-
从300 ℃到348 ℃,随温度升高,含膏岩组和不含膏岩组的可溶有机质产率均有所增加(表1),且两组实验在348 ℃时可溶有机质产率均达到最大值,但含膏岩组可溶有机质产率最大值(A组237 mg/g TOC)较不含膏岩组(B组167 mg/g TOC)更高。从348 ℃到396 ℃,两组实验的可溶有机质产率均降低,且含膏岩的A组降低幅度更大。444 ℃时,两组实验的可溶有机质产率达到最低值。
表 1 热模拟实验条件及其可溶有机质、芳烃族组分产率
Table 1. Experimental conditions and yields of soluble organic matter and aromatic hydrocarbon fractions
实验编号 温度/℃ Easy%Ro/% 干酪根/mg 膏岩/mg 可溶有机质产量/mg 可溶有机质产率/(mg/g TOC) 芳烃产量/mg 芳烃产率/(mg/g TOC) A1 300 0.66 53 53 2.1 56 0.4 11 A2 348 0.94 52 52 8.7 237 2.3 63 A3 396 1.49 55 55 3.0 77 0.6 15 A4 444 2.29 34 34 1.0 42 0.8 33 B1 300 0.66 54 — 1.5 39 — — B2 348 0.94 51 — 6.0 167 1.5 42 B3 396 1.49 50 — 4.7 133 2.2 62 B4 444 2.29 49 — 1.7 49 — — 注: —表示不含或未检出。A组含膏岩的实验中,芳烃产率在348 ℃时达到最大值63 mg/g TOC,之后随温度升高而降低,到444 ℃时降低至33 mg/g TOC;而在B组不含膏岩的实验中,芳烃产率在396 ℃时才达到最大值62 mg/g TOC,在444 ℃时芳烃族组分低于检出限(表1)。
-
热模拟实验后的芳烃馏分进行GC-MS检测。通过对照文献中相关化合物的相对保留时间指数和标准图谱,对本研究中芳烃族组分的二苯并噻吩(DBT)、菲(Ph)和芴(Fl)进行了鉴定[38]。其中,在质核比(m/z)为184的质量色谱图上鉴定了DBT,在m/z为178的质量色谱图上鉴定了Ph,在m/z为166的质量色谱图上鉴定了Fl。
本文根据热模拟产物的GC-MS检测结果,对二苯并噻吩、菲、芴进行了积分,计算得到不同成熟度下二苯并噻吩/菲(DBT/Ph)和二苯并噻吩/芴(DBT/Fl)的比值变化见表2。随着实验热应力的增加,含膏岩的A组实验中,DBT/Ph从1.05先减小至0.02,在Easy%Ro达到2.71%时又增大至0.26;不含膏岩的B组实验中,DBT/Ph随成熟度增加从1.05持续减小至0.02。然而,对应的DBT/FL在A组实验中持续降低(18.64~3.12),而在B组实验中先快速增大,后又快速降低。
表 2 热模拟实验产物中芳烃化合物的比值
Table 2. Ratios of aromatic molecules in products of thermal simulation experiments
实验编号 温度/℃ Easy%Ro/% 二苯并噻吩/菲(DBT/Ph) 二苯并噻吩/菲(DBT/Fl) A1 300 0.66 1.05 18.64 A2 348 0.94 0.08 18.49 A3 396 1.49 0.02 15.40 A4 444 2.29 0.26 3.12 B1 300 0.66 1.04 2.83 B2 348 0.94 0.08 21.59 B3 396 1.49 0.04 41.90 B4 444 2.29 0.02 9.57
Influence of Gypsum on the Distribution of Aromatic Molecules During Catagenesis and Its Geochemical Significance
-
摘要: 目的 硫酸盐与沉积有机质之间的反应是沉积盆地内一种典型的有机—无机相互作用类型。在后生作用早期,硫酸盐会影响沉积有机质的热演化。研究对应体系中芳烃化学组成的热演化规律,有助于理解其地球化学行为。 方法 以鄂尔多斯盆地西南缘平凉组烃源岩及其含硫干酪根为初始样品,通过含水体系热模拟实验方法研究了硫酸盐对干酪根热演化产物的影响。 结果 硫酸盐增加了早期可溶有机质产率,并使得芳烃族组分的生成高峰提前。另外,硫酸盐在后生作用阶段早期可氧化降解有机含硫化合物,减少了二苯并噻吩的生成,导致不同类型的芳烃化合物比例出现显著差异。因此,在生油高峰之前,硫酸盐和沉积有机质之间存在氧化降解反应阶段,其产物以含氧化合物等极性组分为主,二苯并噻吩均形成自有机硫化合物。 结论 该认识将硫酸盐与沉积有机质的反应范围拓展至了热应力更低的后生作用阶段含膏烃源岩。
-
关键词:
- 热模拟实验 /
- 有机—无机相互作用 /
- 芳烃分子标志物分布特征 /
- 热化学硫酸盐还原反应 /
- 鄂尔多斯盆地 /
- 平凉组
Abstract: Objective The reactions between sulfates and sedimentary organic matter are typical organic⁃inorganic interactions in sedimentary basins. During the early stage of catagenesis, the thermal evolution of sedimentary organic matters would be influenced by the presence of sulfate. Investigations on thermal evolution of aromatic fraction compositions in the corresponding system will improve the understanding its geochemical behaviors. Methods In this study, the effect of sulfate on the thermal evolution of kerogen was investigated by hydrous pyrolysis. The source rock and the corresponding sulfur-bearing kerogen were sampled from the Pingliang Formation on the southwestern margin of the Ordos Basin. Results Experimental