全文HTML
王丹附表.rar |
引用本文: | 王丹. 塔北、塔中地区寒武系—奥陶系白云岩多成因模式[J]. 沉积学报, 2024, 42(3): 857-876. doi: 10.14027/j.issn.1000-0550.2023.128 |
Citation: | WANG Dan. Geochemical Characteristics and Origins of the Cambrian-Ordovician Dolomites in Northern and Central Tarim Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 857-876. doi: 10.14027/j.issn.1000-0550.2023.128 |
图 4 泥—粉晶白云石(Md1)岩石学特征
(a) interbedded very fine crystalline dolomites and anhydrite, well HT1, 6 430.80 m; (b) fibrous anhydrite with pebbles of very fine crystalline dolomite (yellow arrows), plane⁃polarized light (PPL), well HT1, 6 430.82 m, Cambrian (Є); (c) isometric granular and/or elliptical gypsum crystals containing very fine intracrystalline dolomites, PPL, well HT1, 6 430.82 m, Є; (d) isometric granular and/or elliptical gypsum crystals with intracrystalline prismatic anhydrite crystals (yellow arrows), cross⁃polarized light(XPL), well HT1, 6 430.82 m, Є; (e) meter⁃scale, shallowing⁃upward cyclic deposition of lower dolo⁃thrombolite and upper dolo⁃laminites with dissolution porosity, Penglaiba section, Lower Qiulitage subgroup of the Upper Cambrian; (f) layers of very fine crystalline dolomite and mud⁃rich material, PPL, TS1, 7 874.30 m, Є
Figure 4. Petrology of very fine to fine crystalline dolomite (Md1)
图 5 残余拟晶基质白云石(Md2)岩石学特征
(a) algal aggregate replacement by very fine dolomite crystals, with pores cemented by dolomites, PPL, well TS1, 7 461.30 m, Є; (b) dark⁃gray algal aggregates with intragrain pores cemented by dolomites, PPL, Penglaiba section, Є; (c) dark⁃red luminescent algal aggregates and bright⁃red luminescent intragrain dolomite cements, cathodoluminescence (CL), Penglaiba section, Є
Figure 5. Petrology of relict mimetic dolomite (Md2)
图 6 细晶、直面、自形—半自形、漂浮状基质白云石(Md3)和中晶、直面、自形—半自形基质白云石(Md4)岩石学特征
(a) partially dolomitized limestone [26], with mottled dolomites along stylolites, northern Tarim Basin, Ordovician (scale bar = 3 cm); (b) planar euhedral to subhedral dolomite crystals (Md2) clustered along the stylolite, with some in the micrite matrix [26], northern Tarim Basin, Ordovician; (c) Md2 in siliceous cement matrix, with parts showing gulf outlines, XPL, well DG1, 6 261.88 m, Є; (d) Md2 in siliceous cements, scanning electron microscope (SEM), well T1, 3 179.89 m, Є; (e) energy dispersive scanning (EDS) of siliceous cements, orange spot in (d); (f) EDS of matrix dolomite, yellow spots in (d); (g) fine crystalline, planar⁃e(s) dolomites (Md4), PPL, well S88, 6 409.10 m, Penglaiba Formation; (h) fine crystalline dolomite with petal nuclease and slightly curved surfaces[26], PPL, well GL1, 6 456.10 m, Ordovician
Figure 6. Petrology of very fine to fine crystalline, planar⁃e(s) floating dolomite (Md3) and fine crystalline, planar⁃e(s) dolomite (Md4)
图 7 细—粗晶、曲面、他形基质白云石(Md5)和粗晶、曲面、鞍形基质白云石(Md6)岩石学特征
