高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非淡水成因选择性溶蚀及其沉积旋回中差异性分布特征研究——以羌塘盆地布曲组为例

王茂德 付小东 张建勇 刘思琪 葛毓柱 甯濛 夏攀 文华国

王茂德, 付小东, 张建勇, 刘思琪, 葛毓柱, 甯濛, 夏攀, 文华国. 非淡水成因选择性溶蚀及其沉积旋回中差异性分布特征研究——以羌塘盆地布曲组为例[J]. 沉积学报, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142
引用本文: 王茂德, 付小东, 张建勇, 刘思琪, 葛毓柱, 甯濛, 夏攀, 文华国. 非淡水成因选择性溶蚀及其沉积旋回中差异性分布特征研究——以羌塘盆地布曲组为例[J]. 沉积学报, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142
WANG MaoDe, FU XiaoDong, ZHANG JianYong, LIU SiQi, GE YuZhu, NING Meng, XIA Pan, WEN HuaGuo. Selective Dissolution of Non-freshwater Origin and Its Differential Distribution Within Sedimentary Cycles: A case study from the Buqu Formation of the well GK-1, Qiangtang Basin, China[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142
Citation: WANG MaoDe, FU XiaoDong, ZHANG JianYong, LIU SiQi, GE YuZhu, NING Meng, XIA Pan, WEN HuaGuo. Selective Dissolution of Non-freshwater Origin and Its Differential Distribution Within Sedimentary Cycles: A case study from the Buqu Formation of the well GK-1, Qiangtang Basin, China[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142

非淡水成因选择性溶蚀及其沉积旋回中差异性分布特征研究——以羌塘盆地布曲组为例

doi: 10.14027/j.issn.1000-0550.2023.142
基金项目: 

中国石油杭州地质研究院项目 RIPED-2022-JS-681

四川省天然气成藏物质基础青年科技创新团队基金项目 2022JDTD0004

详细信息

Selective Dissolution of Non-freshwater Origin and Its Differential Distribution Within Sedimentary Cycles: A case study from the Buqu Formation of the well GK-1, Qiangtang Basin, China

  • 摘要: 目的 海相碳酸盐岩中常见选择性溶蚀现象,前人多认为是大气淡水成岩作用的标志,其他可能的成因缺乏探讨和相关报道。 方法 基于岩石矿物学、无机碳氧同位素和元素地球化学特征,对南羌塘盆地GK-1井布曲组海相选择性溶蚀成因进行综合分析。 结果 岩石矿物学特征表明:GK-1井布曲组发育8个沉积旋回(自下而上为C1到C8),每个旋回下部为灰岩,上部为白云岩。根据旋回中碳酸盐岩组分变化,这8个旋回可分为A、B两类,A类旋回(C1~C4)中灰岩为生物碎屑泥粒灰岩和颗粒灰岩,B类旋回(C5~C8)中灰岩为生物碎屑粒泥灰岩和泥粒灰岩,从A类旋回到B类旋回,灰岩中文石质生屑含量减少,似球粒增多;两类旋回中白云岩均为晶粒白云岩,内部可见鲕粒颗粒幻影,并在幻影内部发育选择性溶孔,其中A类旋回选择性溶孔体积明显高于B类旋回。沉积旋回地球化学数据显示:白云岩碳氧同位素相对灰岩偏正;白云岩和灰岩稀土元素含量低(0.440×10-6~7.254×10-6),Y/Ho值(35.63~75.55)基本位于现代海水范围内,其中白云岩稀土元素PAAS标准化后配分模式类似海水,表现为轻稀土相对亏损,重稀土相对富集的“左倾”样式,而灰岩稀土元素PAAS标准化后配分模式相对平坦;白云岩的Ce/Ce*介于0.55~0.78(平均值为0.63),灰岩的Ce/Ce*介于0.80~0.88(平均值为0.84);氧化还原敏感元素U、Mo、V含量很低,V/(V+Ni)比值介于0.01~0.39;单个旋回中生产力指标Cu、Zn含量在白云岩中表现为高值,且白云岩的Cu、Zn含量从A类旋回到B类旋回有减小的趋势。 结论 GK-1井布曲组为海相颗粒滩沉积,沉积水体从A类旋回到B类旋回局限性增强;沉积旋回中选择性溶蚀被认为在早期海相成岩阶段,由有机质降解产生的有机酸选择性溶解文石形成,并非淡水和深埋藏成因。选择性溶孔的发育受控于文石含量、古生产力及氧化还原界面的波动:单个旋回中,白云岩相对于灰岩孔隙水更加氧化,古生产力更高,从而有利于产生有机酸,形成选择性溶孔;不同类旋回之间,A类旋回相对B类旋回文石含量更高,古生产力更高,早期海相成岩中氧化还原界面更低,因而发育更多选择性溶孔。
  • 图  1  羌塘盆地构造位置(a)和布曲组古油藏带白云岩分布及GK⁃1井位置(b)(据文献[18]修改)

    Figure  1.  Tectonic location of the Qiangtang Basin (a) and paleoreservoir dolostones of the Buqu Formation and the location of the well GK⁃1 (b) (modified from reference [18])

    图  2  GK⁃1井布曲组地层、同位素及元素综合柱状图

    Figure  2.  Stratigraphy and chemostratigraphy of the Buqu Formation in the well GK⁃1

    图  3  GK⁃1井布曲组碳酸盐岩岩心和镜下照片

    (a) bioclast packstone showing gastropods (yellow arrow), bivalves (white arrow), and echinoid fragments, 125.30 m, C1 cycle, plane⁃polarized light (PPL); (b) ooid grainstone showing sparry calcite cement (yellow arrow) and ooid with bivalve nuclei (white arrow), 124.88 m, C1 cycle, PPL; (c) gastropod within ooid grainstone (white arrow), 89.84 m, C4 cycle, PPL; (d) bioclast packstone showing blue⁃green algae (yellow arrow) and echinoid fragments (white arrow), 104.87 m, C4 cycle, PPL; (e, f) bioclast wackestone, lack of gastropods and bivalves, from C7 and C5 cycle, PPL; (g) coarse crystalline dolomite showing selective pores within grain ghost and asphalt distributed at the edge of the selective pores (white arrow), 114.14 m, C1 cycle, PPL; (h) coarse crystalline dolomite showing selective pores infilled calcite cements, 116.92 m, C1 cycle, PPL; (i) core photograph showing abundant needle⁃shaped pores in dolostone without meteoritic diagenesis and obvious sedimentary structure

    Figure  3.  Core and microscopic pictures of carbonate rocks from the Buqu Formation in the well GK⁃1

    Fig.3

    图  4  GK⁃1井布曲组碳酸盐岩PAAS标准化REY配分模式

    Figure  4.  PAAS⁃normalized REY patterns for the carbonate rocks from Buqu Formation in the well GK⁃1

    图  5  GK⁃1井布曲组碳酸盐岩δ13CPDBδ18OPDB和Y/Ho⁃∑REY(REE+Y)交会图

    Figure  5.  Cross⁃plots of δ13CPDB versus δ18OPDB and Y/Ho versus ∑REY (REE+Y) of carbonate rocks from the Buqu Formation in the well GK⁃1