results showed that the presence of sulfate promotes the yields of soluble organic matters, as well as the generation peak of aromatic fractions in the early stage. Moreover, the organosulfur compounds, might be oxidized by sulfate during the early stage of catagenesis, which led to the decreasing of generation of dibenzothiophene. It would result in the significant discrepancies of aromatic fraction compositions between two group experiments. Therefore, there was a stage of oxidative degradation between sulfate and sedimentary organic matter before hydrocarbon generation peak. In this stage, the majority of production is polar organic compounds, such as oxygen-bearing compounds. Dibenzothiophene was derived from organosulfur compounds. Conclusions These understandings enlarged the reaction region between sulfate and sedimentary organic matters to the gypsum-bearing source rock during catagenesis with lower thermal stress. -
表 1 热模拟实验条件及其可溶有机质、芳烃族组分产率
Table 1. Experimental conditions and yields of soluble organic matter and aromatic hydrocarbon fractions
实验编号 温度/℃ Easy%Ro/% 干酪根/mg 膏岩/mg 可溶有机质产量/mg 可溶有机质产率/(mg/g TOC) 芳烃产量/mg 芳烃产率/(mg/g TOC) A1 300 0.66 53 53 2.1 56 0.4 11 A2 348 0.94 52 52 8.7 237 2.3 63 A3 396 1.49 55 55 3.0 77 0.6 15 A4 444 2.29 34 34 1.0 42 0.8 33 B1 300 0.66 54 — 1.5 39 — — B2 348 0.94 51 — 6.0 167 1.5 42 B3 396 1.49 50 — 4.7 133 2.2 62 B4 444 2.29 49 — 1.7 49 — — 注: —表示不含或未检出。表 2 热模拟实验产物中芳烃化合物的比值
Table 2. Ratios of aromatic molecules in products of thermal simulation experiments
实验编号 温度/℃ Easy%Ro/% 二苯并噻吩/菲(DBT/Ph) 二苯并噻吩/菲(DBT/Fl) A1 300 0.66 1.05 18.64 A2 348 0.94 0.08 18.49 A3 396 1.49 0.02 15.40 A4 444 2.29 0.26 3.12 B1 300 0.66 1.04 2.83 B2 348 0.94 0.08 21.59 B3 396 1.49 0.04 41.90 B4 444 2.29 0.02 9.57 -
[1] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer, 1984. [2] Seewald J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. [3] Seewald J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1641-1664. [4] 刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(D辑):地球科学,2019,49(3):499-520. Liu Quanyou, Zhu Dongya, Meng Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Seri. D): Earth Sciences, 2019, 49(3): 499-520. [5] 周世新,邹红亮,解启来,等. 沉积盆地油气形成过程中有机—无机相互作用[J]. 天然气地球科学,2006,17(1):42-47. Zhou Shixin, Zou Hongliang, Xie Qilai, et al. Organic-inorganic interactions during the formation of oils in sedimentary basin[J]. Natural Gas Geoscience, 2006, 17(1): 42-47. [6] 刘佳宜,刘全有,朱东亚,等. 深部流体对有机质生烃演化过程的影响[J]. 天然气地球科学,2019,30(4):478-492. Liu Jiayi, Liu Quanyou, Zhu Dongya, et al. Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process[J]. Natural Gas Geoscience, 2019, 30(4): 478-492. [7] Lewan M D. Laboratory simulation of petroleum formation[M]//Engel M H, Macko S A. Organic geochemistry. New York: Springer, 1993: 419-442. [8] Lewan M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723. [9] Lewan M D. Evaluation of petroleum generation by hydrous phrolysis experimentation[J]. Philosophical Transactions of the Royal Society Series A, Mathematical, Physical and Sciences, 1985, 315(1531): 123-134. [10] 赵桂瑜,李术元,刘洛夫. 