(a) fine crystalline, nonplanar anhedral matrix dolomites (Md5) in the lower right, and coarse crystalline saddle dolomite cements (Sd⁃c) in upper⁃left⁃hand sections of the photomicrograph, PPL, well S15, 5 389.10 m, Є; (b) Md5 with mottled dull red luminescence, and Sd⁃c with dull red to nonluminescence, CL, well S15, 5 389.10 m, Є; (c) coarse crystalline, nonplanar saddle matrix dolomite, PPL, well Z4, 5 811.90 m, Є; (d) coarse crystalline, nonplanar saddle matrix dolomite [26], PPL, well T1, 3 172.93 m, Є; (e) extremely coarse saddle dolomite crystals with intercrystalline porosity and abundant microfaults, PPL, well Z4, 5 816.00 m, Є; (f) extremely coarse crystalline saddle dolomites showing sweeping extinction, XPL, well Z4, 5 816.00 m, Є
Figure 7. Petrology of fine to coarse crystalline, nonplanar⁃a dolomite (Md5) and coarse crystalline, nonplanar saddle dolomite (Md6)
图 9 塔北、塔中地区各类型白云石及泥晶灰岩稀土分配模式图
(a) micritic and dolomitic limestones, data from references [32⁃33]; (b) very fine to fine crystalline dolomite (Md1); (c) relict mimetic dolomite (Md2); (d) fine crystalline, planar⁃e(s) dolomite (Md4); (e) fine to coarse crystalline, nonplanar⁃a dolomite (Md5); (f) coarse crystalline, nonplanar saddle dolomite (Md6); (g) silty to fine crystalline dolomite, data from reference [34]; (h) medium to coarse crystalline dolomite, data from reference [34]
Figure 9. REE patterns for different types of dolomites and micritic limestone in northern and central Tarim Basin
图 10 塔北地区(a)和塔中地区(b)寒武系—奥陶系泥晶灰岩与白云岩δ13C⁃δ18O交会图
estimated δ13C and δ18O data for Cambrian to Lower Ordovician seawater from references [35⁃37]
Figure 10. Cross⁃plot of δ13C and δ18O values for limestone and different types of matrix dolomites in (a) northern Tarim Basin; and (b) central Tarim Basin
图 11 塔北地区(a)和塔中地区(b)寒武—奥陶系泥晶灰岩与白云岩Sr87/Sr86⁃δ18O交汇图
estimated 87Sr/86Sr and δ18O data for Cambrian to Lower Ordovician seawater from references [35⁃37]
Figure 11. Cross⁃plot of 87Sr/86Sr and δ18O data for limestone and different types of matrix dolomites in (a) northern Tarim Basin; and (b) central Tarim Basin
[1] | Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Petrology, 1987, 57(1): 166-183. |
[2] | Machel H G. Concepts and models of dolomitization: A critical reappraisal[J]. Geological Society, London, Special Publications, 2004, 235: 7-63. |
[3] | Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81. |
[4] | Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitization[M]. Tulsa: SEPM Society for Sedimentary Geology, 1980: 320. |
[5] | 何治亮,马永生,张军涛,等. 中国的白云岩与白云岩储层:分布、成因与控制因素[J]. 石油与天然气地质,2020,41(1):1-14. He Zhiliang, Ma Yongsheng, Zhang Juntao, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil & Gas Geology, 2020, 41(1): 1-14. |
[6] | 金之钧. 中国海相碳酸盐岩层系油气形成与富集规律[J]. 中国科学(D辑):地球科学,2011,41(7):910-926. Jin Zhijun. Formation and accumulation of oil and gas in marine carbonate strata in Chinese sedimentary basins[J]. Science China (Seri.D): Earth Sciences, 2011, 41(7): 910-926. |
[7] | 陈代钊,钱一雄. 深层—超深层白云岩储集层:机遇与挑战[J]. 古地理学报,2017,19(2):187-196. Chen Daizhao, Qian Yixiong. Deep or super-deep dolostone reservoirs: Opportunities and challenges[J]. Journal of Palaeogeography, 2017, 19(2): 187-196. |
[8] | 尤东华,韩俊,胡文瑄,等. 塔里木盆地顺南501井鹰山组白云岩储层特征与成因[J]. 沉积学报,2018,36(6):1206-1217. You Donghua, Han Jun, Hu Wenxuan, et al. Characteristics and genesis of dolomite reservoirs in the Yingshan Formation of well SN501 in the Tarim Basin[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1206-1217. |
