高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩碳酸盐矿物SEM⁃CL和EPMA矿物学表征及其成岩意义

余瑜 林良彪 李真 孟万斌 童馗 梁庆韶

余瑜, 林良彪, 李真, 孟万斌, 童馗, 梁庆韶. 致密砂岩碳酸盐矿物SEM⁃CL和EPMA矿物学表征及其成岩意义———以川西坳陷须家河组为例[J]. 沉积学报, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112
引用本文: 余瑜, 林良彪, 李真, 孟万斌, 童馗, 梁庆韶. 致密砂岩碳酸盐矿物SEM⁃CL和EPMA矿物学表征及其成岩意义———以川西坳陷须家河组为例[J]. 沉积学报, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112
YU Yu, LIN LiangBiao, LI Zhen, MENG WanBin, TONG Kui, LIANG QingShao. SEM-CL and EMPA Mineralogical Characterization of Authigenic Calcite Cement in Tight Gas Sandstone and Implications for Diagenesis: Case study of Xujiahe Formation in western Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112
Citation: YU Yu, LIN LiangBiao, LI Zhen, MENG WanBin, TONG Kui, LIANG QingShao. SEM-CL and EMPA Mineralogical Characterization of Authigenic Calcite Cement in Tight Gas Sandstone and Implications for Diagenesis: Case study of Xujiahe Formation in western Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112

致密砂岩碳酸盐矿物SEM⁃CL和EPMA矿物学表征及其成岩意义———以川西坳陷须家河组为例

doi: 10.14027/j.issn.1000-0550.2022.112
基金项目: 

国家自然科学基金项目 42202128

油气藏地质及开发工程国家重点实验室(成都理工大学)开放基金项目 PLC20210110

详细信息
    作者简介:

    余瑜,男,1991年出生,博士,副研究员,储层沉积学,E-mail: yuyucdut@163.com

    通讯作者:

    林良彪,男,博士,教授,沉积岩石学,E-mail: linliangbiao08@cdut.cn

  • 中图分类号: P618.13

SEM-CL and EMPA Mineralogical Characterization of Authigenic Calcite Cement in Tight Gas Sandstone and Implications for Diagenesis: Case study of Xujiahe Formation in western Sichuan Basin, China

Funds: 

National Natural Science Foundation of China 42202128

Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering (Chengdu University of Technology) PLC20210110

  • 摘要: 扫描电镜—阴极发光(SEM-CL)可通过同时分析矿物的微观结构和阴极发光特性来反映成岩机制及流体来源,但碳酸盐矿物在SEM-CL下的发光特性及其影响因素尚不明确。应用光学显微镜阴极发光(OM-CL)、电子探针(EPMA)和SEM-CL等技术手段,以川西坳陷须家河组致密砂岩中碳酸盐矿物为研究对象,分析碳酸盐矿物在OM-CL和SEM-CL下发光特性的差异,评估影响碳酸盐矿物SEM-CL发光特性的因素,探讨砂岩中方解石胶结物的成岩意义。结果表明,相比OM-CL,SEM-CL在区分碳酸盐岩屑和碳酸盐胶结物方面具有更高的灵敏度。当Mn/Fe值低于0.1或Mn/Fe值介于0.1~0.5且Fe含量低于0.1%时,碳酸盐矿物具有中低强度的SEM-CL发光强度;当Mn/Fe值高于0.5且Fe含量高于0.1%时,碳酸盐矿物在SEM-CL照射下几乎不发光。Mn/Fe值和Fe含量是影响SEM-CL照射下碳酸盐矿物发光强度的主要因素。阴极发光分析和EPMA元素组成面扫描分析表明,方解石胶结物的元素分布是均质的,形成于同一成岩世代,晚于长石等矿物的溶解。岩屑砂岩和岩屑石英砂岩的方解石胶结物具有相同的来源,表现为高Mn/Fe特征;钙屑砂岩的方解石胶结物具低Mn高Fe特征,成分组成与白云石岩屑相似,推测流体可能受到白云石岩屑溶解的影响。
  • 图  1  四川盆地地层出露情况、研究区地理位置图及须家河组地层柱状图(据文献[31]修改)

    Figure  1.  Study area in the Sichuan Basin: (a) geographic location; (b) simplified geological map; (c) generalized stratigraphic column of the Xujiahe Formation, western Sichuan Basin (modified from reference [31])

    Fig.1

    图  2  CG561样品的BSE(a)、OM⁃CL(b)和SEM⁃CL(c,d)图像特征,深度4 009.01 m

    (a)石英颗粒(Q)、方解石胶结物(CC)和石英、方解石及奥长石(Ogc)的能谱图,方解石胶结物充填了粒间孔和长石粒内溶孔,在被溶解的长石颗粒边缘可见少量残余长石和自生石英,BSE图像;(b)图a相同视域,钾长石发强烈蓝光,自生石英不发光,方解石胶结物具橙色发光特征,OM⁃CL图像;(c)钾长石(Kfs)和残余奥长石(Ogc)具强烈发光特征,方解石胶结物(CC)无发光,SEM⁃CL图像;(d)石英颗粒(Q)及方解石胶结物(CC)发光特征对比,箭头处是未完全充填的粒间孔,SEM⁃CL图像

    Figure  2.  BSE, OM⁃CL and SEM⁃CL images of sample CG561, depth 4 009.01 m

    (a) quartz grains (Q), calcite cements (CC) and EDS spectrum of quartz, calcite and oligoclase (Ogc), calcite cement fills dissolved pores within the feldspar grain, and quartz cement and a few residual feldspar minerals formed by feldspar dissolution occur at the edge of the grain, BSE; (b) in same area as (a), K⁃feldspar (Kfs) shows strong blue luminescence and non⁃luminescent quartz cement, OM⁃CL; (c) residual feldspar (Kfs, Ogc) with strong luminescence and non⁃luminescent calcite cement (CC), SEM⁃CL; (d) quartz grains (Q) and calcite cements (CC), SEM⁃CL

