高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆相石膏赋存状态及沉积过程

王壮生 林小兵 范峻铭 杨华童 张萱 贾伟

王壮生, 林小兵, 范峻铭, 杨华童, 张萱, 贾伟. 陆相石膏赋存状态及沉积过程———以库车坳陷牙哈地区古近系苏维依组底砂岩段为例[J]. 沉积学报, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027
引用本文: 王壮生, 林小兵, 范峻铭, 杨华童, 张萱, 贾伟. 陆相石膏赋存状态及沉积过程———以库车坳陷牙哈地区古近系苏维依组底砂岩段为例[J]. 沉积学报, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027
WANG ZhuangSheng, LIN XiaoBing, FAN JunMing, YANG HuaTong, ZHANG Xuan, JIA Wei. Occurrence State and Deposition of Terrestrial Gypsum:A case study of the Paleogene Suweiyi Formation, Yaha area, Kuqa Depression[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027
Citation: WANG ZhuangSheng, LIN XiaoBing, FAN JunMing, YANG HuaTong, ZHANG Xuan, JIA Wei. Occurrence State and Deposition of Terrestrial Gypsum:A case study of the Paleogene Suweiyi Formation, Yaha area, Kuqa Depression[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027

陆相石膏赋存状态及沉积过程———以库车坳陷牙哈地区古近系苏维依组底砂岩段为例

doi: 10.14027/j.issn.1000-0550.2023.027
基金项目: 

国家自然科学基金项目 42172135

详细信息

Occurrence State and Deposition of Terrestrial Gypsum:A case study of the Paleogene Suweiyi Formation, Yaha area, Kuqa Depression

Funds: 

National Natural Science Foundation of China 42172135

  • 摘要: 库车坳陷牙哈气藏是我国开发时间最早、开发技术最为成熟的凝析气藏之一,其主要产层段为古近系苏维依组底砂岩段,岩性以含石膏团块的细砂岩为主。石膏的赋存状态多种多样,而不同赋存状态的石膏发育时期、水动力条件、沉积环境和对储层物性的影响均有不同。基于牙哈气田古近系苏维依组底砂岩段钻井取心、野外剖面、岩石薄片等资料,探讨石膏赋存状态及其形成过程。结果表明:(1)研究区古近系底砂岩段沉积成因石膏可分为异地沉积石膏和原地沉积石膏;(2)异地沉积石膏团块经流水搬运,搬运距离从近到远依次为:①撕裂状,粒径8~10 cm的不规则状石膏团块;②云雾状,粒径4~8cm的云雾状石膏团块,具棱角;③团砾状,粒径2~5 cm,近圆状石膏团块,磨圆度较好;④定向排列石膏,粒径0.5~2 cm,石膏团块定向排列,围岩见平行层理构造;原地沉积石膏包括蒸发浓缩形成均匀分布的点状石膏,以及流水搅动形成的具核心、不具同心圈层结构的鲕状石膏;(3)干旱气候背景下湖泊蒸发环境沉积时期可分为丰水期与枯水期,枯水期为盐湖蒸发沉积模式,石膏等盐类矿物蒸发沉积,丰水期为河流—三角洲—湖泊沉积,沉积砂体。不同赋存状态的石膏代表了不同的古环境、古气候、古水动力条件,该研究为苏维依组干旱气候条件下季节性河流—盐湖三角洲的沉积模式研究提供了新的思路。
  • 图  1  (a)研究区构造分区图与(b)地层综合柱状图(据文献[2225]修改)

    Figure  1.  (a) Structural zoning map and (b) comprehensive stratigraphy of the study area (modified from references [22⁃25])

    Fig.1

    图  2  Y25井底砂岩段综合柱状图

    Figure  2.  Comprehensive histogram of well Y25 bottom sandstone section

    Fig.2

    图  3  Y25井底砂岩段岩心石膏特征(岩心位置见图2)

    (a)13⁃2/77,5 132.2 m,团块状石膏,围岩为紫红色泥岩;(b)13⁃13/77,5 135.1 m,团块状石膏,围岩为紫红色泥岩与灰绿色粉砂岩—细砂岩;(c)13⁃48/77,5 142.8 m,团块状石膏,围岩为灰色细砂岩—中砂岩;(d)13⁃60/77,5 147.2 m,团块状石膏,赋存围岩为灰色含砾细砂岩—中砂岩;(e)15⁃1/88,5 156.4 m,团块状石膏,赋存围岩为灰色含砾中砂岩;(f)15⁃14/88,5 159.4 m,团块状石膏,赋存围岩为灰色含砾细砂岩;(g)15⁃27/88,5 163.6 m,团块状石膏,赋存围岩为灰色含砾中砂岩;(h)16⁃1/62,5 166.5 m,灰色含砾中砂岩;(i)16⁃26/62,5 169.8 m,点状石膏,围岩为灰色含砾中砂岩

    Figure  3.  Characteristics of core gypsum in the sandstone section of well Y25 bottom (the location of the rock core is shown in Fig.2)

    (a) 13⁃2/77, 5 132.2 m, lumpy gypsum, surrounding rock is purple mudstone; (b) 13⁃13/77, 5 135.1 m, lumpy gypsum, surrounding rock is purple mudstone and gray⁃green siltstone⁃fine sandstone; (c) 13⁃48/77, 5 142.8 m, lumpy gypsum, surrounding rock is gray fine sandstone⁃medium sandstone; (d) 13⁃60/77, 5 147.2 m, lumpy gypsum, the surrounding rock is gray pebbled fine sandstone⁃medium sandstone; (e) 15⁃1/88, 5 156.4 m, lumpy gypsum, the surrounding rock is gray pebbled medium sandstone; (f) 15⁃14/88, 5 159.4 m, lumpy gypsum, the surrounding rock is gray pebbled fine sandstone; (g) 15⁃27/88, 5 163.6 m, lumpy gypsum, the surrounding rock is gray pebbled medium sandstone; (h) 16⁃1/62, 5 166.5 m, grey pebbled medium sandstone; (i) 16⁃26/62, 5 169.8 m, dotted gypsum, surrounding rock is grey pebbled medium sandstone

    图  4  Y25井底砂岩段石膏镜下特征(取样位置见图2)