[9] | 郑剑锋,沈安江,乔占峰,等. 柯坪—巴楚露头区蓬莱坝组白云岩特征及孔隙成因[J]. 石油学报,2014,35(4):664-672. Zheng Jianfeng, Shen Anjiang, Qiao Zhanfeng, et al. Characteristics and pore genesis of dolomite in the Penglaiba Formation in Keping-Bachu outcrop area[J]. Acta Petrolei Sinica, 2014, 35(4): 664-672. |
[10] | 乔占峰,沈安江,郑剑锋,等. 塔里木盆地下奥陶统白云岩类型及其成因[J]. 古地理学报,2012,14(1):21-32. Qiao Zhanfeng, Shen Anjiang, Zheng Jianfeng, et al. Classification and origin of the Lower Ordovician dolostone in Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(1): 21-32. |
[11] | Guo C, Chen D Z, Qing H R, et al. Early dolomitization and recrystallization of the Lower-Middle Ordovician carbonates in western Tarim Basin (NW China)[J]. Marine and Petroleum Geology, 2020, 111: 332-349. |
[12] | Guo C, Chen D Z, Qing H R, et al. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China[J]. Marine and Petroleum Geology, 2016, 72: 295-316. |
[13] | 邵龙义,何宏,彭苏萍,等. 塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理[J]. 古地理学报,2002,4(2):19-30. Shao Longyi, He Hong, Peng Suping, et al. Types and origin of dolostones of the Cambrian and Ordovician of Bachu uplift area in Tarim Basin[J]. Journal of Palaeogeography, 2002, 4(2): 19-30. |
[14] | 乔占峰,张天付,贺训云,等. 塔里木盆地蓬莱坝组层状白云岩储层发育规律[J]. 地球科学,2023,48(2):673-689. Qiao Zhanfeng, Zhang Tianfu, He Xunyun, et al. Development and exploration direction of bedded massive dolomite reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin[J]. Earth Science, 2023, 48(2): 673-689. |
[15] | 曹自成,尤东华,漆立新,等. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学,2020,31(7):915-922. Cao Zicheng, You Donghua, Qi Lixin, et al. New insights of the genesis of ultra-deep dolomite reservoirs in well TS1, Tarim Basin: Evidence from in situ carbon and oxygen isotope analysis[J]. Natural Gas Geoscience, 2020, 31(7): 915-922. |
[16] | 王丹,王旭,陈代钊,等. 塔里木盆地塔北、塔中地区寒武系—奥陶系碳酸盐岩中鞍形白云石胶结物特征[J]. 地质科学,2010,45(2):580-594. Wang Dan, Wang Xu, Chen Daizhao, et al. Characteristics of saddle dolomite cements in the Cambrian-Ordovician carbonates in Tabei and Tazhong area of Tarim Basin[J]. Chinese Journal of Geology, 2010, 45(2): 580-594. |
[17] | 郑和荣,吴茂炳,邬兴威,等. 塔里木盆地下古生界白云岩储层油气勘探前景[J]. 石油学报,2007,28(2):1-8. Zheng Herong, Wu Maobing, Wu Xingwei, et al. Oil-gas exploration prospect of dolomite reservoir in the Lower Paleozoic of Tarim Basin[J]. Acta Petrolei Sinica, 2007, 28(2): 1-8. |
[18] | Zhu D Y, Meng Q Q, Jin Z J, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China[J]. Marine and Petroleum Geology, 2015, 59: 232-244. |
[19] | 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探,2016,21(3):38-51. Qi Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. |
[20] | 顾家裕. 塔里木盆地下奥陶统白云岩特征及成因[J]. 新疆石油地质,2000,21(2):120-122,170. Gu Jiayu. Characteristics and origin analysis of dolomite in Lower Ordovician of Tarim Basin[J]. Xinjiang Petroleum Geology, 2000, 21(2): 120-122, 170. |
[21] | 郭峰,郭岭. 柯坪地区肖尔布拉克寒武系层序及沉积演化[J]. 地层学杂志,2011,35(2):164-171. Guo Feng, Guo Ling. Sequence stratigraphy and sedimentary evolution of the Cambrian system at the Xiaoerblak section in the Keping area[J]. Journal of Stratigraphy, 2011, 35(2): 164-171. |
[22] | 赵宗举,张运波,潘懋,等. 塔里木盆地寒武系层序地层格架[J]. 地质论评,2010,56(5):609-620. Zhao Zongju, Zhang Yunbo, Pan Mao, et al. Cambrian sequence stratigraphic framework in Tarim Basin[J]. Geological Review, 2010, 56(5): 609-620. |