    图  3  GH2样品的反射光(a)、OM⁃CL(b)、BSE(c)和SEM⁃CL(d)图像,深度3 921.65 m

    (a)方解石胶结物(CC)充填粒间孔和长石粒内溶孔,反射光;(b)方解石胶结物发橙色光,被方解石充填的长石残晶(DF)仍具较强的蓝色发光,OM⁃CL图像;(c)方解石胶结物充填长石粒内溶孔,可见残余长石和粒内溶孔,BSE图像;(d)方解石胶结物不发光,残余长石和溶孔具较强发光,SEM⁃CL图像

    Figure  3.  Optical microscope, OM⁃CL, BSE and SEM⁃CL images of sample GH2, depth 3 921.65 m

    (a) calcite cements (CC) filled primary pore and feldspar intragranular dissolved pore, reflect light; (b) calcite cement shows orange luminescence; Kfs shows blue luminescence, OM⁃CL; (c) feldspar intragranular dissolved pore partially filled with calcite cements, BSE; (d) strong luminescence under SEM⁃CL in unfilled feldspar intragranular dissolved pore; calcite cement is non⁃luminescent

    图  4  CH139样品的BSE、OM⁃CL和SEM⁃CL图像,深度3 781.79 m

    (a)方解石岩屑(C)与方解石胶结物(CC)难以区分,下方为能谱图像,BSE;(b)方解石岩屑与胶结物均具橙色阴极发光,OM-CL图像;(c)方解石岩屑(C)和白云石岩屑(D)具相同的发光特征,而方解石胶结物(CC)不发光,SEM⁃CL

    Figure  4.  BSE, OM⁃CL and SEM⁃CL images of sample CH139, depth 3 781.79 m

    (a) calcite detrital grains indistinguishable from calcite cements (EDS spectrum of calcite and dolomite), BSE; (b) calcite detrital grains and cements show orange luminescence and are difficult to distinguish apart, OM⁃CL; (c) calcite and dolomite detrital grains are luminescent; calcite cements are non⁃luminescent, SEM⁃CL

    图  5  碳酸盐矿物的元素含量分布

    Figure  5.  Elemental compositions of carbonate minerals in Xu4 sandstones

    Fig.5

    图  6  CG561样品BSE图像和元素面扫描图像

    (a)BSE图像;(b)Na;(c)Mg;(d)Al;(e)K;(f)Ca;(g)Mn;(h)Fe;QC.自生石英胶结物

    Figure  6.  Sample CG561 for BSE image and Element occurrence in calcite cements

    (a) BSE map; (b) Na; (c) Mg; (d) Al; (e) K; (f) Ca; (g) Mn; (h) Fe; QC.quartz cement

    图  7  CH139样品的BSE图像,SEM⁃CL和元素面扫描图像

    (d~h)Ca,Mg,Mn,Fe和Fe、Mn元素叠加分布图;黄色箭头所指为白云石岩屑局部溶解;CC.方解石胶结物;C.方解石岩屑;D.白云石岩屑

    Figure  7.  Calcite cements in sample CH139 for BSE images, SEM⁃CL image and element mapping

    (d) Ca; (e) Mg; (f) Mn; (g) Fe; (h) superposition of Mn and Fe in partly dissolved dolomite fragments filled with calcite cements (yellow arrows in (a)); CC.calcite cement; C.calcite rock fragment; D.dolomite rock fragment

    图  8  碳酸盐矿物的Mn(%)和Fe(%)投点图

    Figure  8.  Mn (%) vs. Fe (%) in carbonate minerals

    Fig.8

    图  9  两类方解石胶结物形成模式

    Figure  9.  Formation models of two kinds of calcite cements

    Fig.9

    表  1  不同类型碳酸盐矿物的Fe和Mn含量及OM⁃CL、SEM⁃CL发光强度

    样品碳酸盐矿物类型Fe/%Mn/%Mn/FeOM-CL发光强度SEM-CL 发光强度
    CH139方解石岩屑0.0650.0080.109III
    白云石岩屑1.5040.0980.066IIII
    方解石胶结物0.8120.1390.169III
    GH2方解石胶结物0.5721.4032.420VI
    GM3方解石胶结物0.4000.3750.953IIII
    CG561方解石胶结物0.4700.5531.190IIII
    DY1方解石胶结物0.5190.8251.594IVI
    注:阴极发光强度从I到V增强。
    下载: 导出CSV
  • [1] Morad S, Al-Aasm I S, Sirat M, et al. Vein calcite in Cretaceous carbonate reservoirs of Abu Dhabi: Record of origin of fluids and diagenetic conditions[J]. Journal of Geochemical Exploration, 2010, 106(1/2/3): 156-170.
    [2] Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2193-2214.
    [3] 刘四兵,黄思静,沈忠民,等. 砂岩中碳酸盐胶结物成岩流体演化和水岩作用模式:以川西孝泉—丰谷地区上三叠统须四段致密砂岩为例[J]. 中国科学(D辑):地球科学,2014,44(7):1403-1417.

    Liu Sibing, Huang Sijing, Shen Zhongmin,et al. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan province, China[J]. Science China (Seri. D): Earth Sciences, 2014, 44(7): 1403-1417.
    [4] 付锁堂,王震亮,张永庶,等. 柴北缘西段鄂博梁构造带储层碳酸盐胶结物成因及其油气地质意义:来自碳、氧同位素的约束[J]. 沉积学报,2015,33(5):991-999.

    Fu Suotang, Wang Zhenliang, Zhang Yongshu, et al. Origin of carbonate cements in reservoir rocks and its petroleum geologic significance: Eboliang structure belt, northern margin of Qaidam Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 991-999.
    [5] Yang T, Cao Y C, Friis H, et al. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the Third member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, eastern China[J]. Marine and Petroleum Geology, 2018, 92: 547-564.
    [6] Ma B B, Cao Y C, Eriksson K A, et al. Carbonate cementation patterns, potential mass transfer, and implications for reservoir heterogeneity in Eocene tight-oil sandstones, Dongying Depression, Bohai Bay Basin, China: Evidence from petrology, geochemistry, and numerical modeling[J]. AAPG Bulletin, 2019, 103(12): 3035-3067.
    [7] 尤丽,范彩伟,吴仕玖,等. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系[J]. 地质学报,2021,95(2):578-587.