    (a,a’)取样位置①,5 135.2 m,膏质粉砂质泥岩,见石膏团块,0.4 mm×0.2 mm,围岩为砂质泥岩;(b,b’)取样位置②,5 137.7 m,岩屑砂岩,方解石与石膏胶结具明显的分界线;(c,c’)取样位置③,5 140.0m,岩屑砂岩,石膏胶结;(d,d’).取样位置④,5 145.1 m,岩屑石英砂岩,方解石胶结为主,少见石膏胶结;(e,e’,f,f’)取样位置⑤,5 148.4 m,膏质石英砂岩,见石膏团块,0.25 mm×0.2 mm,围岩为岩屑石英砂岩,见石膏与方解石胶结;(g,g’)取样位置⑥,5 153.5 m,岩屑石英砂岩,偶见石膏胶结,孔隙度较大;(h,h’)取样位置⑦,5 154.7 m,岩屑石英砂岩,方解石胶结较少,偶见石膏胶结,孔隙度大;(i,i’)取样位置⑧,5 162.5 m,岩屑砂岩,石膏胶结物较少,孔隙度较大;(j,j’)取样位置⑨,5 163.5 m,岩屑砂岩,方解石胶结,孔隙度较大;(k,k’)取样位置⑩,5 165.8 m,岩屑砂岩,方解石胶结,偶见沥青、石膏胶结,孔隙度较大;(l,l’)取样位置⑪,5 169.9 m,岩屑砂岩,方解石胶结和石膏胶结为主;(a~l)为单偏光照片;(a’~l’)为正交偏光照片,相同编号来自同一视域

    Figure  4.  Microscopic characteristics of gypsum in the sandstone section at the bottom of well Y25 (the sampling location is shown in Fig.2)

    (a, a’) sampling location ①, 5 135.2 m, gypsum silty mudstone, with gypsum mass, 0.4 mm×0.2 mm, the surrounding rock is sandy mudstone; (b, b’) sampling location ②, 5 137.7 m, lithic sandstone, there is an obvious boundary between calcite and gypsum cementation; (c, c’) sampling location ③, 5 140.0 m, lithic sandstone, gypsum cementation; (d, d’) sampling location ④, 5 145.1 m, lithic quartz sandstone, calcite cementation is dominant, gypsum cementation is rare; (e, e’, f, f’) sampling location ⑤, 5 148.4 m, gypsum quartz sandstone, see gypsum lump, 0.25 mm×0.2 mm, the surrounding rock is lithic quartz sandstone, and gypsum is cemented with calcite; (g, g’) sampling location ⑥, 5 153.5 m, lithic quartz sandstone, gypsum cementation occasionally, with large porosity; sampling location (h, h’)⑦, 5 154.7 m, lithic quartz sandstone, a small amount of calcite cementation, gypsum cementation occasionally, high porosity; (i, i’) sampling location ⑧, 5 162.5 m, lithic sandstone, occasionally seen gypsum cementation with high porosity; (j, j’) sampling location ⑨, 5 163.5 m, lithic sandstone, calcite cementation with large porosity; (k, k’) sampling location ⑩, 5 165.8 m, lithic sandstone, occasionally, asphalt and gypsum bonding can be observed, large porosity; (l, l’) sampling location ⑪, 5 169.9 m, lithic sandstone, calcite cementation and gypsum cementation are dominant; (a~l) are unipolar light photomicrograph; (a’~l’) are orthogonal polarized photomicrograph, same serial number from same field of view

    图  5  石膏成因类型

    (a,b)撕裂状石膏;(c,d)团块状石膏;(e,f)点状石膏;(g,h)鲕状石膏;(i,j)云雾状石膏;(k,l)定向排列石膏

    Figure  5.  Genetic types of gypsum

    (a, b) tearing gypsum; (c, d) lumpy gypsum; (e, f) point shaped gypsum; (g, h) oolitic gypsum; (i, j) cloud like gypsum; (k, l) directionally arranged gypsum

    图  6  异地成因石膏形成过程图

    Figure  6.  Gypsum formation of different origins

    Fig.6

    图  7  点状石膏形成过程图

    Figure  7.  Punctate gypsum formation

    Fig.7

    图  8  鲕状石膏形成过程图

    Figure  8.  Oolitic gypsum formation

    Fig.8

    图  9  石膏赋存位置与沉积时期(测井数据来自中石油塔里木油田分公司测井数据库)

    Figure  9.  Location and deposition of gypsum (the logging data comes from the logging database of PetroChina Tarim Oilfield Branch)

    Fig.9

    图  10  干旱气候蒸发环境沉积模式图

    Figure  10.  Model of evaporative environmental deposition in an arid climate

    Fig.10

    表  1  石膏成因类型划分表

    类型划分依据赋存状态类型石膏特征围岩特征
    粒径/cm磨圆度分选岩性磨圆度分选沉积构造
    沉积成因石膏异地沉积石膏团块搬运沉积撕裂状8~10棱角状细砂岩棱角状块状构造
    云雾状4~8棱角状细砂岩棱角状块状构造
    团砾状2~5次棱—次圆粉—细砂岩次棱—次圆块状构造
    定向排列0.5~2次圆—圆状粉—细砂岩次圆—圆状平行层理
    原地沉积石膏蒸发沉淀点状0.2~0.5圆状细—中砂岩次圆中—好块状构造
    鲕状0.01~0.03圆状细砂岩次棱—次圆中—差鲕状构造
    下载: 导出CSV
  • [1] 钟逸斯,王立成,董浩伟. 蒸发岩沉积特征及环境综述[J]. 沉积学报,2022,40(5):1188-1214.

    Zhong Yisi, Wang Licheng, Dong Haowei. Evaporite sedimentary characteristics and environment: A review[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1188-1214.
    [2] 付晓飞,宋岩,吕延防,等. 塔里木盆地库车坳陷膏盐质盖层特征与天然气保存[J]. 石油实验地质,2006,28(1):25-29.

    Fu Xiaofei, Song Yan, Yanfang Lü, et al. Rock mechanic characteristics of gypsum cover and conservation function to gas in the Kuche Depression, the Tarim Basin[J]. Petroleum Geology & Experiment, 2006, 28(1): 25-29.
    [3] 张津宁,张金功,杨乾政,等. 柴达木盆地西部膏盐岩发育特征与成因分析[J]. 西北大学学报(自然科学版),2016,46(6):866-876.