    图  6  氧化还原敏感元素(U、Mo、V)、营养元素(Cu、Zn)及∑REY与Ti的相关性

    Figure  6.  Cross⁃plots of Ti concentration with concentrations of redox sensitive elements (U, Mo, V), nutrient elements (Cu, Zn), and ∑REY

    图  7  GK⁃1井布曲组(a)沉积旋回特征及(b)选择性溶蚀模式

    Figure  7.  (a) Sedimentary cycle characteristics and (b) selective dissolution of the Buqu Formation in the well GK⁃1

    表  1  GK⁃1井布曲组碳酸盐岩样品碳氧同位素数据

    Table  1.   Carbon and oxygen isotope data of carbonate rocks from the Buqu Formation of the well GK⁃1

    样品编号岩性旋回深度/mδ13CPDB /‰δ18OPDB /‰样品编号岩性旋回深度/mδ13CPDB/‰δ18OPDB/‰
    GK-1-172粗晶白云岩C77.653.18-10.77GK-1-59粗晶白云岩C480.83-0.23-12.66
    GK-1-170细晶白云岩C78.573.33-12.15GK-1-58粗晶白云岩C481.570.24-11.68
    GK-1-168粗晶白云岩C711.193.35-11.25GK-1-57粗晶白云岩C481.89-0.04-12.11
    GK-1-167似球粒泥粒灰岩C711.421.32-15.59GK-1-55粗晶白云岩C483.471.28-11.85
    GK-1-165似球粒泥粒灰岩C713.870.41-12.56GK-1-52粗晶白云岩C486.601.40-11.72
    GK-1-162生屑泥粒灰岩C715.870.66-12.33GK-1-51鲕粒颗粒灰岩C487.47-0.09-12.00
    GK-1-161粗晶白云岩C616.673.28-11.63GK-1-49鲕粒颗粒灰岩C489.700.81-12.24
    GK-1-156粗晶白云岩C620.452.73-11.60GK-1-47生屑泥粒灰岩C490.500.77-12.56
    GK-1-152中粗晶白云岩C623.723.17-11.44GK-1-46粗晶白云岩C390.883.20-11.83
    GK-1-145细晶白云岩C628.553.75-10.79GK-1-44细晶白云岩C392.103.36-11.92
    GK-1-141中晶白云岩C630.683.09-11.63GK-1-42粗晶白云岩C392.993.06-11.38
    GK-1-136细晶白云岩C634.492.10-11.32GK-1-40细晶白云岩C394.152.51-11.59
    GK-1-132中粗晶白云岩C636.513.23-11.34GK-1-39生屑泥粒灰岩C395.592.90-11.36
    GK-1-128细晶白云岩C639.363.73-11.07GK-1-37生屑泥粒灰岩C397.290.89-12.01
    GK-1-125细晶白云岩C641.732.95-11.55GK-1-35生屑颗粒灰岩C399.010.54-12.19
    GK-1-124生屑泥粒灰岩C642.390.34-13.83GK-1-33生屑泥粒灰岩C3100.901.10-11.65
    GK-1-122生屑泥粒灰岩C643.311.34-12.89GK-1-31生屑泥粒灰岩C3104.870.96-11.21
    GK-1-121细晶白云岩C543.733.18-10.97GK-1-29生屑泥粒灰岩C3106.391.05-11.24
    GK-1-115中粗晶白云岩C548.372.58-11.71GK-1-28中粗晶白云岩C2106.782.97-11.46
    GK-1-109细晶白云岩C551.093.43-10.80GK-1-26鲕粒泥粒灰岩C2107.473.08-12.16
    GK-1-104粗晶白云岩C553.933.35-10.77GK-1-24细晶白云岩C2108.533.32-11.58
    GK-1-99细晶白云岩C555.823.81-10.11GK-1-22细晶白云岩C2109.273.38-9.90
    GK-1-98生屑粒泥灰岩C556.460.79-10.88GK-1-20粗晶白云岩C2110.963.32-11.22
    GK-1-96似球粒泥粒灰岩C557.501.18-13.23GK-1-18中粗晶白云岩C2112.003.56-11.02
    GK-1-94生屑泥粒灰岩C558.101.87-11.59GK-1-16粗晶白云岩C2113.133.17-12.40
    GK-1-91粗晶白云岩C458.953.39-10.85GK-1-15鲕粒泥粒灰岩C2113.620.40-13.03
    GK-1-85粗晶白云岩C462.503.50-10.47GK-1-14粗晶白云岩C1114.023.15-12.03
    GK-1-79中粗晶白云岩C465.993.46-10.73GK-1-12粗晶白云岩C1114.602.97-11.77
    GK-1-74粗晶白云岩C470.342.69-11.88GK-1-10粗晶白云岩C1115.543.15-11.16
    GK-1-71粗晶白云岩C472.332.44-13.19GK-1-8粗晶白云岩C1119.422.68-12.12
    GK-1-69粗晶白云岩C473.823.84-11.24GK-1-6中粗晶白云岩C1120.422.96-11.50
    GK-1-66粗晶白云岩C475.233.16-11.07GK-1-5生屑泥粒灰岩C1121.642.06-12.28
    GK-1-63粗晶白云岩C477.480.10-12.25GK-1-3生屑颗粒灰岩C1123.530.94-11.76
    GK-1-61粗晶白云岩C478.840.50-12.34GK-1-1生屑泥粒灰岩C1125.280.60-12.59
    GK-1-60粗晶白云岩C480.052.96-11.61
    下载: 导出CSV

    表  2  GK⁃1井布曲组碳酸盐岩稀土元素含量(×10-6)、元素比值及Ce异常

    Table  2.   Rare earth element concentrations (×10-6), elemental ratios, and Ce anomaly of carbonate rocks from the Buqu Formation in the well GK⁃1