    You Li, Fan Caiwei, Wu Shijiu, et al. Genesis of carbonate cement and its relationship with fluid activity in the Ledong area, Yinggehai Basin[J]. Acta Geologica Sinica, 2021, 95(2): 578-587.
    [8] 孙致学,孙治雷,鲁洪江,等. 砂岩储集层中碳酸盐胶结物特征:以鄂尔多斯盆地中南部延长组为例[J]. 石油勘探与开发,2010,37(5):543-551.

    Sun Zhixue, Sun Zhilei, Lu Hongjiang, et al. Characteristics of carbonate cements in sandstone reservoirs: A case from Yanchang Formation, middle and southern Ordos Basin, China[J]. Petroleum Exploration and Development, 2010, 37(5): 543-551.
    [9] Lai J, Wang G W, Wang S, et al. Review of diagenetic facies in tight sandstones: Diagenesis, diagenetic minerals, and prediction via well logs[J]. Earth-Science Reviews, 2018, 185: 234-258.
    [10] 张青青,刘可禹,刘太勋,等. 碎屑岩储层碳酸盐胶结物成因研究进展[J]. 海相油气地质,2021,26(3):231-244.

    Zhang Qingqing, Liu Keyu, Liu Taixun, et al. Research status of the genesis of carbonate cementation in clastic reservoirs[J]. Marine Origin Petroleum Geology, 2021, 26(3): 231-244.
    [11] 宫雪,胡新友,李文厚,等. 成岩作用对储层致密化的影响差异及定量表述:以苏里格气田苏77区块致密砂岩为例[J]. 沉积学报,2020,38(6):1338-1348.

    Gong Xue, Hu Xinyou, Li Wenhou, et al. Different influences and quantitative description of effect of diagenesis on reservoir densification: Case study of tight sandstone in Su77 block, Sulige gas field[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1338-1348.
    [12] 黄思静. 碳酸盐矿物的阴极发光性与其Fe,Mn含量的关系[J]. 矿物岩石,1992,12(4):74-79.

    Huang Sijing. Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals[J]. Mineralogy and Petrology, 1992, 12(4): 74-79.
    [13] 黄思静,卿海若,胡作维,等. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用[J]. 地球科学:中国地质大学学报,2008,33(1):26-34.

    Huang Sijing, Hairuo Qing, Hu Zuowei, et al. Cathodoluminescence and diagenesis of the carbonate rocks in Feixianguan Formation of Triassic, eastern Sichuan Basin of China[J]. Earth science-Journal of China University of Geosciences, 2008, 33(1): 26-34.
    [14] Lehmann K, Berger A, Götte T, et al. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging[J]. Mineralogical Magazine, 2009, 73(4): 633-643.
    [15] 刘丽红,黄思静,王春连,等. 碳酸盐岩中方解石胶结物的阴极发光环带与微量元素构成的关系:以塔河油田奥陶系碳酸盐岩为例[J]. 海相油气地质,2010,15(1):55-60.

    Liu Lihong, Huang Sijing, Wang Chunlian, et al. Cathodoluminescence zonal texture of calcite cement in carbonate rock and its relationship with trace element composition: A case of Ordovician carbonate rock of Tahe oilfield, Tarim Basin[J]. Marine Origin Petroleum Geology, 2010, 15(1): 55-60.
    [16] Hamers M F, Drury M R. Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz[J]. Meteoritics & Planetary Science, 2011, 46(12): 1814-1831.
    [17] Götze J, Schertl H P, Neuser R D, et al. Optical microscope-cathodoluminescence (OM⁃CL) imaging as a powerful tool to reveal internal textures of minerals[J]. Mineralogy and Petrology, 2013, 107(3): 373-392.
    [18] 兰叶芳,黄思静,黄可可,等. 珠江口盆地珠江组碳酸盐岩阴极发光特征及成岩阶段划分[J]. 油气地质与采收率,2017,24(1):34-42.

    Lan Yefang, Huang Sijing, Huang Keke, et al. Cathodoluminescence features and diagenetic stage division of carbonates in the Zhujiang Formation, Pearl River Mouth Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 34-42.
    [19] Lee M R, Martin R W, Trager-Cowan C, et al. Imaging of cathodoluminescence zoning in calcite by scanning electron microscopy and hyperspectral mapping[J]. Journal of Sedimentary Research, 2005, 75(2): 313-322.
    [20] Götte T, Ramseyer K, Pettke T, et al. Implications of trace element composition of syntaxial quartz cements for the geochemical conditions during quartz precipitation in sandstones[J]. Sedimentology, 2013, 60(5): 1111-1127.
    [21] Ukar E, Laubach S E. Syn- and postkinematic cement textures in fractured carbonate rocks: Insights from advanced cathodoluminescence imaging[J]. Tectonophysics, 2016, 690: 190-205.
    [22] Yu Y, Lin L B, Li Z, et al. LA-ICP-MS U-Pb dating of calcite cement in Upper Triassic tight-gas sandstone reservoirs, western Sichuan Basin, SW China[J]. Terra Nova, 2022, 34(4): 359-368.
    [23] Yu Y, Lin L B, Li Z, et al. Source of quartz cement in tight gas sandstone: Evidence from the Upper Triassic Xujiahe Formation in the western Sichuan Basin, SW China[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110299.
    [24] 李艳青,佘振兵,马昌前. 石英SEM-CL微结构及其在岩石学中的应用[J]. 地球科学进展,2011,26(3):325-331.

