绳,共得7个样方,在清理每个样方表面的残留土渣后,利用数码相机按样方进行拍照,所得数码照片用来对白网纹进行数字化提取。此后,自下而上以10 cm为间隔进行采样,共采集32个样品。将样品置于40 ℃恒温烘箱内烘干后,按红基质和白网纹对其进行分离,共获取红基质、白网纹样品各32个。然后,将红白分离后的样品研磨均匀,分别称取5 g,进行磁学参数测量;并将上述各样品研磨压片,用PHLIPS公司生产的PW2 440型X射线荧光光谱仪测量主量元素,分析误差小于2%,常用风化指标CIA和ba均按分子比计算,CIA=Al2O3/(Al2O3+CaO+Na2O+K2O)×100,其中CaO指硅酸盐矿物中的摩尔含量,本文采用Mclennan的方法[26]矫正其含量;ba=(K2O+CaO+Na2O+MgO)/Al2O3;色度测试仪器为柯尼卡美能达CR-400色彩色差仪,选用 CIELAB 表色系统,测量指标为a*(红度)、b*(黄度),在测试前先将样品用研磨钵研磨,并过200目筛,处理后样品作为测试样;粒度测试仪器为英国Malvern仪器有限公司生产的Mastersizer2000型激光粒度粒形仪,测量量程为0.02~2 000 μm,重复测量误差小于2%。整个前处理和磁学、地球化学、色度及粒度实验均在浙江师范大学地理过程实验室完成。

        将所拍摄7个样方的数码照片分别等分为5份,切割形成10 cm×50 cm大小,自上而下共得32张图像。利用ENVI 5.3监督分类功能对所获得的数码图像进行红基质与白网纹的分类(分类可行性分析均大于1.999),分别提取了32张白色网纹图像。在此基础上,利用Arcgis 10.2及Photoshop 2019分别计算了白网纹数量、白网纹大小(网纹面积密度及平均宽度)等有关的形态指标。其中,白网纹的数量表示样方内白色网纹的总个数;网纹面积密度为单位样方内白网纹面积占总面积比;网纹宽度则表示为白色网纹发育宽度的平均值。

      • 典型加积型红土具有边沉积边风化的特点,是反演南方地区第四纪环境演变的良好载体,其广泛分布于长江以南28°~31° N区域[27-29]

        沉积物粒度特征可以反映物质在沉积过程中搬运动力的大小和特点,可用于判别沉积环境[28]。如表1的粒度测试结果所示,红基质和白网纹黏粒(<5 μm)及粉砂(5~50 μm)为优势粒级;砂(>50 μm)含量占比最小。其中10~50 μm粒级组分常被认为是“风尘基本粒组”[30],为占比最大的粒级,与北方午城黄土、古土壤具有很好的可比性。此外,红基质和白网纹的粒度频率曲线(图2)表现为双峰,第一众数粒级在粉砂,第二众数粒级分布在黏粒中,与前人研究结果相一致[28],也反映网纹红土粒度组成具有风成特性。其他学者通过多种手段(粒度、地球化学、植物硅酸体、重矿物及锆石等)在九江地区多个剖面测试结果均表明,该区域网纹红土为典型的加积型红土,主要为风尘沉积,物质来源具有多重性,远源组分可能来自北方黄土,近源则由长江、赣江、鄱阳湖区裸露的河湖沉积物提供[28,3134]

        表 1  九江网纹红土粒度组成(%)

        Table 1.  Granularity composition of reticulate red earth in Jiujiang (%)

        沉积物<5 μm5~50 μm10~50 μm>50 μm
        九江红基质24.5369.0150.806.46
        九江白网纹22.3569.9751.637.68
        午城黄土[29]37.7056.3044.105.80
        午城古土壤[29]42.9054.6042.002.50

        图  2  九江网纹红土频率粒度曲线

        Figure 2.  Frequency curves of reticulate red earth in Jiujiang

      • 网纹数量主要是指网纹红土样方内白网纹的总数目,本次研究剖面网纹数量的计算结果如图3所示。可以看出,白网纹的数量总体上介于15~33,剖面上部(450 cm以上)的白网纹数量相对较多,而剖面下部(450 cm以下)的白网纹数量则相对较少,即自上而下大致呈现出由相对密集到较为稀疏的变化趋势。白网纹宽度是对网纹发育大小的一个表征,其数值主要介于1.15~2.08 cm。如图3所示,由剖面上部至下部,白网纹的宽度大体上呈波动增大的趋势,即本研究剖面上部(450 cm以上)的白色网纹相对细小,而剖面下部(450 cm以下)的白网纹相对宽大。本剖面白网纹的面积密度大体呈上大下小的波动变化特征。根据上述网纹形态在该研究剖面上的分布特征,可将其分为上下两段,其中上段网纹个数相对较多,但发育宽度较小;下段则与之不同,网纹数量相对较少,但发育宽度一般较大。