    样品编号岩性旋回LaCePrNdSmEuGdTbDyYHoErTmYbLuREYY/Ho(La/Yb)NCe/Ce*
    GK-1-172粗晶白云岩B0.1150.1510.0320.1460.0360.0060.0360.0060.0390.3160.0070.0220.0030.0200.0030.93845.140.420.64
    GK-1-152中粗晶白云岩B0.0600.0630.0110.0430.0070.0020.0100.0020.0130.1990.0040.0110.0020.0110.0020.44049.750.400.65
    GK-1-136细晶白云岩B0.0650.1100.0180.0750.0190.0040.0240.0040.0320.2850.0080.0210.0030.0180.0030.68935.630.270.74
    GK-1-115中粗晶白云岩B0.0710.0660.0130.0490.0100.0030.0130.0030.0200.3310.0050.0180.0030.0200.0030.62866.200.260.55
    GK-1-109细晶白云岩B0.0770.0750.0160.0650.0150.0030.0190.0040.0280.4190.0070.0250.0040.0250.0050.78759.860.230.55
    GK-1-85粗晶白云岩A0.0780.1220.0200.0840.0190.0030.0190.0030.0220.3190.0050.0170.0030.0170.0030.73463.800.340.55
    GK-1-71粗晶白云岩A0.1160.1110.0270.1160.0300.0060.0330.0060.0410.5460.0100.0300.0050.0320.0051.11454.600.270.52
    GK-1-66粗晶白云岩A0.0910.1250.0220.0890.0200.0040.0230.0040.0300.3870.0070.0220.0040.0230.0040.85555.290.290.55
    GK-1-55粗晶白云岩A0.1820.3040.0470.1820.0380.0080.0380.0060.0380.4880.0080.0240.0040.0200.0031.39061.000.670.72
    GK-1-46粗晶白云岩A0.0860.1160.0200.0840.0190.0030.0220.0040.0300.3720.0080.0240.0040.0250.0040.82146.500.250.71
    GK-1-40细晶白云岩A0.1770.3280.0480.1900.0450.0070.0460.0090.0610.5930.0130.0410.0060.0360.0051.60545.620.360.78
    GK-1-28中粗晶白云岩A0.0960.1120.0210.0880.0210.0040.0240.0040.0300.3660.0070.0220.0030.0210.0040.82352.290.340.65
    GK-1-24细晶白云岩A0.0890.0960.0200.0820.0230.0040.0270.0050.0350.4000.0080.0250.0040.0260.0040.84850.000.250.57
    GK-1-16粗晶白云岩A0.1200.1120.0220.0980.0230.0050.0280.0050.0380.5340.0090.0280.0040.0300.0051.06159.330.300.67
    GK-1-6中粗晶白云岩A0.1470.1480.0280.1130.0240.0050.0290.0050.0370.4970.0090.0290.0040.0290.0051.10955.220.370.62
    GK-1-165似球粒泥粒灰岩B0.4680.7660.0980.3580.0620.0120.0560.0080.0440.6530.0100.0280.0030.0220.0032.59165.301.570.83
    GK-1-124生屑泥粒灰岩B1.2232.2970.3051.1190.1860.0370.1620.0230.1281.5560.0280.0810.0120.0840.0137.25455.571.070.80
    GK-1-96似球粒泥粒灰岩B0.7161.1340.1350.4850.0890.0190.0850.0120.0690.5910.0140.0380.0050.0290.0043.42542.211.820.88
    GK-1-49鲕粒颗粒灰岩A0.8451.1160.1320.4640.0670.0200.0740.0080.0480.8310.0110.0320.0050.0290.0053.68775.552.150.86
    GK-1-35生屑颗粒灰岩A0.9861.3070.1550.5470.0820.0250.0920.0110.0600.8290.0120.0320.0040.0260.0044.17269.082.800.87
    GK-1-15鲕粒泥粒灰岩A0.3250.5300.0750.2940.0570.0120.0590.0090.0590.8150.0140.0410.0060.0390.0062.34158.210.620.80
    GK-1-1生屑泥粒灰岩A0.8321.0080.1290.4590.0760.0220.0830.0110.0690.9900.0150.0430.0060.0360.0063.78566.001.710.81
    PAAS38.279.68.8333.95.551.084.660.7744.68270.9912.850.4052.820.433
    下载: 导出CSV
    样品编号岩性旋回CaO/%MgO/%TFe2O3/%Al2O3/%TiO2/%P2O5/%Fe/×10-6Mn/×10-6Sr/×10-6U/×10-6Mo/×10-6V/×10-6Cu/×10-6Zn/×10-6Ti/×10-6Ni/×10-6Mn/SrV/(V+Ni)
    GK-1-172粗晶白云岩B30.5021.400.1400.0900.000 90.027980116.2235.240.0860.0030.7200.1703.4890.99810.3323.300.07
    GK-1-152中粗晶白云岩B30.9021.000.0890.0610.000 40.01762373.2041.460.1010.0030.6070.1633.2980.8927.1761.770.08
    GK-1-136细晶白云岩B32.3019.800.1500.0980.000 50.0241 050135.1245.330.0770.0050.6670.31110.8921.0657.9212.980.08
    GK-1-115中粗晶白云岩B32.6019.500.1100.1200.001 10.01977086.4740.220.2070.0051.1650.45215.6120.8355.8692.150.17
    GK-1-109细晶白云岩B30.5021.300.1100.0740.000 90.019770110.2544.590.1830.0070.7700.2584.0120.6485.4112.470.12
    GK-1-85粗晶白云岩A30.7021.200.1500.0880.000 80.0281 050125.4842.740.1510.0131.5190.2866.1691.1116.0942.940.20
    GK-1-71粗晶白云岩A35.8016.800.1700.0830.000 10.0181 19068.98116.320.0980.0550.5870.52015.2920.8824.5220.590.11
    GK-1-66粗晶白云岩A31.3020.600.2600.1000.000 50.0201 820113.7649.360.1910.0041.3950.23213.2970.1217.0412.300.17
    GK-1-55粗晶白云岩A35.9016.900.1100.0940.000 10.015770169.9120.900.0500.0031.2950.27921.9450.5455.6291.410.19
    GK-1-46粗晶白云岩A30.4021.400.0830.0760.000 90.018581126.1344.980.1030.0050.9560.2085.1470.7834.4872.800.18
    GK-1-40细晶白云岩A32.5019.600.1300.1100.000 20.023910106.5446.410.1270.0060.8530.47115.1691.0904.7222.300.15
    下载: 导出CSV

    表  3  GK⁃1井布曲组碳酸盐岩主量元素和微量元素

    Table  3.   Major and trace elements of carbonate rocks from the Buqu Formation in the well GK⁃1

    GK-1-28中粗晶白云岩A30.4021.500.1000.0720.001 20.01570084.7836.220.0910.0100.5860.1272.5071.5485.4142.340.10
    GK-1-24细晶白云岩A30.3021.700.0490.0710.001 10.014343100.2128.720.0830.0200.4130.1811.4991.3787.3173.490.05
    GK-1-16粗晶白云岩A30.2021.600.0860.0720.001 10.01760264.8532.850.1000.0520.3280.1493.1251.3145.3491.970.06
    GK-1-6中粗晶白云岩A31.1020.900.2200.0740.001 20.0161 540114.5750.160.0940.0050.9270.1837.7821.3964.2112.280.18
    GK-1-165似球粒泥粒灰岩B50.404.370.0170.0690.000 20.01811967.69177.650.1090.0030.5010.1204.1250.3015.2460.380.09
    GK-1-124生屑泥粒灰岩B55.100.390.1700.1200.000 40.0181 19058.73253.790.0800.0050.4900.1319.7880.1906.1760.230.07
    GK-1-96似球粒泥粒灰岩B55.100.370.0730.1200.000 70.04051149.44311.692.7920.0764.5290.3267.0760.4807.0420.160.39
    GK-1-49鲕粒颗粒灰岩A52.402.790.0810.0720.000 70.01656768.70188.150.1050.0040.4340.11911.5770.1375.7190.370.07
    GK-1-35生屑颗粒灰岩A55.100.410.0820.0700.001 30.01457450.62197.790.1140.0070.4870.1364.1520.08757.0030.260.01
    GK-1-15鲕粒泥粒灰岩A44.409.490.1000.0680.000 70.016700130.23132.130.0740.0051.1700.25920.8970.8956.0940.990.16
    GK-1-1生屑泥粒灰岩A54.101.210.2000.0760.000 60.0141 40055.61199.860.1290.0060.3400.1454.6330.7234.5740.280.07
    下载: 导出CSV
  • [1] Choquette P W, Pray L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250.
    [2] 黄思静. 碳酸盐岩的成岩作用[M]. 北京:地质出版社,2010:92-95.