    Li Yanqing, She Zhenbing, Ma Changqian. SEM-CL analysis of quartz and its application in petrology[J]. Advances in Earth Science, 2011, 26(3): 325-331.
    [25] Hooker J N, Laubach S E, Marrett R. Microfracture spacing distributions and the evolution of fracture patterns in sandstones[J]. Journal of Structural Geology, 2018, 108: 66-79.
    [26] Bruhn F, Bruckschen P, Richter D K, et al. Diagenetic history of sedimentary carbonates: Constraints from combined cathodoluminescence and trace element analyses by micro-PIXE[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1995, 104(1/2/3/4): 409-414.
    [27] Habermann D, Neuser R D, Richter D K. Low limit of Mn2+-activated cathodoluminescence of calcite: State of the art[J]. Sedimentary Geology, 1998, 116(1/2): 13-24.
    [28] Budd D A, Hammes U, Ward W B. Cathodoluminescence in calcite cements: New insights on Pb and Zn sensitizing, Mn activation, and Fe quenching at low trace-element concentrations[J]. Journal of Sedimentary Research, 2000, 70(1): 217-226.
    [29] 四川油气区石油地质志编写组. 中国石油地质志(卷十)[M]. 北京:石油工业出版社,1989.

    Editorial Committee of Petroleum Geology of Sichuan Oilfield. Petroleum geology of China Vol 10[M]. Beijing: Petroleum Industry Press, 1989.
    [30] Hao F, Guo T L, Zhu Y M, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92(5): 611-637.
    [31] 陈洪德,徐胜林,林良彪,等. 龙门山造山带晚三叠世构造隆升的分段性及层序充填响应[J]. 沉积学报,2011,29(4):622-630.

    Chen Hongde, Xu Shenglin, Lin Liangbiao, et al. Segmental uplift of Longmenshan orogen and sequence filling characteristic of western Sichuan foreland-like basin, Later Triassic[J]. Acta Sedimentologica Sinica, 2011, 29(4): 622-630.
    [32] 林良彪,陈洪德,翟常博,等. 四川盆地西部须家河组砂岩组分及其古地理探讨[J]. 石油实验地质,2006,28(6):511-517.

    Lin Liangbiao, Chen Hongde, Zhai Changbo, et al. Sandstone compositions and paleogeographic evolution of the Upper Triassic Xujiahe Formation in the western Sichuan Basin, China[J]. Petroleum Geology & Experiment, 2006, 28(6): 511-517.
    [33] 谢小平,李姝臻,鲁宁,等. 川北广元须家河组一段沉积相与沉积环境演化分析[J]. 沉积学报,2021,39(2):493-505.

    Xie Xiaoping, Li Shuzhen, Lu Ning, et al. Sedimentary facies and sedimentary environment evolution of First member of the Xujiahe Formation in Guangyuan area, northern Sichuan province[J]. Acta Sedimentologica Sinica, 2021, 39(2): 493-505.
    [34] Yu Y, Lin L B, Zhai C B, et al. Impacts of lithologic characteristics and diagenesis on reservoir quality of the 4th member of the Upper Triassic Xujiahe Formation tight gas sandstones in the western Sichuan Basin, southwest China[J]. Marine and Petroleum Geology, 2019, 107: 1-19.
    [35] Lin L B, Yu Y, Nan H L, et al. Petrologic and geochemical characteristics of carbonate cements in the Upper Triassic Xujiahe Formation tight gas sandstone, western Sichuan Basin, China[J]. AAPG Bulletin, 2022, 106(2): 461-490.
    [36] 罗龙,高先志,孟万斌,等. 深埋藏致密砂岩中相对优质储层形成机理:以川西坳陷新场构造带须家河组为例[J]. 地球学报,2017,38(6):930-944.