    Zhang Jinning, Zhang Jingong, Yang Qianzheng, et al. Characteristics and genesis of gypsum-salt rocks in western Qaidam Basin[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(6): 866-876.
    [4] 常秋红,朱光有,阮壮,等. 碳酸盐岩—膏盐岩组合水—岩反应热力学和动力学模型及其在塔北地区寒武系储层的应用[J]. 天然气地球科学,2021,32(10):1474-1488.

    Chang Qiuhong, Zhu Guangyou, Ruan Zhuang, et al. Thermodynamics and kinetics model of fluid-rock interaction in carbonate-evaporite paragenesis and its application in Cambrian reservoir in Tabei area, Tarim Basin[J]. Natural Gas Geoscience, 2021, 32(10): 1474-1488.
    [5] 邓伟,谭秀成,张道锋,等. 鄂尔多斯盆地中东部奥陶系马家沟组马五6亚段硬石膏产状类型与成因[J]. 古地理学报,2022,24(2):226-244.

    Deng Wei, Tan Xiucheng, Zhang Daofeng, et al. Occurrence types and genesis of anhydrite from the Ma56 submember of Ordovician Majiagou Formation in central and eastern Ordos Basin[J]. Journal of Palaeogeography, 2022, 24(2): 226-244.
    [6] Warren J K. Evaporites: A geological compendium[M]. 2nd ed. Cham: Springer, 2016.
    [7] Peterson J A, Hite R J. Pennsylvanian evaporite-carbonate cycles and their relation to petroleum occurrence, southern Rocky Mountains[J]. AAPG Bulletin, 1969, 53(4): 884-908.
    [8] Middleton G V. Johannes Walther's law of the correlation of facies[J]. GSA Bulletin, 1973, 84(3): 979-988.
    [9] Zheng M P, Hou X H, Zhang Y S, et al. Progress in the investigation of potash resources in western China[J]. China Geology, 2018, 1(3): 392-401.
    [10] Hsü K J, Montadert L, Bernoulli D, et al. History of the Mediterranean salinity crisis[J]. Nature, 1977, 267(5610): 399-403.
    [11] Sonnenfeld P. Brines and evaporites[M]. Orlando: Academic Press, 1984: 1090-1092.
    [12] 许靖华,钱作华连,卫袁,等. 中国察尔汗湖钾盐蒸发泵成因[J]. 化工地质,1991(4):1-6.

    Xu Jinghua, Qian Zuohualian, Wei Yuan, et al. Genesis of potassium salt evaporation pump in Qarhan Lake, China[J]. Chemical Geology, 1991(4): 1-6.
    [13] Hsü K J, Ryan W B F, Cita M B. Late Miocene desiccation of the mediterranean[J]. Nature, 1973, 242(5395): 240-244.
    [14] Hsü K J. The Messinian salinity crisis: Evidence of Late Miocene eustatic changes in the world ocean[J]. Naturwissenschaften, 1978, 65(3): 151.
    [15] 张彭熹. 中国蒸发岩研究中几个值得重视的地质问题的讨论[J]. 沉积学报,1992,10(3):78-84.

    Zhang Pengxi. Discussion on some geological problems of the research of evaporite in China[J]. Acta Sedimentologica Sinica, 1992, 10(3): 78-84.
    [16] 袁见齐,霍承禹,蔡克勤. 盐类矿床成因理论的新发展及其在矿床学上的地位[J]. 矿床地质,1982,1(1):15-24.

    Yuan Jianqi, Huo Chengyu, Cai Keqin. The advances in the theory of the origin of salt deposits and their influence on the study of mineral deposits[J]. Mineral Deposits, 1982, 1(1): 15-24.
    [17] 袁见齐,蔡克勤. 盐类矿床成因理论的新发展[J]. 地球科学,1981(1):197-206.

    Yuan Jianqi, Cai Keqin. Some new ideas on the genesis of salt deposits[J]. Earth Science, 1981(1): 197-206.
    [18] 袁见齐. 盐类矿床成因理论的新发展并论中国钾盐找矿问题[J]. 化工地质,1980(1):1-5.

    Yuan Jianqi. New development of genetic theory of salt deposits and discussion on potash mineral prospecting in China[J]. Chemical Geology, 1980(1): 1-5.
    [19] 袁见齐. 钾盐矿床成矿理论研究的若干问题[J]. 地质论评,1980(1):56-59.

    Yuan Jianqi. Some problems on metallogenic theory of potassium salt deposit[J]. Geological Review, 1980(1): 56-59.
    [20] 刘永福,夏辉,孙琦,等. 塔里木盆地塔北隆起西部巴什基奇克组层序地层及沉积演化[J]. 天然气地球科学,2019,30(1):62-73.

    Liu Yongfu, Xia Hui, Sun Qi, et al. Sequence stratigraphy and depositional evolution of the Bashijiqike Formation in the western Tabei uplift, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(1): 62-73.
    [21] 王涛,吴蜜蜜,成荣红,等. 循环注气开发凝析气藏注入气运移规律研究及意义:以牙哈凝析气田为例[C]//2019油气田勘探与开发国际会议论文集. 西安:西安石油大学,2019:1458-1467.

    Wang Tao, Wu Mimi, Cheng Ronghong, et al. Migration regularity significance of dry gas injection in condensate field developed by cyclic gas injection: Take Yaha condensate field as example [C]//2019 International Conference on Oil and Gas Field Exploration and Development. Xi'an:Xi'an Shiyou University, 2019: 1458-1467.
    [22] 李国会,郑多明,王超,等. 塔里木盆地北部隆起牙哈构造带断裂特征[J]. 天然气地球科学,2007,18(6):859-863.

    Li Guohui, Zheng Duoming, Wang Chao, et al. Characteristics of fault system in Yaha structure belt of northern uplift, Tarim Basin[J]. Natural Gas Geoscience, 2007, 18(6): 859-863.
    [23] 崔海峰,郑多明,董雪华,等. 塔北隆起牙哈构造带断裂特征与油气成藏[J]. 新疆石油地质,2009,30(1):73-76.