[23] | McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200. |
[24] | Gregg J M, Sibley D F. Epigenetic dolomitization and the origin of xenotopic dolomite texture[J]. Journal of Sedimentary Petrology, 1984, 54(3): 908-931. |
[25] | Sibley D F, Gregg J M. Classification of dolomite rock textures[J]. Journal of Sedimentary Petrology, 1987, 57(6): 967-975. |
[26] | 王丹,陈代钊,杨长春,等. 埋藏环境白云石结构类型[J]. 沉积学报,2010,28(1):17-25. Wang Dan, Chen Daizhao, Yang Changchun, et al. Classification of texture in burial dolomite[J]. Acta Sedimentologica Sinica, 2010, 28(1): 17-25. |
[27] | Lind I L. Stylolites in chalk from Leg 130, Ontong Java Plateau[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1993, 130: 445-451. |
[28] | Fabricius I L, Borre M K. Stylolites, porosity, depositional texture, and silicates in chalk facies sediments. Ontong Java Plateau-Gorm and Tyra fields, North Sea[J]. Sedimentology, 2007, 54(1): 183-205. |
[29] | Qing H R, Mountjoy E W. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu'ile barrier, western Canada sedimentary basin[J]. AAPG Bulletin, 1994, 78(1): 55-77. |
[30] | Chen D Z, Qing H R, Yang C. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China[J]. Sedimentology, 2004, 51(5): 1029-1051. |
[31] | Tucker M E, Wright V P. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990: 1-482. |
[32] | 陈永权,周新源. 塔里木盆地中寒武统—下奥陶统泥晶灰岩地球化学与古海洋学[J]. 海洋地质与第四纪地质,2009,29(1):47-52. Chen Yongquan, Zhou Xinyuan. Geochemical characteristics of Middle Cambrian-Early Ordovician limestone and paleo-ocean reconstruction based on δ18OSMOW, 87Sr/86Sr and rare earth elements, Tarim Basin[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 47-52. |
[33] | 陈永权,周新源,赵葵东,等. 塔里木盆地塔中19井奥陶系蓬莱坝组云灰互层段的岩性旋回特征与“顶侵型”埋藏云化模式的建立[J]. 沉积学报,2009,27(2):202-211. Chen Yongquan, Zhou Xinyuan, Zhao Kuidong, et al. The petrologic rhythm of Lower Ordovician Penglaiba Formation encountered by well Tazhong 19 and new dolomitization model, Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(2): 202-211. |
[34] | 朱东亚,金之钧,胡文瑄. 塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J]. 中国科学(D辑):地球科学,2010,40(2):156-170. Zhu Dongya, Jin Zhijun, Hu Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science China (Seri.D): Earth Sciences, 2010, 40(2): 156-170. |
[35] | Fan R, Deng S H, Zhang X L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Science China Earth Sciences, 2011, 54(11): 1686-1695. |
[36] | Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161: 59-88. |
[37] | Montañez I P, Osleger D A, Banner J L, et al. Evolution of the Sr and C isotope composition of Cambrian oceans[J]. GSA Today, 2000, 10(5): 1-7. |
[38] | Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362. |
[39] | Zhao Y Y, Wei W, Li S Z, et al. Rare earth element geochemistry of carbonates as a proxy for deep-time environmental reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 574: 110443. |
[40] | Zhao Y Y, Wei W, Santosh M, et al. A review of retrieving pristine rare earth element signatures from carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586: 110765. |