    Luo Long, Gao Xianzhi, Meng Wanbin, et al. The formation mechanism of the relatively high-quality reservoir in tight sandstones with deep burial: A case study of Xujiahe Formation in Xinchang structural belt of western Sichuan Depression[J]. Acta Geoscientica Sinica, 2017, 38(6): 930-944.
    [37] Adams A, MacKenzie W S. A colour atlas of carbonate sediments and rocks under the microscope[M]. London: Manson, 1998.
    [38] Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system-1. Trace elements[J]. Journal of Sedimentary Research, 1980, 50(4): 1219-1236.
  • [1] 李安鹏, 高达, 胡明毅, 赵玉茹, 朱传勇, 戴逸晨.  川中地区灯影组四段微生物岩沉积模式及主控因素 . 沉积学报, 2023, 41(4): 1080-1096. doi: 10.14027/j.issn.1000-0550.2021.156
    [2] 张响响, 陶士振, 朱如凯, 柳少波, 公言杰.  成岩作用对致密油储层分布的影响 . 沉积学报, 2023, 41(2): 559-568. doi: 10.14027/j.issn.1000-0550.2021.106
    [3] 苏加亮, 林良彪, 余瑜, 王志康, 李晔寒.  川西新场地区上三叠统须家河组二、四段物源及储层特征差异对比研究 . 沉积学报, 2023, 41(5): 1451-1467. doi: 10.14027/j.issn.1000-0550.2022.142
    [4] 卢龙飞, 刘伟新, 魏志红, 潘安阳, 张庆珍, 腾格尔.  四川盆地志留系页岩成岩特征及其对孔隙发育与保存的控制 . 沉积学报, 2022, 40(1): 73-87. doi: 10.14027/j.issn.1000-0550.2021.125
    [5] 王爱, 钟大康, 刘忠群, 王威, 杜红权, 周志恒, 唐自成.  深层致密砂岩储层特征及物性控制因素 . 沉积学报, 2022, 40(2): 410-421. doi: 10.14027/j.issn.1000-0550.2020.124
    [6] 徐宁宁, 张守鹏, 王永诗, 邱隆伟.  鄂尔多斯盆地北部二叠系下石盒子组致密砂岩成岩作用及孔隙成因 . 沉积学报, 2022, 40(2): 422-434. doi: 10.14027/j.issn.1000-0550.2021.027
    [7] 马立元, 邱桂强, 胡才志, 徐士林, 陈纯芳, 李松.  鄂尔多斯盆地红河油田延长组致密砂岩成藏机制分析 . 沉积学报, 2022, 40(6): 1762-1773. doi: 10.14027/j.issn.1000-0550.2021.171
    [8] 刘明洁, 季永承, 唐青松, 唐大海, 梁锋, 车国琼, 王立恩, 李明, 谭秀成, 曾伟, 连承波.  成岩体系对致密砂岩储层质量的控制 . 沉积学报, 2021, 39(4): 826-840. doi: 10.14027/j.issn.1000-0550.2020.62
    [9] 孙海涛, 钟大康, 王威, 王爱, 杨烁, 杜红权, 唐自成, 周志恒.  四川盆地马路背地区上三叠统须家河组致密砂岩储层成因分析 . 沉积学报, 2021, 39(5): 1057-1067. doi: 10.14027/j.issn.1000-0550.2020.121
    [10] 金民东, 谭秀成, 李毕松, 朱祥, 曾伟, 连承波.  四川盆地震旦系灯影组白云岩成因 . 沉积学报, 2019, 37(3): 443-454. doi: 10.14027/j.issn.1000-0550.2018.148
    [11] 强深涛, 沈平, 张健, 夏茂龙, 冯明友, 夏青松, 陶艳忠, 夏自强, 林怡.  四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化 . 沉积学报, 2017, 35(4): 797-811. doi: 10.14027/j.cnki.cjxb.2017.04.014
    [12] 谭梦琪, 刘自亮, 沈芳, 谢润成, 刘成川, 邓昆, 徐浩.  四川盆地回龙地区下侏罗统自流井组大安寨段混积岩特征及模式 . 沉积学报, 2016, 34(3): 571-581. doi: 10.14027/j.cnki.cjxb.2016.03.015
    [13] 张金友.  陆相坳陷盆地烃源岩内致密砂岩储层含油性主控因素——以松辽盆地北部中央坳陷区齐家凹陷高台子油层为例 . 沉积学报, 2016, 34(5): 991-1002. doi: 10.14027/j.cnki.cjxb.2016.05.018
    [14] 钟原, 刘宏, 谭秀成, 连承波, 廖纪佳, 刘明洁, 胡广, 曹剑.  富砂地层格架高分辨率层序地层学研究及储层甜点预测——以四川盆地合川地区须家河组为例 . 沉积学报, 2016, 34(4): 758-774. doi: 10.14027/j.cnki.cjxb.2016.04.016
    [15]  四川盆地蜀南地区上三叠统须家河组低孔低渗储层特征及形成机理 . 沉积学报, 2013, 31(1): 167-175.
    [16] 孙治雷.  四川盆地须家河组砂岩储层中自生绿泥石的来源与成岩演化 . 沉积学报, 2008, 26(3): 459-468.
    [17] 罗 忠.  层序界面对砂岩成岩作用及储层质量的影响——以鄂尔多斯盆地延河露头上三叠统延长组为例 . 沉积学报, 2007, 25(6): 903-914.
    [18] 王一刚.  四川盆地三叠系飞仙关组气藏储层成岩作用研究拾零 . 沉积学报, 2007, 25(6): 831-839.
    [19] 杨家静, 王一刚, 王兰生, 文应初, 刘划一, 周国源.  四川盆地东部长兴组——飞仙关组气藏地球化学特征及气源探讨 . 沉积学报, 2002, 20(2): 349-353.
    [20] 王兴志, 穆曙光, 方少仙, 黄继祥, 侯方浩.  四川盆地西南部震旦系白云岩成岩过程中的孔隙演化 . 沉积学报, 2000, 18(4): 549-554.
  • 加载中
图(9) / 表 (1)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  24
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-09-05
  • 录用日期:  2022-10-05
  • 网络出版日期:  2022-10-05
  • 刊出日期:  2023-10-10

目录

    致密砂岩碳酸盐矿物SEM⁃CL和EPMA矿物学表征及其成岩意义

    doi: 10.14027/j.issn.1000-0550.2022.112
      基金项目:

      国家自然科学基金项目 42202128

      油气藏地质及开发工程国家重点实验室(成都理工大学)开放基金项目 PLC20210110

      作者简介:

      余瑜,男,1991年出生,博士,副研究员,储层沉积学,E-mail: yuyucdut@163.com

      通讯作者: 林良彪,男,博士,教授,沉积岩石学,E-mail: linliangbiao08@cdut.cn
    • 中图分类号: P618.13

    摘要: 扫描电镜—阴极发光(SEM-CL)可通过同时分析矿物的微观结构和阴极发光特性来反映成岩机制及流体来源,但碳酸盐矿物在SEM-CL下的发光特性及其影响因素尚不明确。应用光学显微镜阴极发光(OM-CL)、电子探针(EPMA)和SEM-CL等技术手段,以川西坳陷须家河组致密砂岩中碳酸盐矿物为研究对象,分析碳酸盐矿物在OM-CL和SEM-CL下发光特性的差异,评估影响碳酸盐矿物SEM-CL发光特性的因素,探讨砂岩中方解石胶结物的成岩意义。结果表明,相比OM-CL,SEM-CL在区分碳酸盐岩屑和碳酸盐胶结物方面具有更高的灵敏度。当Mn/Fe值低于0.1或Mn/Fe值介于0.1~0.5且Fe含量低于0.1%时,碳酸盐矿物具有中低强度的SEM-CL发光强度;当Mn/Fe值高于0.5且Fe含量高于0.1%时,碳酸盐矿物在SEM-CL照射下几乎不发光。Mn/Fe值和Fe含量是影响SEM-CL照射下碳酸盐矿物发光强度的主要因素。阴极发光分析和EPMA元素组成面扫描分析表明,方解石胶结物的元素分布是均质的,形成于同一成岩世代,晚于长石等矿物的溶解。岩屑砂岩和岩屑石英砂岩的方解石胶结物具有相同的来源,表现为高Mn/Fe特征;钙屑砂岩的方解石胶结物具低Mn高Fe特征,成分组成与白云石岩屑相似,推测流体可能受到白云石岩屑溶解的影响。