    Cui Haifeng, Zheng Duoming, Dong Xuehua, et al. Fault system and oil-gas accumulation in Yaha structural belt of Tabei uplift[J]. Xinjiang Petroleum Geology, 2009, 30(1): 73-76.
    [24] 韩剑发,苏洲,刘永福,等. 塔里木盆地牙哈断块潜山带控储控藏机理与油气勘探潜力[J]. 石油学报,2018,39(10):1081-1091.

    Han Jianfa, Su Zhou, Liu Yongfu, et al. Reservoir controlling mechanism and hydrocarbon exploration potential of buriedhill belt in Yaha fault block, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(10): 1081-1091.
    [25] 黄兰,张建业,张大鹏,等. 循环注气凝析气藏凝析油可采储量标定方法探讨:以牙哈2凝析气藏为例[C]//2019油气田勘探与开发国际会议论文集. 西安:西安石油大学,2019:1928-1936.

    Huang Lan, Zhang Jianye, Zhang Dapeng, et al. Research on the method of condensate recoverable reserves estimation of condensate reserviors with cyclic gas injection: Illustrated with yh2 condensate gas reserve [C]//2019 International Conference on Oil and Gas Field Exploration and Development. Xi’an: Xi'an Shiyou University, 2019: 1928-1936.
    [26] 孙美静,刘杰. 塔里木盆地天山南缘区带古近系苏维依组沉积储层研究[J]. 沉积与特提斯地质,2014,34(2):72-78.

    Sun Meijing, Liu Jie. Sedimentary facies and hydrocarbon reservoirs from the Palaeogene Suweiyi Formation in southern Tianshan Mountains, Tarim Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(2): 72-78.
    [27] Bąbel M, Kasprzyk A. Gypsum ooids from the Middle Miocene (Badenian) evaporites of southern Poland[J]. Acta Geologica Polonica, 1990, 40(3/4): 215-239.
    [28] Tekin E, Varol B, Ayyildiz T. A rare natural gypsum ooide (Gypsolites) in an evaporitic playa lake of Late Miocene (?) to Pliocene age in central Anatlia, Turkey[J]. Carbonates and Evaporites, 2008, 23(1): 50-59.
    [29] 冯阵东,吴伟,程秀申,等. 食盐析出实验对盐湖盆地沉积研究的启示[J]. 沉积学报,2014,32(2):238-243.

    Feng Zhendong, Wu Wei, Cheng Xiushen, et al. Enlightenment from salt precipitation experiment to the researching on saline lacustrine basin sedimentology[J]. Acta Sedimentologica Sinica, 2014, 32(2): 238-243.
    [30] 禚喜准,张林炎,陈骁帅,等. 现代盐湖沉积与岩盐析出模拟的相似性及其对成盐模式的启示[J]. 沉积学报,2018,36(6):1119-1130.

    Zhuo Xizhun, Zhang Linyan, Chen Xiaoshuai, et al. The similarity of salt-forming between flume experiment and modern salt lake[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1119-1130.
    [31] Kasprzyk A. Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland[J]. Sedimentary Geology, 2003, 158(3/4): 167-194.
    [32] 刘景彦,丁孝忠,邱以钢,等. 新疆库车坳陷古近系苏维依组高精度层序地层及其发育的主控因素探讨[J]. 高校地质学报,2009,15(3):318-327.

    Liu Jingyan, Ding Xiaozhong, Qiu Yigang, et al. High-resolution sequence stratigraphic study on the Palaeogene Suweiyi Formation in Kuqa Depression of Xinjiang region and discussion on its major controlling factors[J]. Geological Journal of China Universities, 2009, 15(3): 318-327.
  • [1] 岳超盛, 陈吉涛, 杨文莉, 高彪, 胡科毅, 祁玉平, 王向东.  晚宾夕法尼亚亚纪变暖事件的沉积响应与全球对比 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2023.141
    [2] 孙浩南, 谈明轩, 姚鹏.  环形水槽物理模拟的沉积学应用进展与发展趋势【水槽沉积模拟实验专辑】 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.032
    [3] 杨田, 操应长, 王健, 田景春, 蔡来星, 余文强.  陆相湖盆深水浊流与泥质碎屑流间过渡流沉积与沉积学意义 . 沉积学报, 2023, 41(5): 1295-1310. doi: 10.14027/j.issn.1000-0550.2022.083
    [4] 侯明才, 杨田, 田景春, 蔡来星, 李晓芳, 何青, 余文强.  吉尔伯特型三角洲沉积过程与沉积模式 . 沉积学报, 2023, 41(5): 1281-1294. doi: 10.14027/j.issn.1000-0550.2022.084
    [5] 曹默雷, 陈建平.  由层序地层学角度分析大塘坡式锰矿沉积过程——以湘西北民乐锰矿为例 . 沉积学报, 2022, 40(4): 1083-1094. doi: 10.14027/j.issn.1000-0550.2021.020
    [6] 尹力, 冯文杰, 尹艳树, 雷诚, 徐庆岩, 何一鸣.  波浪作用下砂质滩坝的沉积过程与沉积模式 . 沉积学报, 2022, 40(5): 1393-1405. doi: 10.14027/j.issn.1000-0550.2021.147
    [7] 谈明轩, 吴峰, 马皓然, 付奕霖, 张旭, 崔浩楠.  海底扇沉积相模式、沉积过程及其沉积记录的指示意义 . 沉积学报, 2022, 40(2): 435-449. doi: 10.14027/j.issn.1000-0550.2021.144
    [8] 齐亚林, 赵彦德, 邵晓州, 楚美娟, 左静.  河控三角洲生长的动力和沉积模式 . 沉积学报, 2021, 39(2): 374-382. doi: 10.14027/j.issn.1000-0550.2020.029
    [9] 张明宇, 常鑫, 胡利民, 毕乃双, 王厚杰, 刘喜停.  东海内陆架有机碳的源—汇过程及其沉积记录 . 沉积学报, 2021, 39(3): 593-609. doi: 10.14027/j.issn.1000-0550.2020.080
    [10] 李志扬.  陆棚海泥岩的岩相特征及沉积过程 . 沉积学报, 2021, 39(1): 168-180. doi: 10.14027/j.issn.1000-0550.2020.126
    [11] 李冰, 申春生, 李林, 张君博, 胡治华.  基于沉积过程的三角洲前缘薄互层储层精细分析 . 沉积学报, 2019, 37(5): 1058-1068. doi: 10.14027/j.issn.1000-0550.2019.029
    [12] 朱筱敏, 谈明轩, 董艳蕾, 李维, 秦祎, 张自力.  当今沉积学研究热点讨论——第20届国际沉积学大会评述 . 沉积学报, 2019, 37(1): 1-16. doi: 10.14027/j.issn.1000-0550.2018.185
    [13] 李文宝, 王汝建, 万随.  沉积过程中有机碳及Globigerinoides ruber氧、碳同位素变化特征——以南海南部为例 . 沉积学报, 2017, 35(4): 730-739. doi: 10.14027/j.cnki.cjxb.2017.04.007
    [14] 单敬福, 赵忠军, 李浮萍, 孙立勋, 汤乃千, 王博, 高怀玺.  曲流河道沉积演化过程与历史重建——以吉林油田扶余采油厂杨大城子油层为例 . 沉积学报, 2015, 33(3): 448-458. doi: 10.14027/j.cnki.cjxb.2015.03.003
    [15] 苗建宇, 祝总祺, 刘文荣, 卢焕勇.  泥岩有机质的赋存状态与油气初次运移的关系 . 沉积学报, 2004, 22(1): 169-175.
    [16] 哈斯, 王贵勇, 董光荣.  沙丘背风侧气流及其沉积类型与意义 . 沉积学报, 2001, 19(1): 96-100,124.
    [17] 王兆云, 程克明.  碳酸盐岩中不同赋存状态有机质地球化学特征对比及对成烃的贡献 . 沉积学报, 2000, 18(4): 600-605.
    [18] 苗建宇, 祝总祺, 刘文荣, 卢焕勇.  泥质岩有机质的赋存状态及其对泥质岩封盖能力的影响 . 沉积学报, 1999, 17(3): 478-481.
    [19] 黄思静, 杨俊杰, 张文正, 黄月明, 刘桂霞, 肖林萍.  石膏对白云岩溶解影响的实验模拟研究 . 沉积学报, 1996, 14(1): 103-109.
    [20] 孙和平, 李从先, 业治铮.  广西南流江三角洲全新世沉积层序及沉积过程 . 沉积学报, 1987, 5(2): 133-143.
  • 加载中
图(10) / 表 (1)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  36
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-21
  • 修回日期:  2023-03-13
  • 录用日期:  2023-05-18
  • 网络出版日期:  2023-05-18
  • 刊出日期:  2023-10-10