[41] | Ward J F, Verdel C, Campbell M J, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: Constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471. |
[42] | Morad S, Felitsyn S. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: Implication for the Cambrian oceanic anoxia and phosphogenesis[J]. Sedimentary Geology, 2001, 143(3/4): 259-264. |
[43] | Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48. |
[44] | Mazzullo S J. Organogenic dolomitization in peritidal to deep-sea sediments[J]. Journal of Sedimentary Research, 2000, 70(1): 10-23. |
[45] | McKenzie J A. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: A stable isotope study[J]. The Journal of Geology, 1981, 89(2): 185-198. |
[46] | Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. |
[47] | Wang G W, Hao F, Li P P, et al. Use of rare earth element geochemistry to constrain the source of dolomitizing fluid for dolomitization of the Lower Triassic Feixianguan Formation, Jiannan area, China[J]. Journal of Petroleum Science and Engineering, 2016, 138: 282-291. |
[48] | Scotese C R, McKerrow W S. Revised world maps and introduction[M]//McKerrow W S, Scotese C R. Paleozoic paleogeography and biogeography. London: Geological Society, London, Memoirs, 1990, 12: 1-21. |
[49] | Wright D T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia[J]. Sedimentary Geology, 1999, 126: 147-157. |
[50] | Jiang L, Cai C F, Worden R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 2016, 63(7): 2130-2157. |
[51] | Qing H R, Bosence D W J, Rose E P F. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean[J]. Sedimentology, 2001, 48(1): 153-163. |
[52] | Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390. |
[53] | van Lith Y, Warthmann R, Vasconcelos C, et al. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J]. Geobiology, 2003, 1(1): 71-79. |
[54] | Guo C, Chen D Z, Dong S F, et al. Early dolomitisation of the Lower-Middle Ordovician cyclic carbonates in northern Tarim Basin, NW China[J]. Science China Earth Sciences, 2017, 60(7): 1283-1298. |
[55] | Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920. |
[56] | You X L, Sun S, Zhu J Q, et al. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, north-west China: Implications for the role of organic substrate on dolomite precipitation[J]. Terra Nova, 2013, 25(5): 387-395. |
[57] | 胡文瑄,朱井泉,王小林,等. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义[J]. 石油与天然气地质,2014,35(6):860-869. Hu Wenxuan, Zhu Jingquan, Wang Xiaolin, et al. Characteristics, origin and geological implications of the Cambrian microbial dolomite in Keping area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 860-869. |
[58] | Dong S F, Chen D Z, Qing H, et al. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry[J]. Marine and Petroleum Geology, 2013, 46: 270-286. |
[59] | 李慧莉,邱楠生,金之钧,等. 塔里木盆地的热史[J]. 石油与天然气地质,2005,26(5):613-617. Li Huili, Qiu Nansheng, Jin Zhijun, et al. Geothermal history of Tarim Basin[J]. Oil & Gas Geology, 2005, 26(5): 613-617. |
[60] | 邱楠生,汪集暘,梅庆华,等. (U-Th)/He年龄约束下的塔里木盆地早古生代构造—热演化[J]. 中国科学D辑:地球科学,2010,40(12):1669-1683. Qiu Nansheng, Wang Jiyang, Mei Qinghua, et al. Constraints of (U-Th)/He ages on Early Paleozoic tectonothermal evolution of the Tarim Basin, China[J]. Science China: Earth Sciences, 2010, 40(12):1669-1683. |