    Huang Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010: 92-95.
    [3] Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929): 19-22.
    [4] Al-Aasm I S, Veizer J. Diagenetic stabilization of aragonite and low-Mg calcite; I, Trace elements in rudists[J]. Journal of Sedimentary Research, 1986, 56(1): 138-152.
    [5] Laya J C, Albader A, Kaczmarek S, et al. Dissolution of ooids in seawater-derived fluids:An example from Lower Permian re-sedimented carbonates, West Texas, USA[J]. Sedimentology, 2021, 68(6): 2671-2706.
    [6] James N P, Choquette P W. Diagenesis 9. Limestones: The meteoric diagenetic environment[J]. Geoscience Canada, 1984, 11(4): 161-194.
    [7] Lohmann K C. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst[M]//James N P, Choquette P W. Paleokarst. New York: Springer, 1988: 58-80.
    [8] Melim L A, Westphal H, Swart P K, et al. Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas[J]. Marine Geology, 2002, 185(1/2): 27-53.
    [9] Sanders D. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance[J]. Journal of African Earth Sciences, 2003, 36(3): 99-134.
    [10] 韩海英,穆龙新,郭睿,等. 伊拉克艾哈代布油田白垩系生物碎屑灰岩储集层特征及主控因素[J]. 海相油气地质,2014,19(2):54-63.

    Han Haiying, Mu Longxin, Guo Rui, et al. Characteristics and controlling factors of Cretaceous bioclastic limestone reservoirs in Ahdeb oil field, Iraq[J]. Marine Origin Petroleum Geology, 2014, 19(2): 54-63.
    [11] 王琼仙,宋晓波,邓美洲,等. 川西气田雷口坡组潮坪相白云岩准同生溶蚀特征及对优质储层分布的影响[J]. 海相油气地质,2022,27(2):167-174.

    Wang Qiongxian, Song Xiaobo, Deng Meizhou, et al. Penecontemporaneous dissolution characteristics of tidal flat dolomite and its influence on the distribution of high-quality reservoirs of Leikoupo Formation in Chuanxi gasfield, western Sichuan Basin[J]. Marine Origin Petroleum Geology, 2022, 27(2): 167-174.
    [12] Frank T D, Titschack J, Thierens M. Aragonite loss in a cold-water coral mound: Mechanisms and implications[J]. Sedimentology, 2011, 58(3): 670-690.
    [13] Jordan N, Allison P A, Hill J, et al. Not all aragonitic molluscs are missing: Taphonomy and significance of a unique shelly lagerstätte from the Jurassic of SW Britain[J]. Lethaia, 2015, 48(4): 540-548.
    [14] Ge Y Z, Wang H, Tian Z Y, et al. Marine aragonite evolution in the oxygen-decreasing interval before the Cenomanian-Turonian Ocean anoxic event (OAE2) in the southeastern Neo-Tethys[J]. Sedimentary Geology, 2022, 429: 106078.
    [15] Brachert T C, Dullo W C. Shallow burial diagenesis of skeletal carbonates: Selective loss of aragonite shell material (Miocene to recent, Queensland Plateau and Queensland Trough, NE Australia) — implications for shallow cool-water carbonates[J]. Sedimentary Geology, 2000, 136(3/4): 169-187.
    [16] Cherns L, Wheeley J R, Wright V P. Taphonomic bias in shelly faunas through time: Early aragonitic dissolution and its implications for the fossil record[M]//Allison P A, Bottjer D J. Taphonomy: process and bias through time. Dordrecht: Springer, 2011: 79-105.
    [17] 万友利,冯兴雷,赵瞻,等. 羌塘盆地南坳陷布曲组白云岩储层孔喉结构及其分形特征研究[J]. 沉积与特提斯地质,2022,42(3):481-496.

    Wan Youli, Feng Xinglei, Zhao Zhan, et al. Pore-throat structure and fractal characteristics of dolomite reservoir in the Buqu Formation in the southern depression, Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(3): 481-496.
    [18] Wan Y L, Lin J S, Zhao Z, et al. Origin of the dolomite in the Buqu Formation (Mid-Jurassic) in the south depression of the Qiangtang Basin, Tibet: Evidence from petrographic and geochemical constraints[J]. Frontiers in Earth Science, 2022, 10: 944701.
    [19] 黄继钧. 羌塘盆地基底构造特征[J]. 地质学报,2001,75(3):333-337.

    Huang Jijun. Structural characteristics of the basement of the Qiangtang Basin[J]. Acta Geologica Sinica, 2001, 75(3): 333-337.
    [20] 谭富文,张润合,王剑,等. 羌塘晚三叠世—早白垩世裂陷盆地基底构造[J]. 成都理工大学学报(自然科学版),2016,43(5):513-521.

    Tan Fuwen, Zhang Runhe, Wang Jian, et al. Discussion on basement structures of the Late Triassic-Early Cretaceous Qiangtang rift basin in Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(5): 513-521.
    [21] 王剑,付修根,沈利军,等. 论羌塘盆地油气勘探前景[J]. 地质论评,2020,66(5):1091-1113.

    Wang Jian, Fu Xiugen, Shen Lijun, et al. Prospect of the potential of oil and gas resources in Qiangtang Basin, Xizang(Tibet)[J]. Geological Review, 2020, 66(5): 1091-1113.
    [22] 王剑,付修根. 论羌塘盆地沉积演化[J]. 中国地质,2018,45(2):237-259.

    Wang Jian, Fu Xiugen. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China, 2018, 45(2): 237-259.
    [23] 宋扬,曾庆高,刘海永,等. 班公湖—怒江洋形成演化新视角:兼论西藏中部古—新特提斯转换[J]. 岩石学报,2019,35(3):625-641.

    Song Yang, Zeng Qinggao, Liu Haiyong, et al. An innovative perspective for the evolution of Bangong-Nujiang Ocean: Also discussing the Paleo-and Neo-Tethys conversion[J]. Acta Petrologica Sinica, 2019, 35(3): 625-641.
    [24] 谭梅,季长军,周冰洋,等. 南羌塘坳陷上三叠统—下侏罗统碳酸盐岩元素地球化学特征及指示意义[J]. 地质论评,2023,69(3):943-958.

    Tan Mei, Ji Changjun, Zhou Bingyang, et al. Element geochemical characteristics and their indicative significance of the Upper Triassic—Lower Jurassic carbonate rocks in the southern Qiangtang Depression[J]. Geological Review, 2023, 69(3): 943-958.
    [25] 孙伟,陈明,万友利,等. 封闭系统中的白云石化作用过程及其油气地质意义;以南羌塘拗陷中侏罗统布曲组白云岩为例[J]. 地质论评,2020,66(5):1217-1229.

    Sun Wei, Chen Ming, Wan Youli, et al. Closed-system dolomitization process and the significance for petroleum geology: An example from dolostone in the Middle Jurassic Buqu Formation in southern Qiangtang Depression[J]. Geological Review, 2020, 66(5): 1217-1229.
    [26] 王成善,伊海生,刘池洋,等. 西藏羌塘盆地古油藏发现及其意义[J]. 石油与天然气地质,2004,25(2):139-143.