目录

    陆相石膏赋存状态及沉积过程

    doi: 10.14027/j.issn.1000-0550.2023.027
      基金项目:

      国家自然科学基金项目 42172135

      作者简介:

      王壮生,男,1996年出生,博士研究生,沉积学,E-mail: 407587627@qq.com

      通讯作者: 林小兵,男,博士,讲师,E-mail: linxiaobing07@cdut.edu.cn
    • 中图分类号: P512.2

    摘要: 库车坳陷牙哈气藏是我国开发时间最早、开发技术最为成熟的凝析气藏之一,其主要产层段为古近系苏维依组底砂岩段,岩性以含石膏团块的细砂岩为主。石膏的赋存状态多种多样,而不同赋存状态的石膏发育时期、水动力条件、沉积环境和对储层物性的影响均有不同。基于牙哈气田古近系苏维依组底砂岩段钻井取心、野外剖面、岩石薄片等资料,探讨石膏赋存状态及其形成过程。结果表明:(1)研究区古近系底砂岩段沉积成因石膏可分为异地沉积石膏和原地沉积石膏;(2)异地沉积石膏团块经流水搬运,搬运距离从近到远依次为:①撕裂状,粒径8~10 cm的不规则状石膏团块;②云雾状,粒径4~8cm的云雾状石膏团块,具棱角;③团砾状,粒径2~5 cm,近圆状石膏团块,磨圆度较好;④定向排列石膏,粒径0.5~2 cm,石膏团块定向排列,围岩见平行层理构造;原地沉积石膏包括蒸发浓缩形成均匀分布的点状石膏,以及流水搅动形成的具核心、不具同心圈层结构的鲕状石膏;(3)干旱气候背景下湖泊蒸发环境沉积时期可分为丰水期与枯水期,枯水期为盐湖蒸发沉积模式,石膏等盐类矿物蒸发沉积,丰水期为河流—三角洲—湖泊沉积,沉积砂体。不同赋存状态的石膏代表了不同的古环境、古气候、古水动力条件,该研究为苏维依组干旱气候条件下季节性河流—盐湖三角洲的沉积模式研究提供了新的思路。

    English Abstract

    王壮生, 林小兵, 范峻铭, 杨华童, 张萱, 贾伟. 陆相石膏赋存状态及沉积过程———以库车坳陷牙哈地区古近系苏维依组底砂岩段为例[J]. 沉积学报, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027
    引用本文: 王壮生, 林小兵, 范峻铭, 杨华童, 张萱, 贾伟. 陆相石膏赋存状态及沉积过程———以库车坳陷牙哈地区古近系苏维依组底砂岩段为例[J]. 沉积学报, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027
    WANG ZhuangSheng, LIN XiaoBing, FAN JunMing, YANG HuaTong, ZHANG Xuan, JIA Wei. Occurrence State and Deposition of Terrestrial Gypsum:A case study of the Paleogene Suweiyi Formation, Yaha area, Kuqa Depression[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027
    Citation: WANG ZhuangSheng, LIN XiaoBing, FAN JunMing, YANG HuaTong, ZHANG Xuan, JIA Wei. Occurrence State and Deposition of Terrestrial Gypsum:A case study of the Paleogene Suweiyi Formation, Yaha area, Kuqa Depression[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1354-1365. doi: 10.14027/j.issn.1000-0550.2023.027
      • 石膏是一种十分重要的工业资源,作为建筑材料、工业原料被广泛使用。在油气领域,膏盐岩层因良好的封闭性常被视为优质盖层[13];同时,膏盐岩发育和碳酸盐岩油气藏的形成具有一定的关系[4],常作为碳酸盐岩油气藏一个重要的标志[5]。石膏作为蒸发沉积岩,是饱和卤水经过蒸发失水浓缩,析出溶解的离子成分[6],最后固结成岩。对于蒸发岩成因模式,国内外学者提出了大量的论点,沙洲理论[710]和沙漠理论[11]争论了将近百年,主要矛盾在于盐类物质来源,“沙洲说”认为主要来自海水,“沙漠说”强调陆源供给。我国学者也提出地中海干化理论[1214]、高山深盆理论等。目前对于蒸发岩成因模式广泛认可的是萨布哈理论[6,15]、深水深盆、浅水深盆和浅水浅盆蒸发成因模式[1619]。我国蒸发岩发育也十分广泛,如塔里木盆地、渤海湾盆地等[1],涉及层位也十分广泛,从古生代至今均有发育[15]