碳酸盐岩干酪根催化降解生烃过程及动力学研究[J]. 地质科学,2005,40(1):47-54. Zhao Guiyu, Li Shuyuan, Liu Luofu. A study on characteristics and kinetics of catalytic degradation from kerogen in carbonate rocks[J]. Chinese Journal of Geology, 2005, 40(1): 47-54. [11] 李术元,林世静,郭绍辉,等. 无机盐类对干酪根生烃过程的影响[J]. 地球化学,2002,31(1):15-20. Li Shuyuan, Lin Shijing, Guo Shaohui, et al. Effects of inorganic salts on the hydrocarbon generation from kerogens[J]. Geochimica, 2002, 31(1): 15-20. [12] Brooks B T. Evidence of catalytic action in petroleum formation[J]. Industrial & Engineering Chemistry, 1952, 44(11): 2570-2577. [13] Brooks B T. Active-surface catalysts in formation of petroleum[J]. AAPG Bulletin, 1948, 32(12): 2269-2286. [14] Mango F D. The stability of hydrocarbons under the time-temperature conditions of petroleum genesis[J]. Nature, 1991, 352(6331): 146-148. [15] Mango F D, Hightower J W, James A T. Role of transition-metal catalysis in the formation of natural gas[J]. Nature, 1994, 368(6471): 536-538. [16] 蔡春芳,李宏涛. 沉积盆地热化学硫酸盐还原作用评述[J]. 地球科学进展,2005,20(10):1100-1105. Cai Chunfang, Li Hongtao. Thermochemical sulfate reduction in sedimentary basins: A review[J]. Advances in Earth Science, 2005, 20(10): 1100-1105. [17] Orr W L. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas[C]//Proceeding of the 7th international mecting on organic geochemistry. Madrid: Enadimsa, 1977: 571-597. [18] 戴金星. 中国含硫化氢的天然气分布特征、分类及其成因探讨[J]. 沉积学报,1985,3(4):109-120. Dai Jinxing. Distribution, classification and origin of natural gas with hydrogen sulphide in China[J]. Acta Sedimentologica Sinica, 1985, 3(4): 109-120. [19] Walters C C, Wang F C, Qian K A, et al. Petroleum alteration by thermochemical sulfate reduction: A comprehensive molecular study of aromatic hydrocarbons and polar compounds[J]. Geochimica et Cosmochimica Acta, 2015, 153: 37-71. [20] Cai C F, Worden R H, Bottrell S H, et al. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China[J]. Chemical Geology, 2003, 202(1/2): 39-57. [21] 朱光有,张水昌,梁英波,等. 川东北飞仙关组高含H2S气藏特征与TSR对烃类的消耗作用[J]. 沉积学报,2006,24(2):300-308. Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Characteristics of gas reservoirs with high content of H2S in the northeastern Sichuan Basin and the consumption of hydrocarbons due to TSR[J]. Acta Sedimentologica Sinica, 2006, 24(2): 300-308. [22] 杜春国,郝芳,邹华耀,等. 热化学硫酸盐还原作用对碳酸盐岩气藏的化学改造:以川东北地区长兴组—飞仙关组气藏为例[J]. 地质学报,2007,81(1):119-126. Du Chunguo, Hao Fang, Zou Huayao, et al. Effect of thermochemical sulfate reduction upon carbonate gas reservoir: An example from the northeast Sichuan Basin[J]. Acta Geologica Sinica, 2007, 81(1): 119-126. [23] Amrani A, Deev A, Sessions A L, et al. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2012, 84: 152-164. [24] Meshoulam A, Ellis G S, Said Ahmad W, et al. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis[J]. Geochimica et Cosmochimica Acta, 2016, 188: 73-92. [25] Wei Z B, Walters C C, Moldowan J M, et al. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Organic Geochemistry, 2012, 44: 53-70. [26] Wei Z B, Moldowan J M, Fago F, et al. Origins of thiadiamondoids and diamondoidthiols in petroleum[J]. Energy & Fuels, 2007, 21(6): 3431-3436. [27] Hanin S, Adam P, Kowalewski I, et al. Bridgehead alkylated 2-thiaadamantanes: Novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002(16): 1750-1751. [28] Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry, 1995, 10(4): 373-389. [29] 袁玉松,郝运轻,刘全有,等. TSR烃类化学损耗评价:II四川盆地含硫化氢天然气藏TSR烃类损耗程度[J]. 海相油气地质,2021,26(3):193-199. Yuan Yusong, Hao Yunqing, Liu Quanyou, et al. Evaluation of TSR hydrocarbon chemical loss: II. TSR hydrocarbon loss degree of H2S-bearing natural gas reservoir in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2021, 26(3): 193-199. [30] Kelemen S R, Walters C C, Kwiatek P J, et al. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration[J]. Organic Geochemistry, 2008, 39(8): 1137-1143. [31] Kelemen S R, Walters C C, Kwiatek P J, et al. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5305-5332. [32] Zhang T W, Amrani A, Ellis G S, et al. Experimental investigation on thermochemical sulfate reduction by H2S initiation[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3518-3530. [33] 马中良,郑伦举,李志明,等. 盐类物质对泥质烃源岩生排烃过程的影响[J]. 西南石油大学学报(自然科学版),2013,35(1):43-51. Ma Zhongliang, Zheng Lunju, Li Zhiming, et al. The effect of salts on hydrocarbon generation and expulsion of argillaceous source rock[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1): 43-51. [34] Wu J, Qi W, Jiang F J, et al. Influence of sulfate on the generation of bitumen components from kerogen decomposition during catagenesis[J]. Petroleum Science, 2021, 18(6): 1611-1618. [35] 王娟. 咸化环境盐类物质与有机质相互作用研究[D]. 青岛:中国石油大学,2009. Wang Juan. A study on interaction of source rock and oil with evaporates in saline-lake facies[D]. Qingdao: China University of Petroleum, 2009. [36] Li M J, Wang T G, Simoneit B R T, et al. Qualitative and quantitative analysis of dibenzothiophene, its methylated homologues, and benzonaphthothiophenes in crude oils, coal, and sediment extracts[J]. Journal of Chromatography A, 2012, 1233: 126-136. [37] Li M J, Simoneit B R T, Zhong N N, et al. The distribution and origin of dimethyldibenzothiophenes in sediment extracts from the Liaohe Basin, East China[J]. Organic Geochemistry, 2013, 65: 63-73. [38] 师生宝,李美俊,朱雷. 石油及沉积有机质中C1-和C2-烷基二苯并噻吩鉴定及分布[J]. 石油实验地质,2014,36(5):612-617. Shi Shengbao, Li Meijun, Zhu Lei. Identification and distribution of C1-and C2-alkylated dibenzothiophenes in petroleum and sedimentary organic matter[J]. Petroleum Geology & Experiment, 2014, 36(5): 612-617. [39] 慕小水. 