    Wang Chengshan, Yi Hangsheng, Liu Chiyang, et al. Discovery of paleo-oil-reservoir in Qiangtang Basin in Tibet and its geological significance[J]. Oil & Gas Geology, 2004, 25(2): 139-143.
    [27] 季长军,陈程,吴珍汉,等. 羌塘盆地中侏罗统砂糖状白云岩流体包裹体碳—氧同位素分析及白云岩成因机制讨论[J]. 地质论评,2020,66(5):1186-1198.

    Ji Changjun, Chen Cheng, Wu Zhenhan, et al. Carbon and oxygen isotopes analysis of the fluid inclusions in Middle Jurassic saccharoidal dolostone of Qiangtang Basin and discussion on the genesis of dolostone[J]. Geological Review, 2020, 66(5): 1186-1198.
    [28] 陈浩,王剑,王羽珂,等. 西藏隆鄂尼—昂达尔错地区布曲组白云岩地球化学特征及成因[J]. 新疆石油地质,2016,37(5):542-548.

    Chen Hao, Wang Jian, Wang Yuke, et al. Geochemical characteristics and genesis of buqu dolomite in Longeni-Angdaercuo area, Tibet[J]. Xinjiang Petroleum Geology, 2016, 37(5): 542-548.
    [29] 田康志,季长军,伊海生,等. 南羌塘坳陷扎仁地区中侏罗统布曲组晶粒白云岩成因分析[J]. 中国地质,2019,46(2):398-406.

    Tian Kangzhi, Ji Changjun, Yi Haisheng, et al. Origin of grained dolomite from the Buqu Formation of Zaring area in southern Qiangtang Depression[J]. Geology in China, 2019, 46(2): 398-406.
    [30] 陈文彬,杨平,张予杰,等. 南羌塘盆地扎仁古油藏白云岩储层特征及成因研究[J]. 沉积与特提斯地质,2006,26(2):42-46.

    Chen Wenbin, Yang Ping, Zhang Yujie, et al. Dolostone reservoirs and their genesis in the Zaring oil pool in southern Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(2): 42-46.
    [31] 刘建清,杨平,陈文彬,等. 羌塘盆地中央隆起带南侧隆额尼—昂达尔错布曲组古油藏白云岩特征及成因机制[J]. 地学前缘,2010,17(1):311-321.

    Liu Jianqing, Yang Ping, Chen Wenbin, et al. The characteristics of Longeni-Angdaercuo paleo-oil dolomite in southern part of the central uplift zone of Qiangtang Basin and its forming mechanism[J]. Earth Science Frontiers, 2010, 17(1): 311-321.
    [32] 伊海生,陈志勇,季长军,等. 羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据[J]. 岩石学报,2014,30(3):737-746.

    Yi Haisheng, Chen Zhiyong, Ji Changjun, et al. New evidence for deep burial origin of sucrosic dolomites from Middle Jurrasic Buqu Formation in southern Qiangtang Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 737-746.
    [33] 卫红伟,万友利,李忠雄,等. 昂达尔错地区布曲组碳酸盐岩碳氧同位素特征及意义[J]. 新疆地质,2017,35(3):313-319.

    Wei Hongwei, Wan Youli, Li Zhongxiong, et al. The characteristic and meaning of carbon and oxyen isotope of the Buqu Formation carbonate at the Angdaercuo area, south Qiangtang Basin[J]. Xinjiang Geology, 2017, 35(3): 313-319.
    [34] 万友利,王剑,谭富文,等. 羌塘盆地隆鄂尼—昂达尔错地区布曲组白云岩储层成因及孔隙演化特征[J]. 东北石油大学学报,2017,41(3):21-33,72.

    Wan Youli, Wang Jian, Tan Fuwen, et al. Dolomite reservoir formation mechanism and pore evolution feature of the Buqu Formation in the Long'eni-Angdaerco area, Qiangtang Basin[J]. Journal of Northeast Petroleum University, 2017, 41(3): 21-33, 72.
    [35] 万友利,王剑,付修根,等. 羌塘盆地南部古油藏带布曲组白云岩地球化学特征及成因机制[J]. 成都理工大学学报(自然科学版),2018,45(2):129-141.

    Wan Youli, Wang Jian, Fu Xiugen, et al. The geochemical characteristics and mechanism of dolomite in the paleo-reservoir of Buqu Formation, south Qiangtang Basin, Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2018, 45(2): 129-141.
    [36] 万友利,王剑,付修根,等. 羌塘盆地南坳陷古油藏带中侏罗统布曲组白云岩元素地球化学特征及意义[J]. 沉积与特提斯地质,2018,38(2):23-35.

    Wan Youli, Wang Jian, Fu Xiugen, et al. Trace element geochemical signatures and significance of the Buqu Formation dolostones in southern Qiangtang Depression[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(2): 23-35.
    [37] 李鑫,伊海生,金峰,等. 羌塘盆地隆鄂尼—昂达尔错古油藏带白云岩成岩特征[J]. 成都理工大学学报(自然科学版),2018,45(2):142-153.

    Li Xin, Yi Haisheng, Jin Feng, et al. Diagenetic characteristics of dolomite in the Long'eni-Angdar Co ancient reservoir, Qiangtang Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2018, 45(2): 142-153.
    [38] 万友利,王剑,付修根,等. 羌塘盆地南坳陷中侏罗统布曲组白云岩储层成因流体同位素地球化学示踪[J]. 石油与天然气地质,2020,41(1):189-200.

    Wan Youli, Wang Jian, Fu Xiugen, et al. Geochemical tracing of isotopic fluid of dolomite reservoir in the Middle Jurassic Buqu Formation in southern depression of Qiangtang Basin[J]. Oil & Gas Geology, 2020, 41(1): 189-200.
    [39] 王羽珂,王剑,万友利,等. 南羌塘坳陷古油藏带布曲组白云岩储层特征及控制因素分析[J]. 沉积与特提斯地质,2017,37(1):1-8.

    Wang Yuke, Wang Jian, Wan Youli, et al. Characteristics and controlling factors of the dolostone reservoirs in the Buqu Formation, southern Qiangtang Depression[J]. Sedimentary Geology and Tethyan Geology, 2017, 37(1): 1-8.
    [40] 伍新和,王成善,伊海生,等. 西藏羌塘盆地烃源岩古油藏带及其油气勘探远景[J]. 石油学报,2005,26(1):13-17.

    Wu Xinhe, Wang Chengshan, Yi Haisheng, et al. Fossil-reservoir of hydrocarbon rock in Qiangtang Basin of Tibet and exploration perspective of oil and gas[J]. Acta Petrolei Sinica, 2005, 26(1): 13-17.
    [41] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985: 349.
    [42] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.
    [43] Derry L A, Brasier M D, Corfield R M, et al. Sr and C isotopes in lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 671-681.
    [44] Horacek M, Brandner R, Abart R. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 347-354.
    [45] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
    [46] Li D, Ling H F, Jiang S Y, et al. New carbon isotope stratigraphy of the Ediacaran–Cambrian boundary interval from SW China: Implications for global correlation[J]. Geological Magazine, 2009, 146(4): 465-484.
    [47] Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3123-3137.
    [48] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [49] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
    [50] 沈俊,施张燕,冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报,2011,30(2):69-77.