[61] | Li K, Cai C, He H, et al. Origin of palaeo-waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin: Constraints from fluid inclusions and Sr, C and O isotopes[J]. Geofluids, 2011, 11(1): 71-86. |
[62] | 傅强,凌支虎. 塔里木雅克拉断凸沉积埋藏史及成藏模式[J]. 成都理工学院学报,1996,23(2):74-79. Fu Qiang, Ling Zhihu. The depositional history and the pool-forming models in the Yakela convex block, Tarim Basin[J]. Journal of Chengdu Institute of Technology, 1996, 23(2): 74-79. |
[63] | 叶德胜. 塔里木盆地北部寒武—奥陶系碳酸盐岩的深部溶蚀作用[J]. 沉积学报,1994,12(1):66-71. Ye Desheng. Deep dissolution of Cambrian-Ordovician carbonates in the northern Tarim Basin[J]. Acta Sedimentologica Sinica, 1994, 12(1): 66-71. |
[64] | Qiu N S, Chang J, Zuo Y H, et al. Thermal evolution and maturation of Lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. AAPG Bulletin, 2012, 96(5): 789-821. |
[65] | 黄思静. 碳酸盐岩的成岩作用[M]. 北京:地质出版社,2010. Huang Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010. |
[66] | Mattes B W, Mountjoy E W. Burial dolomitization of the Upper Devonian Miette buildup, Jasper National Park, Alberta[M]//Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitization. Tulsa: SEPM Society for Sedimentary Geology, 1980: 259-297. |
[67] | 卿海若,陈代钊. 非热液成因的鞍形白云石:来自加拿大萨斯喀彻温省东南部奥陶系Yeoman组的岩石学和地球化学证据[J]. 沉积学报,2010,28(5):980-986. Hairuo Qing, Chen Daizhao. Non-hydrothermal saddle dolomite: Petrological and geochemical evidence from the Ordovician Yeoman Formation, southeastern Saskatchewan, Canada[J]. Acta Sedimentologica Sinica, 2010, 28(5): 980-986. |
[68] | Dong S F, Chen D Z, Zhou X Q, et al. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China[J]. Sedimentology, 2017, 64(4): 1079-1106. |
王丹附表.rar |
摘要: 目的 塔里木盆地下古生界厚层白云岩具有良好的油气勘探前景,但目前其成因尚未达成统一的认识。通过对这些白云岩的成因研究,可为塔里木盆地下古生界厚层白云岩的油气勘探提供一定的理论支撑。 方法 基于国际学术界通用的白云石分类方案,对塔北、塔中地区寒武系—奥陶系白云岩开展了详细的岩相学和地球化学(微量—稀土元素、δ13C和δ18O及87Sr/86Sr比值)研究。 结果和结论 基质白云石可识别出6种类型:(1)泥粉晶白云石(Md1);(2)残余拟晶白云石(Md2);(3)粉—细晶、直面、自形—半自形、漂浮状白云石(Md3);(4)细晶、直面、自形—半自形白云石(Md4);(5)细—粗晶、他形、曲面白云石(Md5);(6)粗晶、曲面、鞍形白云石(Md6)。Md1和Md2的成岩流体为不同程度蒸发浓缩的同期海水,形成于相对局限沉积环境的同生—准同生白云石化作用;Md3和Md4的成岩流体为地层中残留的海源孔隙水,形成于浅—中埋藏白云石化作用;Md5的成岩流体为海源流体,形成于深埋藏白云石化作用或早期白云石的重结晶作用;Md6的形成流体为与宿主白云岩发生强烈水岩反应的深部热液,主要形成于深部热液及围岩之间相互调节、再平衡过程中的“热液调节白云石化作用”对宿主白云岩的改造作用。
Abstract: Objective The genesis of dolomites is still controversy, and dolomite reservoirs play an important role in carbonate oil and gas exploration, whose reservoir properties (porosity and permeability) are largely influenced by the genesis types and texture characteristics of dolomites. In recent years, many large oil and gas fields have also been found in domestic dolomite reservoirs, such as Tarim Basin, Sulige gas field in Ordos Basin, Puguang and Yuanba gas field in Sichuan Basin and Anyue large or super large gas field. Therefore, systematic researches on the texture types and genetic mechanisms of dolomites yield profound theoretical significance, and also will promote greater advance in carbonate oil and gas exploration in China. The Tarim Basin shares large volume of oil and gas reserves, the exploration target horizons within which has gradually shifted from medium shallow- to