    English Abstract

    余瑜, 林良彪, 李真, 孟万斌, 童馗, 梁庆韶. 致密砂岩碳酸盐矿物SEM⁃CL和EPMA矿物学表征及其成岩意义———以川西坳陷须家河组为例[J]. 沉积学报, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112
    引用本文: 余瑜, 林良彪, 李真, 孟万斌, 童馗, 梁庆韶. 致密砂岩碳酸盐矿物SEM⁃CL和EPMA矿物学表征及其成岩意义———以川西坳陷须家河组为例[J]. 沉积学报, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112
    YU Yu, LIN LiangBiao, LI Zhen, MENG WanBin, TONG Kui, LIANG QingShao. SEM-CL and EMPA Mineralogical Characterization of Authigenic Calcite Cement in Tight Gas Sandstone and Implications for Diagenesis: Case study of Xujiahe Formation in western Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112
    Citation: YU Yu, LIN LiangBiao, LI Zhen, MENG WanBin, TONG Kui, LIANG QingShao. SEM-CL and EMPA Mineralogical Characterization of Authigenic Calcite Cement in Tight Gas Sandstone and Implications for Diagenesis: Case study of Xujiahe Formation in western Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1468-1477. doi: 10.14027/j.issn.1000-0550.2022.112
      • 砂岩成岩阶段形成的方解石胶结物记录了地质流体的信息,分析其矿物结构和元素特征有助于了解成岩流体的性质和来源[16]。在碎屑岩储层中,方解石胶结物的赋存状态、体积分数和沉淀时间与储层的物性质量密切相关[34,711]。因而,阐明方解石胶结物的来源和分布特征对于碎屑岩储层的油气地质勘探具有重要意义。

        阴极发光(CL)成像是岩石学和矿物学研究中一种重要的技术手段,被广泛应用于矿物的成分和微观结构分析中[1218]。扫描电镜—阴极发光(SEM-CL)具有与基于光学显微镜的冷阴极发光(OM-CL)相同的激发原理,但SEM-CL具有更高的空间分辨率、更大的放大倍数和更高的灵敏度[1921]。SEM-CL可以通过识别矿物的原生/次生矿物特征和微观结构特征(如矿物生长、变形和蚀变等),并结合新近发展的自动定量矿物学分析[2223],为地质事件提供关键信息[14,16,2426]

        前人研究表明,碳酸盐矿物的OM-CL发光特征受控于Fe和Mn含量[1213,2728],据此可推断与碳酸盐矿物沉淀相关的流体性质及成岩作用,以区分形成于不同条件下、但具相似乃至相同化学成分的碳酸盐矿物。然而,目前对于碳酸盐矿物在SEM-CL成像下的发光特性的研究相对较少[21],Fe和Mn等元素对于碳酸盐矿物的SEM-CL发光特性的影响尚不明确。本文对四川盆地西部须家河组致密砂岩中的方解石胶结物和碳酸盐岩碎屑(包括方解石和白云石)进行了OM-CL、SEM-CL和电子探针显微分析(EPMA)分析,阐明碳酸盐矿物在OM-CL和SEM-CL下发光特性的差异,评估Fe和Mn等元素对于碳酸盐矿物SEM-CL发光特性的影响,讨论方解石胶结物的成岩意义。

      • 四川盆地的海相沉积演化于中、晚三叠世的印支运动期间结束,之后经历侏罗纪—白垩纪的燕山运动、古近纪—新近纪的喜马拉雅运动,形成了现今菱形的盆地边界面貌(图1a)[2930]。研究区位于四川盆地西部中部(图1b),西接龙门山断褶带。四川盆地内的上三叠统须家河组总体上是一套以三角洲和湖泊沉积为主的碎屑沉积,按岩性自下而上可分为五段,其中须家河组二段(T3x2;须二段)和四段(T3x4;须四段)主要由砂岩组成(图1c),是四川盆地主要的致密砂岩储层[3133]。前期岩石学特征研究表明,须四段砂岩主要为中—细粒岩屑砂岩和岩屑石英砂岩,砂岩整体表现为低长石丰度和高岩屑含量的特征[3435],胶结物以方解石胶结为主,具多期次特征,早期方解石胶结物呈连晶状充填,主要形成于早成岩期;晚期方解石胶结物主要充填次生孔隙,沉淀于中成岩A期[4,34,36]

        图  1  四川盆地地层出露情况、研究区地理位置图及须家河组地层柱状图(据文献[31]修改)

        Figure 1.  Study area in the Sichuan Basin: (a) geographic location; (b) simplified geological map; (c) generalized stratigraphic column of the Xujiahe Formation, western Sichuan Basin (modified from reference [31])

      • 所有样品均取自川西坳陷的须四段钻井岩心(图1b),分别来自于川合139井(简称CH139,下同),深度3 781.79 m;德阳1井(DY1),深度4 194.72 m;广汉2井(GH2),深度3 921.65 m;高庙3井(GM3),深度3 781.5 m;川高561井(CG561),深度4 009.01 m。将岩心切割成高1 cm、直径2.5 cm的小圆柱体后,对表面进行抛光并镀碳。样品制备完毕后使用偏光显微镜观察砂岩特征,观察结果表明砂岩为岩屑石英砂岩和岩屑砂岩,其中CH139的石英含量小于30%,而碳酸盐岩屑的体积含量大于50%,为钙屑砂岩;其余样品则为岩屑石英砂岩和岩屑砂岩;所有样品胶结物均以方解石胶结为主,含有黏土矿物和少量的自生石英,方解石胶结物充填粒间孔和粒内溶孔。

        OM-CL实验使用CL8200 MK5-2阴极发光仪搭配偏光显微镜,测试条件为电压15 kV、4电流50 μA。为便于对比,所有样品的图像都在相同的曝光时间内获得。SEM-CL图像在澳大利亚科廷大学John de Laeter Research Centre使用TESCAN Mira3发射扫描电子显微镜(VP-FESEM)获得。实验操作条件为加速电压5 kV、高电流2.9 nA、扫描速度10 µs/像素。