    Shen Jun, Shi Zhangyan, Feng Qinglai. Review on geochemical proxies in paleo-productivity studies[J]. Geological Science and Technology Information, 2011, 30(2): 69-77.
    [51] Rasser M W, Scheibner C, Mutti M. A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain)[J]. Facies, 2005, 51(1/2/3/4): 218-232.
    [52] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer, 2010: 976.
    [53] 夏国清,伊海生,李高杰,等. 南羌塘坳陷布曲组油藏带特征及空间演化规律[J]. 岩性油气藏,2017,29(1):90-96.

    Xia Guoqing, Yi Haisheng, Li Gaojie, et al. Characteristics and evolution of oil reservoir zones of Buqu Formation in the southern Qiangtang Depression[J]. Lithologic Reservoirs, 2017, 29(1): 90-96.
    [54] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
    [55] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88.
    [56] 江文剑,侯明才,邢凤存,等. 川东南地区娄山关群白云岩稀土元素特征及其意义[J]. 石油与天然气地质,2016,37(4):473-482.

    Jiang Wenjian, Hou Mingcai, Xing Fengcun, et al. Characteristics and indications of rare earth elements in dolomite of the Cambrian Loushanguan Group, SE Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(4): 473-482.
    [57] 马慧,苏中堂,梁茹,等. 川西地区栖霞组白云岩成因新证据:稀土元素地球化学特征[J]. 天然气工业,2021,41(12):49-59.

    Ma Hui, Su Zhongtang, Liang Ru, et al. New evidence for the genesis of Qixia Formation dolomites in the western Sichuan Basin: Geochemical characteristics of rare earth elements[J]. Natural Gas Industry, 2021, 41(12): 49-59.
    [58] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.
    [59] Shields G A, Webb G E. Has the REE composition of seawater changed over geological time?[J]. Chemical Geology, 2004, 204(1/2): 103-107.
    [60] Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644.
    [61] 雷涵,黄文辉,孙启隆,等. 鄂尔多斯盆地南部奥陶系马五段去白云石化成因及模式[J]. 现代地质,2021,35(2):378-387.

    Lei Han, Huang Wenhui, Sun Qilong, et al. Dedolomitization origin and model for the Ordovician Majiagou Formation (5th member) in the southern Ordos Basin[J]. Geoscience, 2021, 35(2): 378-387.
    [62] 王宇航,朱园园,黄建东,等. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展,2018,33(9):922-932.

    Wang Yuhang, Zhu Yuanyuan, Huang Jiandong, et al. Application of rare earth elements of the marine carbonate rocks in paleoenvironmental researches[J]. Advances in Earth Science, 2018, 33(9): 922-932.
    [63] 牟传龙,王秀平,梁薇,等. 上扬子区灯影组白云岩葡萄体特征及成因初探:以南江杨坝地区灯影组一段为例[J]. 沉积学报,2015,33(6):1097-1110.

    Mou Chuanlong, Wang Xiuping, Liang Wei, et al. Characteristics and genesis of grape-like stone of dolomite in Sinian Dengying Formation in Yangtze region: A case from the First section of Dengying Formation in Yangba, Nanjiang, Sichuan province[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1097-1110.
    [64] Eichenseer H T, Walgenwitz F R, Biondi P J. Stratigraphic control on facies and diagenesis of dolomitized oolitic siliciclastic ramp sequences (Pinda Group, Albian, offshore Angola)[J]. AAPG Bulletin, 1999, 83(11): 1729-1758.
    [65] Greene S E, Martindale R C, Ritterbush K A, et al. Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary[J]. Earth-Science Reviews, 2012, 113(1/2): 72-93.
    [66] Mishra D, Tiwari R N. Lithofacies and depositional dynamics of golden Oolite (Bathonian), Kachchh Mainland, Gujarat (India)[J]. Journal of Asian Earth Sciences, 2006, 26(5): 449-460.
    [67] Andrieu S, Brigaud B, Barbarand J, et al. Linking early diagenesis and sedimentary facies to sequence stratigraphy on a prograding oolitic wedge: The Bathonian of western France (Aquitaine Basin)[J]. Marine and Petroleum Geology, 2017, 81: 169-195.
    [68] Ku T C W, Walter L M, Coleman M L, et al. Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A.[J]. Geochimica et Cosmochimica Acta, 1999, 63(17): 2529-2546.
    [69] Hu X P, Burdige D J. Shallow marine carbonate dissolution and early diagenesis: Implications from an incubation study[J]. Journal of Marine Research, 2008, 66(4): 489-527.
    [70] Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 344-361.
    [71] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
    [72] 霍金钢,徐文礼,马义权,等. 皖南地区晚二叠世—早三叠世页岩沉积环境及物源指示意义[J]. 天然气地球科学,2022,33(11):1819-1835.

    Huo Jingang, Xu Wenli, Ma Yiquan, et al. Depositional environment and provenance of Late Permian-Early Triassic shale in the Wannan area[J]. Natural Gas Geoscience, 2022, 33(11): 1819-1835.
    [73] de Baar H J W, German C R, Elderfield H, et al. Rare earth element distributions in anoxic waters of the Cariaco Trench[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1203-1219.
    [74] Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
    [75] Schijf J, de Baar H J W, Wijbrans J R, et al. Dissolved rare earth elements in the Black Sea[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38 (Suppl.2): S805-S823.
    [76] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
    [77] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88.

    Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88.
    [78] 沈安江,赵文智,胡安平,等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发,2015,42(5):545-554.

    Shen Anjiang, Zhao Wenzhi, Hu Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554.
    [79] 丁振纯,高星,董国栋,等. 鄂尔多斯盆地奥陶系盐下白云岩储层特征、成因及分布[J]. 海相油气地质,2021,26(1):16-24.

    Ding Zhenchun, Gao Xing, Dong Guodong, et al. Characteristics, genesis and distribution of the Ordovician pre-salt dolomite reservoirs in Ordos Basin[J]. Marine Origin Petroleum Geology, 2021, 26(1): 16-24.
    [80] 李小燕,王琪,韩元红,等. 川东北地区长兴组—飞仙关组礁滩相沉积体系优质储层形成过程及储集空间演化主控因素分析[J]. 天然气地球科学,2014,25(10):1594-1602.

    Li Xiao-yan, Wang Qi, Han Yuanhong, et al. Main control factors and analysis of reservoir space evolution of reef-beach facies in Changxing-Feixianguan Formation of northeastern Sichuan area[J]. Natural Gas Geoscience, 2014, 25(10): 1594-1602.
    [81] 陈培元. 阿联酋X油田下白垩统哈布桑组上段海相碳酸盐岩储层成因机制[J]. 东北石油大学学报,2021,45(4):1-14.

    Chen Peiyuan. Genetic mechanism of marine carbonate reservoir in upper member of Lower Cretaceous Habshan Formation, X oilfield, United Arab Emirates[J]. Journal of Northeast Petroleum University, 2021, 45(4): 1-14.
    [82] 黎霆,李平平,诸丹诚,等. 蜀南地区嘉陵江组颗粒滩储层发育机理[J]. 沉积学报,2021,39(2):470-481.