        陆相蒸发环境主要有陆内萨布哈和湖泊,其盐卤水来源复杂,主要有残余海水、大气降水淋滤、深部来源供给等。湖相沉积时,滨湖亚相水动力相对较强,常沉积条状石膏,低能鲕粒石膏等;浅湖亚相水动力条件弱,通常发育凝块状石膏;半深湖—深湖亚相主要沉积厚层石膏岩[1]。前人对于海相石膏赋存状态以及相应沉积环境做了大量的归纳总结,但对于陆相石膏沉积研究较为缺乏。

        塔里木盆地库车坳陷牙哈地区古近系苏维依组发育一套含膏泥岩和含膏砂岩建造,上部含膏泥岩为湖相沉积,膏盐岩层和膏泥岩层分布广泛,是一套良好的封盖层,底部为辫状河三角洲前缘沉积,含石膏的砂岩段则为一套良好的储层。苏维依组底砂岩段发育的石膏以团块状、点状、鲕状等形式赋存在砂岩中,赋存状态复杂多样。因此,开展牙哈气藏苏维依组底砂岩段石膏赋存状态及其成因过程研究与讨论,可揭示碎屑岩中石膏赋存状态对沉积环境的响应关系,以期为陆相蒸发沉积模式提供新的资料与参考。

      • 塔里木盆地塔北隆起自西向东划分为英买力低凸起、轮台凸起、哈拉哈塘凹陷、轮南低凸起、草湖凹陷以及库尔勒鼻隆,总体以“四隆两凹”的形态分布[2021]。牙哈气田构造位置位于轮台凸起中段北侧牙哈断裂构造带上,北邻库车坳陷,西邻英买力低凸起,南为哈拉哈塘凹陷(图1a)[2225]。虽然构造划分上隶属于塔北隆起,但由于以陆相油气为主,其主要来源为北部的库车坳陷,在油气系统划分时仍然将其归为库车陆相油气系统,以轻质油和凝析油为主要产物,同时有少量的正常油和天然气[25]

        图  1  (a)研究区构造分区图与(b)地层综合柱状图(据文献[2225]修改)

        Figure 1.  (a) Structural zoning map and (b) comprehensive stratigraphy of the study area (modified from references [22⁃25])

        研究区钻遇地层由老到新依次发育:白垩系巴什基奇克组(K1bs)、古近系苏维依组(E2-3s)、新近系吉迪克组(N1j)、康村组(N1-2k)和库车组(N2k[25],主要研究层位为苏维依组底砂岩段(图1b)。

        苏维依组沉积时期,研究区气候干旱炎热,蒸发强烈,发育广泛的滨浅湖沉积,局部地区为蒸发盐湖相,沉积巨厚湖相地层,只在苏维依组底部发育一套扇三角洲、辫状河三角洲砂体[26]

      • 古近系苏维依组沉积环境从辫状河三角洲沉积相演变为湖泊沉积相,底砂岩段发育水下分流河道微相与分流间湾微相,岩性以含膏粉砂岩、膏质细砂岩及膏泥岩为主,厚度一般为30~45 m。钻井岩心与薄片资料表明,研究区古近系苏维依组底砂岩段均有石膏赋存,赋存状态以石膏团块和石膏胶结为主(图2,3)。

        图  2  Y25井底砂岩段综合柱状图

        Figure 2.  Comprehensive histogram of well Y25 bottom sandstone section

        图  3  Y25井底砂岩段岩心石膏特征(岩心位置见图2)

        Figure 3.  Characteristics of core gypsum in the sandstone section of well Y25 bottom (the location of the rock core is shown in Fig.2)

        底砂岩段顶部石膏含量最多,以石膏团块为主,粒径较大,石膏团块具清晰边界。中上部与底部,石膏含量次之,以粒径较小的石膏团块为主,石膏团块分选较差,大小不一,同时伴随着石膏胶结物发育。其余部位多发育石膏胶结与方解石胶结,零星发育石膏团块,粒径较小,磨圆以次圆为主,同时可见点状石膏(图3,4)。

        图  4  Y25井底砂岩段石膏镜下特征(取样位置见图2)

        Figure 4.  Microscopic characteristics of gypsum in the sandstone section at the bottom of well Y25 (the sampling location is shown in Fig.2)

        石膏团块一般赋存于粉砂质泥岩、泥质粉砂岩、细砂岩和中砂岩,石膏赋存围岩具块状构造和平行层理构造,分选中等,磨圆以次棱—次圆状为主,填隙物以泥质杂基和方解石胶结、石膏胶结为主,团块状石膏赋存部位方解石胶结物较少(图4),主要发育在底砂岩段顶部、中上部和下部。石膏按其形成阶段可分为沉积成因石膏与成岩成因石膏,本文主要讨论石膏沉积环境与其揭示的沉积过程,重点探讨陆相干旱气候条件蒸发环境沉积模式。因此,主要开展沉积成因石膏分析与研究。

      • 尽管目前对于蒸发岩的成因存在多种学说[719],但普遍认为蒸发岩物理形态、化学成分、展布特征均与沉积环境密切相关[1]。本文通过对研究区39口钻井苏维依组底砂岩段岩心观察、取样薄片鉴定,基于石膏的不同赋存状态,分析其沉积环境与沉积过程。按照沉积过程、石膏团块特征和围岩特征划分为2大类、6小类(表1)。