        图  3  九江剖面白网纹形态指标及其风化指标随深度变化

        Figure 3.  Vertical variations of morphological index and weathering index of white veins in the Jiujiang section

      • 红基质和白网纹的元素地球化学分析结果如表2所示。根据网纹形态的分布情况,以450 cm为界将剖面分为上、下两层,红基质上、下层难溶组分(SiO2、Al2O3、Fe2O3)质量分数之和的平均值分别为82.83%、83.2%;易淋溶组分(K2O、CaO、Na2O、MgO)质量分数之和的平均值分别为2.74%、2.56%。白网纹上下层的难溶组分质量分数之和均值分别为88.49%、93.06%;易淋溶组分质量分数之和均值分别为3.65%、4.22%。二者的易溶组分元素相对于UCC值均属于流失型,极低的含量表明网纹红土成土期的气候较为湿热。TiO2相对富集,红基质与白网纹相差不大。

        表 2  九江剖面网纹红土层主量元素组成(%)

        Table 2.  Composition of major elements of reticulate red earth in Jiujiang section (%)

        样品(数量)SiO2Fe2O3Al2O3K2ONa2OCaOMgOTiO2
        红基质(305~455 cm,n=15)
        平均值57.2613.0812.871.080.880.200.581.03
        最小值49.3910.1611.780.990.750.170.480.89
        最大值64.1818.4514.211.170.980.220.651.11
        红基质(455~615 cm,n=17)
        平均值59.0110.8612.961.170.90.210.291.02
        最小值54.898.1111.801.060.830.190.240.98
        最大值62.6213.8414.381.430.970.220.331.08
        白网纹(305~455 cm,n=15)
        平均值70.622.9914.881.341.150.290.881.16
        最小值60.312.4012.251.060.910.240.650.92
        最大值75.154.0317.681.611.260.331.061.28
        白网纹(455~615 cm,n=17)
        平均值71.672.4518.941.621.260.291.061.21
        最小值66.671.8916.081.401.230.240.951.15
        最大值76.643.0221.421.861.280.331.161.26
        UCC[35]71.672.4518.941.621.260.291.061.21

        不论上、下层,红基质Fe2O3的平均含量均显著高于白网纹,二者存在显著差异,进一步证实白网纹的形成与铁元素的迁移、重分布具有直接关系。此外,白网纹下层Fe2O3含量低于上层,与白网纹的上、下层不同的形态大小也具有一定的对应性。化学蚀变指数CIA可用于计算陆壳各类物质的风化程度,值越大指示风化越强[35-36]。风化淋溶指数ba反映沉积物中盐基离子的淋失程度,值越小代表风化越强[37]。白网纹CIA和ba均介于78~83和0.3~0.45,属于中度化学风化,且自剖面下部到上部有所减弱(图3),说明该剖面经历了由暖湿逐渐向冷干的转变,这与前人研究成果[34,3841]较为一致。

      • 由剖面的上部至下部,红基质的χ主要表现为逐渐降低的趋势,SIRM则总体上呈现出波动增加的趋势;而白网纹的χ和SIRM均低于红基质,两者自剖面上部向下总体上均表现出逐渐降低的趋势;红基质HIRM的变化趋势和SIRM的特征基本相似,而白网纹的HIRM则自上而下逐渐降低。上述结果表明,红基质中的反铁磁性矿物整体上随着深度增加而增大,而白网纹的反铁磁性矿物含量呈逐渐降低态势。已有较多成果发现网纹红土中反铁磁性矿物主要为赤铁矿和针铁矿[6,4243],结合上述研究可能说明本剖面白网纹赤铁矿或针铁矿的含量存在剖面上的分布差异。此外,剖面中红基质和白网纹的S-ratio(S-300 mT)皆表现出与HIRM值相反的趋势(图4,5)。有学者指出,S-ratio值中间阶段的波动性可能是气候冷暖旋回的结果,而自下而上整体呈现增加的趋势则可能指示了区域早更新世晚期以来古气候波动性逐渐减弱,气候趋于稳定[42]

        图  4  九江剖面红基质的磁学参数

        Figure 4.  Magnetic parameters of red matrix in Jiujiang section

        图  5  九江剖面白网纹磁学参数剖面变化

        Figure 5.  Variation of magnetic parameters of white veins in Jiujiang section

        等温剩磁(IRM)和反方向磁场退磁在常温下可以用于区分样品中“软”、“硬”磁组分[4445]。选取深度为315 cm和565 cm的红基质和白网纹,测得最大强度为1 T的连续可变强磁场下4个样品的等温剩磁获得曲线。如图6所示,红基质、白网纹SIRM获得曲线在外场为0.3 T时均未达到90%以上饱和,说明赤铁矿、针铁矿等高矫顽力磁性矿物为网纹红土的主要磁性矿物。该结论也得到了剩磁矫顽力数据的支持。