    Li Ting, Li Pingping, Zhu Dancheng, et al. Mechanism of shoal reservoir in the Jialingjiang Formation, southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 470-481.
  • [1] 段杨弟, 陈旋, 徐雄飞, 蔡苏阳, 刘俊田, 张亦婷, 肖七林.  碳酸盐岩碳-氧同位素组成及古环境特征与有机质富集机制——以三塘湖盆地马朗凹陷芦草沟组二段为例 . 沉积学报, 2025, (): -. doi: 10.14027/j.issn.1000-0550.2025.010
    [2] 王纪煊, 胡忠贵, 远光辉, 李世临, 张俊, 王文静, 张宸瑜.  碳酸盐岩-蒸发岩共生体系沉积特征及演化模式——以四川盆地东部高台组为例 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.024
    [3] 刘牧, 季长军, 黄元耕, 丁一, 陈荣庆, 陈明思, 杨钹, 陈代钊.  羌塘盆地索瓦组碳酸盐岩红层成因和环境意义 . 沉积学报, 2024, 42(3): 812-822. doi: 10.14027/j.issn.1000-0550.2023.062
    [4] 夏攀, 甯濛, 文华国, 郎咸国.  镁同位素示踪碳酸盐岩沉积—成岩过程 . 沉积学报, 2021, 39(6): 1546-1564. doi: 10.14027/j.issn.1000-0550.2021.112
    [5] 占王忠, 谭富文.  羌塘盆地晚三叠世岩相古地理特征与烃源岩 . 沉积学报, 2020, 38(4): 876-885. doi: 10.14027/j.issn.1000-0550.2019.093
    [6] 邓世彪, 关平, 庞磊, 刘沛显, 金亦秋, 张艳秋.  塔里木盆地柯坪地区肖尔布拉克组优质微生物碳酸盐岩储层成因 . 沉积学报, 2018, 36(6): 1218-1232. doi: 10.14027/j.issn.1000-0550.2018.084
    [7] 强深涛, 沈平, 张健, 夏茂龙, 冯明友, 夏青松, 陶艳忠, 夏自强, 林怡.  四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化 . 沉积学报, 2017, 35(4): 797-811. doi: 10.14027/j.cnki.cjxb.2017.04.014
    [8] 胡双全, 杜贵超, 甄胜利.  泰国呵叻盆地二叠系Pha Nok Khao组碳酸盐岩沉积相特征 . 沉积学报, 2017, 35(4): 789-796. doi: 10.14027/j.cnki.cjxb.2017.04.013
    [9] 冯诗海, 李红, 蒋佳俊, 雷云, 牛元哲, 杨锐, 刘永杰.  华北秦皇岛地区柳江盆地马家沟组碳酸盐岩多期白云化作用 . 沉积学报, 2017, 35(4): 664-680. doi: 10.14027/j.cnki.cjxb.2017.04.002
    [10] 谭飞, 张云峰, 王振宇, 董兆雄, 黄正良, 王前平, 高君微.  鄂尔多斯盆地奥陶系不同组构碳酸盐岩埋藏溶蚀实验 . 沉积学报, 2017, 35(2): 413-424. doi: 10.14027/j.cnki.cjxb.2017.02.018
    [11] 孙伟, 陈明, 何江林, 曹竣锋, 王东.  西藏羌塘盆地半岛湖地区索瓦组锶同位素组成与演化 . 沉积学报, 2015, 33(2): 265-274. doi: 10.14027/j.cnki.cjxb.2015.02.006
    [12] 北羌塘盆地晚中生代地层:早白垩世海相地层的发现 . 沉积学报, 2012, 30(5): 825-833.
    [13] 陈文彬.  羌塘盆地那底岗日地区布曲组碳酸盐岩烃源岩稀土元素分布特征及意义 . 沉积学报, 2011, 29(3): 529-536.
    [14] 李忠.  塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造—热流体作用及其有效性 . 沉积学报, 2010, 28(5): 969-979.
    [15] 张荣虎.  塔里木盆地白垩系巴什基奇克组陆相砂岩中碳酸盐岩碎屑特征及其地质意义 . 沉积学报, 2009, 27(3): 410-418.
    [16] 刘建清.  羌塘盆地中央隆起带南侧隆额尼—昂达尔错布曲组古油藏白云岩稀土元素特征及成因意义 . 沉积学报, 2008, 26(1): 28-38.
    [17] 付修根.  藏北南羌塘盆地扎仁地区油苗地球化学特征及意义 . 沉积学报, 2008, 26(4): 697-704.
    [18] 陈文彬.  北羌塘盆地布曲组烃源岩生物标志物特征及意义 . 沉积学报, 2007, 25(5): 808-814.
    [19] 马永生, 李启明, 关德师.  鄂尔多斯盆地中部气田奥陶系马五1-4碳酸盐岩微相特征与储层不均质性研究 . 沉积学报, 1996, 14(1): 22-32.
    [20] 叶德胜.  塔里木盆地北部寒武──奥陶系碳酸盐岩的深部溶蚀作用 . 沉积学报, 1994, 12(1): 66-71.
  • 加载中
图(7) / 表 (4)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  41
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2023-12-21
  • 录用日期:  2024-01-09
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2025-12-10

目录

    非淡水成因选择性溶蚀及其沉积旋回中差异性分布特征研究——以羌塘盆地布曲组为例

    doi: 10.14027/j.issn.1000-0550.2023.142
      基金项目:

      中国石油杭州地质研究院项目 RIPED-2022-JS-681

      四川省天然气成藏物质基础青年科技创新团队基金项目 2022JDTD0004

      作者简介:

      王茂德,男,1998年出生,硕士研究生,碳酸盐岩沉积学,E-mail: 1803138941@qq.com

      通讯作者: 文华国,男,教授,E-mail: wenhuaguo08@cdut.edu.cn

    摘要: 目的 海相碳酸盐岩中常见选择性溶蚀现象,前人多认为是大气淡水成岩作用的标志,其他可能的成因缺乏探讨和相关报道。 方法 基于岩石矿物学、无机碳氧同位素和元素地球化学特征,对南羌塘盆地GK-1井布曲组海相选择性溶蚀成因进行综合分析。 结果 岩石矿物学特征表明:GK-1井布曲组发育8个沉积旋回(自下而上为C1到C8),每个旋回下部为灰岩,上部为白云岩。根据旋回中碳酸盐岩组分变化,这8个旋回可分为A、B两类,A类旋回(C1~C4)中灰岩为生物碎屑泥粒灰岩和颗粒灰岩,B类旋回(C5~C8)中灰岩为生物碎屑粒泥灰岩和泥粒灰岩,从A类旋回到B类旋回,灰岩中文石质生屑含量减少,似球粒增多;两类旋回中白云岩均为晶粒白云岩,内部可见鲕粒颗粒幻影,并在幻影内部发育选择性溶孔,其中A类旋回选择性溶孔体积明显高于B类旋回。沉积旋回地球化学数据显示:白云岩碳氧同位素相对灰岩偏正;白云岩和灰岩稀土元素含量低(0.440×10-6~7.254×10-6),Y/Ho值(35.63~75.55)基本位于现代海水范围内,其中白云岩稀土元素PAAS标准化后配分模式类似海水,表现为轻稀土相对亏损,重稀土相对富集的“左倾”样式,而灰岩稀土元素PAAS标准化后配分模式相对平坦;白云岩的Ce/Ce*介于0.55~0.78(平均值为0.63),灰岩的Ce/Ce*介于0.80~0.88(平均值为0.84);氧化还原敏感元素U、Mo、V含量很低,V/(V+Ni)比值介于0.01~0.39;单个旋回中生产力指标Cu、Zn含量在白云岩中表现为高值,且白云岩的Cu、Zn含量从A类旋回到B类旋回有减小的趋势。 结论 GK-1井布曲组为海相颗粒滩沉积,沉积水体从A类旋回到B类旋回局限性增强;沉积旋回中选择性溶蚀被认为在早期海相成岩阶段,由有机质降解产生的有机酸选择性溶解文石形成,并非淡水和深埋藏成因。选择性溶孔的发育受控于文石含量、古生产力及氧化还原界面的波动:单个旋回中,白云岩相对于灰岩孔隙水更加氧化,古生产力更高,从而有利于产生有机酸,形成选择性溶孔;不同类旋回之间,A类旋回相对B类旋回文石含量更高,古生产力更高,早期海相成岩中氧化还原界面更低,因而发育更多选择性溶孔。