medium-buried layers to ultra-deep layers. Especially, industrial oil and gas flows were encountered in the deeply-buried dolomites of the Lower Paleozoic in the Tarim Basin, making the formation, evolution and reservoir characteristics of deep dolomite reservoirs in this basin become the focus of scholars' research. However, the formation mechanism of the Cambrian-Ordovician dolomites in the Tarim Basin has not yet reached a consensus due to deep burial depth, complex genesis and difficult exploration of these dolomites. This study increases the understanding of their origin and provides theoretical support for oil and gas exploration in the region. Methods Detailed petrographic and geochemical (trace-rare earth elements, stable carbon and oxygen isotopes and 87Sr/86Sr ratios) studies of these dolomites were conducted on the Cambrian-Ordovician dolomites of northern and central Tarim Basin based on the international classification scheme of dolomite. Results and Conclusions According to the occurrence of dolomites, the Cambrian-Ordovician dolomites were divided into matrix and cement dolomites. Based on grain sizes, contact relationship between crystal planes (plane or curved surface), and crystal shape (euhedral, subhedral or anhedral), six types of dolomite structures were further identified for the matrix dolomite: (1) very fine to fine crystalline dolomite (Md1); (2) relict mimetic dolomite (Md2); (3) very fine to fine crystalline, planar-e(s) floating dolomite (Md3); (4) fine crystalline, planar-e(s) dolomite (Md4); (5) fine to coarse crystalline, nonplanar-a dolomite (Md5); and (6) coarse crystalline, nonplanar saddle dolomite (Md6). The distribution patterns of rare earth elements (REE) (slight enrichment or depletion of light REE, weak Eu negative or positive anomalies, and weak Ce negative or positive anomalies), δ13C values (-2.83‰ -1.72‰; average -1.64‰) and 87Sr/86Sr values (0.708 7~0.711 6; average 0.709 5) in the six matrices are similar to Cambrian-Ordovician micritic limestone and contemporaneous seawater. The diagenetic fluids of Md1 and Md2 are coeval seawater with varying degrees of evaporation and concentration, and were formed by (pene)contemporaneous dolomitization (including sabkha and reflux infiltration dolomitization) in relatively restricted depositional environments. The parent fluids of Md3 and Md4 are residual seawater, created by shallow-to medium-burial dolomitization. The diagenetic fluids of Md5 are variants of contemporaneous water, formed by deep-burial dolomitization or recrystallization of earlier dolomites. Deep hydrothermal fluids were responsible for the Md6 formation as a result of strong water-rock interactions with the host dolomites, influenced by mutual regulation and re-equilibration between the deep hydrothermal fluids and surrounding rocks.
引用本文: | 王丹. 塔北、塔中地区寒武系—奥陶系白云岩多成因模式[J]. 沉积学报, 2024, 42(3): 857-876. doi: 10.14027/j.issn.1000-0550.2023.128 |
Citation: | WANG Dan. Geochemical Characteristics and Origins of the Cambrian-Ordovician Dolomites in Northern and Central Tarim Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 857-876. doi: 10.14027/j.issn.1000-0550.2023.128 |
王丹附表.rar |