东濮凹陷文留地区含盐层系油气成藏机理与模式[D]. 北京:中国地质大学(北京),2011. Mu Xiaoshui. Hydrocarbon reservoir formation mechanism and pattern for saline series in Wenliu area, Dongpu Depression[D]. Beijing: China University of Geosciences (Beijing), 2011. [40] 李术元,郭绍辉,郑红霞,等. 褐煤催化降解生烃过程的动力学研究[J]. 石油勘探与开发,1997,24(3):21-23. Li Shuyuan, Guo Shaohui, Zheng Hongxia, et al. A study of catalytic degradation kinetics of Fanshi lignite[J]. Petroleum Exploration and Development, 1997, 24(3): 21-23. [41] Jin X, Wu J, Fang P, et al. Kinetics and fate of organosulphur compounds during the metagenesis stage of thermal maturation: Hydrous pyrolysis investigations on dibenzothiophene[J]. Marine and Petroleum Geology, 2021, 130: 105129. [42] Worden R H, Smalley P C, Oxtoby N H. Gas souring by thermochemical sulfate reduction at 140°C[J]. AAPG Bulletin, 1995, 79(6): 854-863. [43] Heydari E. The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi[J]. AAPG Bulletin, 1997, 81(1): 26-45. [44] 田继先,赵健,张静,等. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏,2020,32(5):84-92. Tian Jixian, Zhao Jian, Zhang Jing, et al. Formation mechanism and distribution prediction of hydrogen sulfide in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(5): 84-92. [45] 吴嘉,齐雯,罗情勇,等. 二甲基二苯并噻吩生成实验及地球化学意义[J]. 石油实验地质,2019,41(2):260-267. Wu Jia, Qi Wen, Luo Qingyong, et al. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications[J]. Petroleum Geology & Experiment, 2019, 41(2): 260-267. [46] Asif M, Alexander R, Fazeelat T, et al. Sedimentary processes for the geosynthesis of heterocyclic aromatic hydrocarbons and fluorenes by surface reactions[J]. Organic Geochemistry, 2010, 41(5): 522-530. [47] 夏燕青,孟仟祥,王红勇,等. 芴系列化合物的成因[J]. 沉积学报,1999,17(4):655-658. Xia Yanqing, Meng Qianxiang, Wang Hongyong, et al. The mechanism on formation of fluorene series compounds[J]. Acta Sedimentologica Sinica, 1999, 17(4): 655-658. [48] Amrani A, Zhang T W, Ma Q S, et al. The role of labile sulfur compounds in thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2960-2972. [49] Jin X, Wu J, Silva R C, et al. Alternate routes to sustainable energy recovery from fossil fuels reservoirs. Part 1. Investigation of high-temperature reactions between sulfur oxy anions and crude oil[J]. Fuel, 2021, 302: 121050. [50] 吴治君,罗斌杰,王有孝,等. 塔里木盆地原油中二苯并噻吩的分布及主力油源岩类型判识[J]. 沉积学报,1995,13(3):98-106. Wu Zhijun, Luo Binjie, Wang Youxiao, et al. Distribution of dibenzothiophenes in crude oils from Tarim Basin and identification of major source rock types[J]. Acta Sedimentologica Sinica, 1995, 13(3): 98-106. [51] Claypool G E, Mancini E A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama[J]. AAPG Bulletin, 1989, 73(7): 904-924. [52] Rooney M A, Claypool G E, Chung H M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3/4): 219-232.