        表 1  石膏成因类型划分表

        类型划分依据赋存状态类型石膏特征围岩特征
        粒径/cm磨圆度分选岩性磨圆度分选沉积构造
        沉积成因石膏异地沉积石膏团块搬运沉积撕裂状8~10棱角状细砂岩棱角状块状构造
        云雾状4~8棱角状细砂岩棱角状块状构造
        团砾状2~5次棱—次圆粉—细砂岩次棱—次圆块状构造
        定向排列0.5~2次圆—圆状粉—细砂岩次圆—圆状平行层理
        原地沉积石膏蒸发沉淀点状0.2~0.5圆状细—中砂岩次圆中—好块状构造
        鲕状0.01~0.03圆状细砂岩次棱—次圆中—差鲕状构造

        撕裂状石膏团块粒径为8~10 cm,形状极不规则,围岩以细砂岩为主,磨圆为棱角状,分选差;云雾状团块粒径为4~8 cm,形状不规则,围岩以细砂岩为主,磨圆为棱角状,分选差;团砾状石膏团块粒径为2~5 cm,形状椭圆,围岩以细—粉砂岩为主,磨圆为次棱—次圆状,分选中等;定向排列石膏团块粒径为0.5~2 cm,形状椭圆,具定向排列特征,围岩以细—粉砂岩为主,磨圆为次圆—圆状,分选较好;点状石膏粒径为0.2~0.5 cm,形状椭圆,具定向排列特征,围岩以细—中砂岩为主,磨圆为次圆状,分选较好;鲕状石膏粒径为0.01~0.03 cm,形状椭圆,具定向排列特征,围岩以细—中砂岩为主,磨圆为次棱—次圆状,分选中等(图5)。

        图  5  石膏成因类型

        Figure 5.  Genetic types of gypsum

      • 前人认为海相团块状石膏岩主要沉积于台地边缘斜坡带和潮上带剧烈蒸发环境,潮上带块状石膏为水体受剧烈蒸发,石膏晶体密集堆积形成层状石膏,斜坡带块状石膏受重力流、块体流作用沉积形成[1]。因此,团块状石膏形成一是需要存在大量石膏蒸发析出、沉淀堆积形成石膏层,二是石膏层破碎形成石膏团块。

        牙哈地区古近纪早期沉积环境为宽浅湖盆,湖水盐度较高,与现今气候条件类似,为干旱气候条件,地表河流以季节性河流为主。枯水期大气降水减少,陆表水减少,注入湖盆水源减少,气温高,湖水持续蒸发,进入盐湖沉积,在此阶段形成了一层较纯的石膏层;受山前大气环流影响,蒸发之后富含水汽的空气向山区移动,在山前受冷空气影响,形成降水,山前冲—洪积扇发育,洪水事件频发,水动力条件及搬运能力强[26],大量降水携带大量陆源碎屑物质自山前冲出,强动力水流搅碎之前沉积的石膏层,并携带、搬运破碎后的石膏团块,与同时期携带的碎屑颗粒同时沉积,固结成岩。在此背景下,异地石膏沉积过程可分为两个阶段,盐湖和洪泛盐沼蒸发沉淀石膏层阶段与洪水搬运石膏团块沉积阶段。不同的搬运距离导致石膏团块粒度与磨圆度不同,可分为撕裂状、云雾状、团砾状和定向排列石膏(图6)。

        图  6  异地成因石膏形成过程图

        Figure 6.  Gypsum formation of different origins

        1) 撕裂状石膏

        撕裂状石膏一般为棱角—次棱角状,撕裂特征明显,为弱固结,石膏团块在应力作用下破碎,或石膏团块整体发生形变,与碎屑物质同时快速沉积,颜色以淡黄色—白色为主,团块大小一般为8~10 cm,形状极不规则,磨圆差。围岩一般为细砂岩,据块状结构,分选较差,磨圆为棱角状,反映其水动力条件较强,搬运距离较近,为洪水事件等较强水动力条件下搬运,快速堆积沉积形成(图6a)。

        2) 云雾状石膏

        云雾状石膏为具棱角的云朵状,或不规则形状,边界清晰,石膏纯净度较高,颜色雪白,团块粒度为4~8 cm。石膏团块在水流冲击破碎后经过短距离搬运,与水流携带的陆源碎屑物质同时沉积。由于搬运距离较短,形成磨圆度差,粒度大小不一,具棱角的云雾状石膏。围岩一般为细砂岩,水动力条件较强,具块状结构,但分选中等,磨圆为棱角状(图6b)。

        3) 团砾状石膏

        团砾状石膏相对云雾状石膏团块磨圆度较好,次棱角—次圆状为主,颜色为雪白色,团块一般为2~5 cm,团块直径可达8 cm。石膏团块在水流破碎后经过较长距离搬运,围岩一般为细—粉砂岩,分选好,磨圆以次棱—次圆为主,具块状结构,反映其搬运距离相对较远(图6c)。

        4) 定向排列石膏

        定向排列石膏一般为多个粒度小,磨圆度好的石膏团块定向排列形成,粒径一般为0.5~2 cm。形态为椭球状或球状,磨圆度为次圆状,极个别达到圆状,颜色一般为浅灰白色,是经过较长距离搬运与长时间流水冲刷形成。围岩一般为细—粉砂岩,具平行层理,为水流长期冲刷形成,分选好,磨圆以次圆—圆状为主(图6d)。

      • 1) 点状石膏

        前人认为,海相点状石膏主要是由于脱水形成的嵌套式石膏,常见于盐沼和盐泥坪过渡的蒸发环境[1],陆相点状石膏同样为蒸发脱水形成。研究区点状石膏均匀分布在砂岩当中,颜色以浅灰白色为主,粒度一般为0.2~0.5 cm。

        研究区沉积环境为宽浅湖盆,由水流携带大量陆源碎屑物质和各种离子汇聚于湖盆中,湖水持续蒸发,富含Ca2+和SO42-的水体随蒸发逐渐形成胶体溶液,凝结点均匀分布,蒸发剧烈,逐渐浓缩结晶,形成点状的石膏,该类型石膏发育较少。围岩一般为细—中砂岩,分选中—好,次棱—次圆,具块状结构(图7)。

        图  7  点状石膏形成过程图

        Figure 7.  Punctate gypsum formation

        2) 鲕状石膏

        鲕状石膏多呈放射状,同心纹层不发育,沉积于盐碱地或湖泊低能区,如滨湖带[2728],在水动力条件相对较强的情况下,石膏生长过程中受水流搅动影响,鲕状石膏通常呈非同心叠层状赋存。