        图  6  九江剖面红基质、白网纹等温剩磁曲线图

        Figure 6.  IRMs of red matrix and white veins in Jiujiang section

        剩磁矫顽力(Bcr)是使获得SIRM的样品剩磁降低到0所需的反向磁场,可用于了解样品“软”、“硬”剩磁组分含量信息[5]。如图6所示,白网纹的剩磁矫顽力相对较低(100~200 mT),红基质的剩磁矫顽力大于白网纹,超过300 mT。但二者矫顽力还是明显高于典型低矫顽力黄土样品[46],说明网纹红土含有赤铁矿、针铁矿等高矫顽力的硬磁性矿物。综上,网纹层的红基质、白网纹以反铁磁性矿物为主,前者含量随着深度下降而增加,后者随深度下降而减少。

      • 颜色是土壤重要的且容易量测的指标,可用来反映矿物组成情况。红度(a*)值介于-60(绿)至+60(红),1.7%的赤铁矿即可使土壤呈红色,故常被用作赤铁矿含量的粗略代用指标;黄度(b*)值介于-60(蓝)至+60(黄),棕黄色针铁矿含量对黄度值具有较大影响,b*随前者含量的增多而增大[47]。红基质和白网纹的红度(a*)具有较大的差异,红基质的a*介于23.56~26.73,平均值为25.13,而白网纹的a*介于3.81~10.8,平均值为7.28(图7)。由此可见前者的红度明显高于后者的红度,这与二者醒目的颜色差异较为吻合。网纹红土的红度与赤铁矿含量具有较好的线性相关关系[12],结合本剖面白网纹的a*、HIRM、SIRM等的变化趋势,可能进一步说明白网纹中赤铁矿含量由上到下呈明显减少的趋势,而红基质中的赤铁矿含量则略有增加。红基质b*介于29.52~36.82,平均值为34.46,白网纹介于21.3~31.72,平均值为26.5。白网纹b*与Fe2O3也存在较强的相关性(R2=0.743),可能说明白网纹中铁经水解作用发生沉淀而转变为针铁矿等晶态铁氧化物[41]。白网纹黄度自下而上呈递增趋势反映了区域气候可能逐渐趋于冷干,而其中的波动则可能是沉积完成后经成土作用的结果[12]

        图  7  九江剖面红基质、白网纹色度变化图

        Figure 7.  Variation of chroma of red matrix and white veins in Jiujiang section

      • 网纹的几何形态和理化性质都是风化成土作用结果的表征。根据图3不难发现,本剖面白网纹的CIA、ba等风化指标均反映了成土区气候逐渐由暖湿向冷干转变的趋势。本剖面的网纹面积密度、网纹数量和网纹宽度等形态指标与CIA、ba等的变化曲线在趋势上具有较好的对应性。为进一步验证上述关系,对该剖面的网纹形态指标(如面积密度、数量、宽度)与CIA、ba等气候代用指标进行了相关性分析。在相关性分析中(表3),皮尔逊相关系数绝对值为0.5~0.7,且P值均小于0.05,均通过假设检验,这说明风化指标和网纹形态之间存在显著的相关关系。

        表 3  白网纹风化指标与其形态指标相关性分析

        Table 3.  Correlation between weathering index and morphological index of white veins

        网纹密度数量宽度
        CIAPearson's r-0.670-0.7120.657
        Sig.(2-tailed)0.000 0270.000 0050.000 044
        R20.4490.5060.432
        baPearson's r0.6150.661-0.624
        Sig.(2-tailed)0.000 1790.000 0380.000 135
        R20.3790.4370.389

        从南方网纹红土的剖面地层序列来看,网纹层上部往往堆积均质红土层或棕黄色土层,而从网纹层向上至均质红土层和棕黄色土层记录了气候由暖湿逐渐向冷干演变的过程[9,41,4850],其中网纹层则指示了中更新世气候的整体湿热期[5152],甚至被认为是夏季风异常强盛期的产物[51]。从网纹层内部来看,野外考察发现网纹层上部的网纹发育程度一般较下部弱,网纹发育由强到弱对应着气候由暖湿到冷干的转变过程[15]。网纹的发育受气候的干湿、冷暖控制,湿热促进网纹发育,反之则不利于网纹发育[53]。遗憾的是,上述观点多未将量化的网纹形态信息与理化性质结合进行实证检验,带有一定的推测性质。本研究中网纹形态与气候代用指标的相关性则进一步证实了上述观点,这至少表明网纹是一定气候条件下的产物。