        电子探针实验完成于成都理工大学油气藏地质及开发工程国家重点实验室,仪器型号为Shimadzu EPMA-1720H,工作电压为15 kV,束流为10 nA。元素含量分析是使用尺寸为10 µm的束斑进行Ca、Mg、Na、K、Al、Mn、Fe的定量化学分析,采用的参考标准物质为:NaAlSi3O8(钠长石;Na)、KAlSi3O8(钾长石;K)、MgSiO3(Mg)、CaSiO3(Ca)、Al2O3(Al)、Mn3Fe2(Mn和Fe)。对丰度大于5%的元素的分析精度为不大于1%,对丰度小于1%的元素则不大于5%。矿物的元素面扫描分布图使用Kα线获得,分析条件设置为15 kV的加速电压、50 nA的束流和5 μm的束斑。

      • 须四段砂岩中碳酸盐矿物包括了矿物岩屑和胶结物两类。在矿物组成上,碳酸盐矿物岩屑由方解石和白云石组成,而碳酸盐胶结物均为方解石。

        砂岩中的碎屑颗粒和胶结物可以通过其在偏光显微镜图像和电子探针BSE图像中的灰度差异进行区分(图2a、图3a)。方解石胶结物充填原生孔隙和次生孔隙,次生孔隙由长石粒内溶孔(图2a、图3)和少量岩屑粒内溶孔(图2a)组成。长石颗粒溶解后,可见残余的长石和自生石英同时分布于充填粒内溶孔的方解石胶结物中,但根据能谱分析(图2a)和OM-CL发光特征(图2b)可以区分自生石英及残余长石矿物。钾长石和奥长石等长石矿物在OM-CL发光图像中呈蓝色发光,而自生石英胶结物则不发光或被方解石胶结物覆盖(图2b)。在SEM-CL图像中(图2c,d、图3d),长石的阴极发光强度也强于石英。然而,方解石胶结物在OM-CL和SEM-CL下的发光特征却截然不同——在OM-CL下方解石胶结物呈明亮的橙色至红色发光,但在SEM-CL下却不发光(图2c,d、图3d)。结合BSE图像,进一步观察到方解石胶结物在SEM-CL下显示较高亮度的区域是未被完全填充的孔隙或矿物表面的沟槽(图2a,c、图3c,d)。

        图  2  CG561样品的BSE(a)、OM⁃CL(b)和SEM⁃CL(c,d)图像特征,深度4 009.01 m

        Figure 2.  BSE, OM⁃CL and SEM⁃CL images of sample CG561, depth 4 009.01 m

        图  3  GH2样品的反射光(a)、OM⁃CL(b)、BSE(c)和SEM⁃CL(d)图像,深度3 921.65 m

        Figure 3.  Optical microscope, OM⁃CL, BSE and SEM⁃CL images of sample GH2, depth 3 921.65 m

        碳酸盐岩屑与方解石胶结物在BSE图像中通常显示出类似的颜色及对比度,因而难以区分(图4a)。在OM-CL图像中,部分方解石岩屑和方解石胶结物同样具有相似的发光特征而难以辨认(图4b)。与之相比,方解石岩屑和白云石岩屑在SEM-CL分析中均表现出显著低于石英碎屑的发光强度,因而在样品的SEM-CL图像中清楚地勾勒出碳酸盐岩屑和方解石胶结物的不同轮廓(图4c)。以上结果表明,SEM-CL技术对于区分在矿物结构和元素含量上相似的碳酸盐矿物时,比OM-CL更为有效。

        图  4  CH139样品的BSE、OM⁃CL和SEM⁃CL图像,深度3 781.79 m

        Figure 4.  BSE, OM⁃CL and SEM⁃CL images of sample CH139, depth 3 781.79 m

      • 应用电子探针对样品中42个碳酸盐矿物(包括8个碳酸盐岩岩屑和34个方解石胶结物)进行了Na、K、Mn、Mg、Ca、Fe、Ca和Al等元素的分析,结果以氧化物质量分数表示(表1)。除CaO外,方解石胶结物的MnO含量最高,其次是FeO、Al2O3、K2O、MgO和Na2O(图5)。在方解石岩屑中,除CaO外,FeO是最高的元素,其次是MgO、Al2O3、MnO、Na2O和K2O。在白云石岩屑中,除CaO和MgO外,FeO是最高的元素,其次是Al2O3、MnO、Na2O和K2O(图5)。

        表 1  不同类型碳酸盐矿物的Fe和Mn含量及OM⁃CL、SEM⁃CL发光强度

        样品碳酸盐矿物类型Fe/%Mn/%Mn/FeOM-CL发光强度SEM-CL 发光强度
        CH139方解石岩屑0.0650.0080.109III
        白云石岩屑1.5040.0980.066IIII
        方解石胶结物0.8120.1390.169III
        GH2方解石胶结物0.5721.4032.420VI
        GM3方解石胶结物0.4000.3750.953IIII
        CG561方解石胶结物0.4700.5531.190IIII
        DY1方解石胶结物0.5190.8251.594IVI
        注:阴极发光强度从I到V增强。

        图  5  碳酸盐矿物的元素含量分布

        Figure 5.  Elemental compositions of carbonate minerals in Xu4 sandstones

      • 元素面扫描分析结果表明,方解石胶结物中常量元素的分布较为均一(图6,7),充填粒内溶孔和粒间孔的方解石胶结物在成分组成上不存在明显差异。方解石胶结物的Mn元素分布与Ca元素分布较为匹配。方解石岩屑与胶结物相比,通常具有相对较低的Fe和Mn元素含量(图7)。

        图  6  CG561样品BSE图像和元素面扫描图像

        Figure 6.  Sample CG561 for BSE image and Element occurrence in calcite cements

        图  7  CH139样品的BSE图像,SEM⁃CL和元素面扫描图像

        Figure 7.  Calcite cements in sample CH139 for BSE images, SEM⁃CL image and element mapping