        鲕状石膏是由水流破碎、搬运、溶蚀形成的微小石膏残余颗粒,或由水流携带的细小颗粒为核,在富含Ca2+和SO42-的水体当中经过微弱的搅动,析出的CaSO4晶体逐渐围绕核心附着沉积、生长,形成具一定核心的、不规则的、非同心层的、具鲕状结构或叠层结构的石膏颗粒,围岩以泥质粉砂岩与粉砂质泥岩为主,分选差,磨圆以棱角状—次棱角状为主(图8)。

        图  8  鲕状石膏形成过程图

        Figure 8.  Oolitic gypsum formation

      • 前人认为陆相萨布哈环境主要为盐湖、牛轭湖等,与海相环境类似,均为暴露环境沉积[1],通过盐岩模拟结晶实验以及现代盐湖沉积模式研究[2931],认为盐湖沉积可分为四个阶段:淡水—微咸水阶段、湖水浓缩—碳酸盐阶段、湖水浓缩—硫酸盐阶段和湖泊干涸—岩盐阶段,不同阶段析出的盐类不同,研究区主要经历湖水浓缩—硫酸盐阶段。

        塔里木盆地古近系苏维依组与白垩系巴什基奇克组间存在沉积间断,古近纪早期库姆格列木群时期,塔里木盆地经历一次短暂海侵,海水自西南方向进入[32],古近纪中期,海侵结束,库车坳陷形成一个宽浅湖盆,构造活动逐渐减弱,湖盆持续沉降,沉积巨厚层的含膏泥岩层[26]。干旱气候条件下的陆相蒸发环境卤水来源多样,残余海水、深部流体、大气降水均能供给[1]。苏维依组时期湖水继承早期海侵残余海水,盐度较高,是主要的卤水来源,同时,季节性河流中溶解的卤盐分子是持续来源之一[26,32]

        古近系苏维依组底砂岩段发育多种赋存状态石膏,主要沉积于底部、中上部以及顶部。横向上底部含石膏层段普遍发育,东部、西部含石膏层段较厚,中部相对较薄;中上部含石膏层段发育普遍较薄,连续性较差;顶部含石膏层段相对连续,普遍发育2~3层(图9a)。底砂岩段底部、中上部与顶部含石膏层段主要发育撕裂状、云雾状、团砾状和定向排列石膏,沉积于水下分流河道沉积微相。其余层位偶见点状、鲕状石膏发育,主要沉积相为河口坝微相与水下分流河道微相(图9b)。

        图  9  石膏赋存位置与沉积时期(测井数据来自中石油塔里木油田分公司测井数据库)

        Figure 9.  Location and deposition of gypsum (the logging data comes from the logging database of PetroChina Tarim Oilfield Branch)

        上述石膏赋存状态的垂向差异分布揭示了不同气候条件与沉积过程。不同于陆相萨布哈环境沉积模式,干旱气候条件下季节性河流—湖盆沉积存在两个沉积时期与沉积模式,丰水期为山前冲积扇—辫状河—辫状河三角洲—咸湖沉积体系,枯水期为咸湖/洪水三角洲沉积,咸湖沉积发育泥岩—灰岩—石膏—盐岩的环形条带状沉积,洪水事件破碎、搬运石膏,发育含膏质砂岩,两种沉积模式相互循环,形成多种多样的石膏赋存状态(图10)。

        图  10  干旱气候蒸发环境沉积模式图

        Figure 10.  Model of evaporative environmental deposition in an arid climate

        枯水期气候干旱,季节性河流断流,大气降水减少,湖泊与湖岸盐沼水量补给较少,且蒸发强烈,水分快速蒸发,析出石膏晶体并沉淀形成石膏层,湖泊进入蒸发浓缩—硫酸盐阶段。同时枯水期存在突发性洪水事件,水动力较强,可破碎石膏层形成大量石膏团块,并随流水搬运石膏团块,在三角洲前缘砂岩中形成含石膏沉积。石膏团块在搬运过程中,粒径逐渐变小,磨圆度逐渐增高,呈现不同赋存状态,依次为撕裂状、云雾状、团砾状和定向排列。石膏团块赋存部位围岩粒度也逐渐变细,泥质含量逐渐增高(图10)。

        丰水期季节性河流(或洪水)与季节性大气降雨带来大量水量补给,湖平面上升,携带大量陆源碎屑物质与少量卤族元素。此时期大气降水充足,蒸发减弱,团块状石膏发育较少,膏质通常以胶结物形式存在。部分浅水区域地表流水与湖水密度不同,导致富含CaSO4的流体在湖盆斜坡带流速快速降低,发生扰动,形成鲕状石膏(图10)。

        干旱气候条件下季节性河流—盐湖三角洲沉积模式以两种模式循环往复为特征,形成了各种不同样式的石膏赋存状态,代表了研究区干旱与湿润气候条件的循环变化,体现不同气候条件下沉积模式的演化,为陆相蒸发环境沉积模式提供了新的思路与认识。

      • (1) 牙哈地区古近系苏维依组底砂岩段沉积成因石膏赋存状态可分为异地沉积石膏和原地沉积石膏两类。

        (2) 异地沉积石膏具有明显的搬运特征,随搬运距离增加依次为撕裂状、云雾状、团砾状和定向排列石膏,石膏团块粒径逐渐减小,磨圆度变好,围岩分选逐渐变好,磨圆逐渐变好。原地沉积石膏可分为鲕状石膏与点状石膏,点状石膏为枯水期湖水蒸发浓缩,膏质析出形成;鲕状石膏为流水搅动,石膏晶体固着析出形成具一定核心并围绕核心附着沉积形成不规则的、非同心层的、具鲕状结构或叠层结构的石膏颗粒。

        (3) 石膏赋存状态与沉积过程,揭示了古近系苏维依组沉积环境为干旱气候条件下季节性河流沉积,呈丰水期、枯水期交替发育的特征,存在两个不同沉积模式,枯水期为盐湖/洪水沉积模式,丰水期流水搅动,为三角洲—湖泊沉积模式。

    参考文献 (32)

    目录

      /

      返回文章
      返回