        那么网纹形态特征能否作为测量上较为方便的气候代用指标呢?结合图3图8可以看出,网纹形态的波动特征与气候代用指标的波动特征并非一致,且相关系数的R2均介于0.33~0.50,说明气候因素的解释程度并不强,还存在其他影响网纹发育的因素,这与网纹化现象是一定气候背景下物理过程、化学过程等综合作用的产物[54]的结论较为一致。研究认为网纹红土的红度波动是地下水作用的结果而非指示古气候的变化[12],网纹形态的波动也很难指示气候波动。

        图  8  白网纹风化指标与其形态指标关系的散点图

        Figure 8.  Scatter⁃plots of weathering index vs. morphological index of white veins

        网纹层中的红基质颜色一般偏红,另外在白网纹中也常见颜色有别于周围浅色的,犹如“血管”的红色管道,这些特征一般被看作是典型的氧化还原过程所导致的铁聚集特征[55]。而作为网纹红土中最醒目的白色斑块或条纹(图9a),其红度较低(a*均值7.28),明显区别于红基质的红度(a*均值25.13),且其Fe2O3(2.7%)和MnO(0.02%)含量远低于红基质Fe2O3(11.9%)、MnO(0.04%)含量,通常认为这是铁锰氧化物迁出所致,呈现出较为明显的铁锰氧化物经还原后淋失特征[13,5659]。白网纹的a*和Fe2O3具有较好的正相关性,R2=0.698,进一步证实铁迁移对白网纹的影响较为显著。南方网纹红土中发育的裂隙或孔隙为元素和水分等的运移提供了通道[60],其因雨期滞水而形成的局部还原环境则导致了铁还原并随水流失[15,19,21,54],致使土体颜色较浅并形成了白网纹。该机制在一定程度上可以较为合理地解释加积型红土网纹发育的原因,然而网纹形态指标计算的结果表明网纹形态在剖面上具一定的系统特征,仅用铁氧化还原机制似乎难以对此进行较好的说明,还需要对该机制进行进一步补充。

        图  9  网纹红土中常见的氧化还原特征及植物根系

        Figure 9.  Common redox characteristics and plant roots in reticulated red earth

        首先,网纹层上部、下部的铁还原持续时间存在差异。在网纹红土层下部的白色网纹发育区,其风化成土期降水较多[61],孔隙的饱水时间因而可能相对较长,导致铁还原作用的持续时间也会相对较久;而越接近剖面的上部的白色网纹发育区,随着气候的演化趋势逐渐由暖湿转向冷干[15],降水的相对减少导致网纹层上部的饱水时间相对缩短,从而可能造成铁还原持续的时间也相对减少。而且相较于网纹层的下部,网纹层的上部相对靠近于地表,氧气消耗后更易较快得到补给,也会导致网纹层上部的铁还原持续时间可能相对缩短。与此类似的是,网纹层的上部因接近于地表造成土壤水分蒸发速度相对高于网纹层的下部,导致网纹层上部的水滞留时间相对减短,而下部则与之相反。综上可以推测网纹红土剖面的下部较上部更易在局部形成持续时间相对较长的还原环境,而剖面上部的氧化还原环境交替相对频繁。其次,风化成土后物质的氧化还原难易程度的影响。有研究指出铁还原速率与铁氧化物的结晶度有关,结晶度越低的氧化物越有利于还原[57],赤铁矿、针铁矿等矿物在一定程度上会降低铁的还原速率。较低的有机质利于铁矿物形成高结晶的赤铁矿或针铁矿[57],相较红基质,白网纹中常发现植物根系(图9b),可能也会有助于白网纹铁进一步还原流失而使形态不断发育。此外,本文白网纹的磁学、红度等实验结果表明,随深度下降结晶度较高的反铁磁性矿物含量呈降低趋势(图5,7),因此这也相对利于剖面下部的白色网纹进一步发育。最后,网纹红土的裂隙或孔隙为网纹发育提供了物理基础[15,19,21,54,60],孔隙及其发育程度与网纹化有较好的对应关系,网纹层下部易形成“通道型”铁质淋溶—淀积模式,而剖面上部相对易形成铁扩散—团聚模式[54]

      • 自下而上,加积型网纹红土剖面白网纹的形态特征存在一定的差异,总体上与气候由暖湿到冷干的变化趋势具有一定的对应性。网纹在网纹红土剖面呈现的上下部网纹形态特征的差异,可能反映了在一定气候条件下,铁氧化还原持续的时间、风化成土产物的氧化还原相对难易程度,以及铁迁移模式的差异等复杂的成土因素影响。虽然网纹形态对气候指示可能具有一定的局限性,但可作为在理化性质的基础上,丰富我们对网纹化机制、红土形成环境认识的一个形态学指标。

    参考文献 (61)

    目录

      /

      返回文章
      返回