      • Fe2+、Mn2+和Mn/Fe比值是控制碳酸盐矿物发光特性的主要因素,Fe2+/Fe3+通常被视为发光抑制剂,Mn2+和微量元素则被视为发光激活剂[12,37]。须四段砂岩不同类型碳酸盐矿物的Fe和Mn含量差异很大(表1),方解石岩屑的Fe和Mn含量最低,平均值分别为0.065%和0.08%;白云石岩屑中Fe平均含量最高,为1.504%,Mn平均含量为0.098%,仅高于方解石岩屑。在方解石胶结物中,CH139的Fe含量最高,Mn含量最低,其他样品的Fe含量相近,差异主要体现在Mn含量上(表1)。从Mn/Fe比值来说,除CH139以外其他样品方解石胶结物的Mn/Fe值均高于0.5,CH139方解石胶结物的Mn/Fe值介于0.1~0.33,而白云石岩屑的Mn/Fe值低于0.1。方解石岩屑的Mn/Fe值与CH139方解石胶结物相似,但Fe含量低了一个数量级。根据样品的Fe与Mn含量,可将碳酸盐矿物分为三类(图8):(1)方解石岩屑;(2)白云石岩屑和CH139方解石胶结物;(3)GH2、GM3、CG561和DY1等其他样品的方解石胶结物。这三类碳酸盐矿物在OM-CL下的发光强度存在差异,表现为:方解石岩屑<白云石岩屑≈CH139方解石胶结物<CG561方解石胶结物≈GM3方解石胶结物<DY1方解石胶结物<GH2方解石胶结物(表1),表明OM-CL发光强度随Mn含量及Mn/Fe值的升高而增加。这与黄思静等[13]和刘丽红等[15]在碳酸盐岩阴极发光特征的研究取得的结果一致。

        图  8  碳酸盐矿物的Mn(%)和Fe(%)投点图

        Figure 8.  Mn (%) vs. Fe (%) in carbonate minerals

        然而,不同类型碳酸盐矿物的在SEM-CL下的发光特征则不同。在SEM⁃CL分析中,方解石和白云石岩屑具有略低于石英颗粒的发光强度,而方解石胶结物则几乎不发光(表1)。CH139方解石胶结物与碳酸盐岩碎屑相比几乎不发光,其原因是其相对较高的Mn/Fe值。当Mn/Fe值低于0.1时,碳酸盐矿物具有中低强度发光,如白云岩岩屑;当Mn/Fe值介于0.1~0.5,且Fe含量小于0.1%时,碳酸盐矿物也可见中低强度发光,如方解石岩屑;当Mn/Fe值大于0.5,同时Fe含量大于0.1时,碳酸盐矿物几乎不发光,如方解石胶结物。由此可见,Mn/Fe值和Fe含量是影响碳酸盐矿物SEM-CL发光强度的主要因素。

      • 基于BSE和SEM-CL图像中显示的矿物接触关系,推断成岩序次如下(图9):首先,机械压实作用减小了粒间孔隙的体积;随后长石颗粒溶解并形成粒内溶孔和硅质胶结物,同时少量白云石岩屑颗粒局部溶解;最后方解石胶结物充填砂岩原生粒间孔与粒内溶孔。

        图  9  两类方解石胶结物形成模式

        Figure 9.  Formation models of two kinds of calcite cements

        碳酸盐岩的成岩作用是一个富集锰和铁的过程[13,38]。矿物接触关系和SEM-CL图像表明,方解石胶结物大致形成于同一成岩世代,且晚于长石等矿物的溶解。就铁和锰含量而言,方解石胶结物可分为两类:(1)CH139,(2)其他样品(GH2、GM3、DY1和CG561)的方解石胶结物。GH2、GM3、DY1和CG561等样品的Fe和Mn具有明显的正相关性(图8),表明方解石胶结物具有相同或类似的成岩流体来源,样品方解石胶结物的铁和锰的含量取决于成岩流体的浓度(图9)。相比之下,CH139方解石胶结物的铁和锰含量不仅较低,而且Fe和Mn之间的相关性较差(图8),表明方解石胶结物的流体来源不同于其他样品。方解石和白云石岩屑显示出不同的铁和锰含量特征,尤其是白云石岩屑的铁含量相比方解石岩屑高了一个数量级。CH139样品砂岩中含有大量的白云石岩屑,可以观察到明显的溶解现象(图7a),推测CH139方解石胶结物的沉淀可能受到白云石岩屑溶解的较大影响,导致具有较高的铁含量。

      • (1) 相比OM-CL,SEM-CL在区分碳酸盐岩屑和碳酸盐胶结物方面更为灵敏。相同碳酸盐矿物在SEM-CL与OM-CL图像中的发光特征有较大不同。碳酸盐矿物的OM-CL发光强度随着Mn含量和Mn/Fe值的增加而提高。而在SEM-CL分析中,当碳酸盐矿物的Mn/Fe值低于0.1,或Mn/Fe值介于0.1~0.5且Fe含量低于0.1%时,其将具有中低强度的阴极发光;当碳酸盐矿物的Mn/Fe值高于0.5且Fe含量高于0.1时,则几乎不发光。Mn/Fe值和Fe含量是影响SEM-CL分析中碳酸盐矿物发光强度的主要因素。

        (2) 电子探针分析表明须家河组致密砂岩中方解石岩屑具有极低的Fe和Mn含量,白云石岩屑具有高Fe和低Mn含量,岩屑石英砂岩和岩屑砂岩方解石胶结物表现为高Mn/Fe特征;而钙屑砂岩的方解石胶结物具低Mn高Fe特征,成分组成与白云石岩屑相似。阴极发光分析和EPMA元素面扫描图像表明,方解石胶结物的元素分布较为均一,很可能形成于同一成岩世代,均晚于长石等矿物的溶解。岩屑砂岩和岩屑石英砂岩的方解石胶结物具有相同的来源,其Fe和Mn的含量取决于成岩流体的浓度;钙屑砂岩的方解石胶结物形成时的成岩流体则可能受到白云石岩屑溶解的影响。

    参考文献 (38)

    目录

      /

      返回文章
      返回