    English Abstract

    王茂德, 付小东, 张建勇, 刘思琪, 葛毓柱, 甯濛, 夏攀, 文华国. 非淡水成因选择性溶蚀及其沉积旋回中差异性分布特征研究——以羌塘盆地布曲组为例[J]. 沉积学报, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142
    引用本文: 王茂德, 付小东, 张建勇, 刘思琪, 葛毓柱, 甯濛, 夏攀, 文华国. 非淡水成因选择性溶蚀及其沉积旋回中差异性分布特征研究——以羌塘盆地布曲组为例[J]. 沉积学报, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142
    WANG MaoDe, FU XiaoDong, ZHANG JianYong, LIU SiQi, GE YuZhu, NING Meng, XIA Pan, WEN HuaGuo. Selective Dissolution of Non-freshwater Origin and Its Differential Distribution Within Sedimentary Cycles: A case study from the Buqu Formation of the well GK-1, Qiangtang Basin, China[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142
    Citation: WANG MaoDe, FU XiaoDong, ZHANG JianYong, LIU SiQi, GE YuZhu, NING Meng, XIA Pan, WEN HuaGuo. Selective Dissolution of Non-freshwater Origin and Its Differential Distribution Within Sedimentary Cycles: A case study from the Buqu Formation of the well GK-1, Qiangtang Basin, China[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2068-2087. doi: 10.14027/j.issn.1000-0550.2023.142
      • 碳酸盐颗粒的组构选择性溶蚀是指亚稳定的颗粒被不饱和流体优先溶解从而形成颗粒溶孔[12]。选择性溶蚀的形成主要与碳酸盐颗粒的矿物组成和不饱和流体有关。在海水环境中,原始沉积的文石和高镁方解石质颗粒由于矿物不稳定性会优先在成岩过程中溶解,从而发生选择性溶蚀[34]。不饱和流体作为触发选择性溶蚀的关键因素,可能具有多种来源[5]。传统观点认为碳酸盐颗粒的选择性溶蚀是文石或高镁方解石颗粒受大气淡水淋滤而溶解形成[611],可作为反映海平面下降的标志,但这种说法不能解释所有选择性溶蚀的形成机制。

        国外学者研究表明,文石在无大气淡水参与的早期海相成岩作用中也可发生溶解,发育选择性溶蚀现象。例如,Melim et al.[8]发现了巴哈马海相碳酸盐岩早期海相成岩阶段发生溶解,形成了与大气成岩环境类似的铸模孔结构;Laya et al.[5]报道了海相斜坡环境再沉积鲕粒在早期海相成岩环境中被海水衍生流体选择性溶蚀的实例。基于对海相早成岩环境文石选择性溶蚀的大量研究,前人总结出沉积物中有机质的有氧降解,缺氧环境细菌参与的硫酸盐还原与甲烷生成反应,以及硫酸盐还原产物H2S的氧化是产生不饱和流体的主要过程[9,1213]。此外,选择性溶蚀在深埋藏阶段也能发生,其形成过程被解释为:早期文石重结晶形成较大方解石晶体并发育晶间缝,而深部有机酸沿着这些晶间微缝隙优先溶解,从而形成选择性溶蚀[14]。值得注意的是,选择性溶蚀明显影响碳酸盐颗粒沉积组构特征及后期成岩过程,并因其能形成优质储层的有利储集空间而受到广泛关注[13,1516]。因此,选择性溶蚀成因机制的研究对于重建古海洋环境以及海相碳酸盐岩成岩演化具有重要意义,也有助于理解海相碳酸盐岩储层的形成。

        羌塘盆地是我国勘探程度最低的中生代海相沉积盆地,显示了巨大的油气资源潜力。羌塘盆地中侏罗统布曲组白云岩是盆地整体致密背景下的优质储层[17]。本次研究在GK-1井布曲组白云岩中发现大量发育的选择性溶孔,研究其成因机制可以为羌塘盆地布曲组白云岩储层的成因及控制因素补充新的认识。鉴于选择性溶蚀成因的复杂性及重要科研及经济意义,本文在薄片鉴定、碳氧同位素、主量元素、微量元素分析的基础上,对南羌塘盆地布曲组古油藏带白云岩中选择性溶孔进行研究,并探讨选择性溶孔在沉积旋回上分布的差异性,以期更好地解析选择性溶蚀现象,并对南羌塘盆地油气勘探提供一定参考。

      • 羌塘盆地现今位于青藏高原腹地,其南北分别以班公湖—怒江缝合带和可可西里—金沙江缝合带为界(图1a),是一个建立在古老前寒武系结晶基底上的大型中生代海相沉积盆地[1920]。盆地整体上呈现出“两坳夹一隆”的构造格局,从北向南依次为北羌塘坳陷、中央隆起带和南羌塘坳陷[19,21]

        图  1  羌塘盆地构造位置(a)和布曲组古油藏带白云岩分布及GK⁃1井位置(b)(据文献[18]修改)

        Figure 1.  Tectonic location of the Qiangtang Basin (a) and paleoreservoir dolostones of the Buqu Formation and the location of the well GK⁃1 (b) (modified from reference [18])

        地质历史时期,在中生代初期(晚三叠世或早侏罗世),班公湖—怒江一带发生裂谷化并迅速扩张成洋盆,至早侏罗世羌塘盆地已发展成为被动大陆边缘盆地,并在南羌塘盆地发育一套浅海陆棚沉积[2224]。早侏罗世至中侏罗巴通期,羌塘盆地先后经历被动陆缘裂陷阶段和坳陷阶段,其中南羌塘坳陷持续沉降[2022]。在中侏罗世巴通期,由于南侧班公湖—怒江洋盆扩张的影响,羌塘盆地发生一次规模最大的海侵,陆源碎屑物质输入大量减少,并在炎热、干旱—半干旱的古气候条件下发育了布曲组巨厚海相碳酸盐岩沉积[18,25]

        近些年来,南羌塘盆地隆鄂尼—昂达尔错一线发现东西长达150 km,南北宽30 km的中侏罗统布曲组白云岩古油藏带[2627],从西向东可划分为隆鄂尼、昂达尔错、塞仁三个区块[2829]。古油藏带白云岩成因[25,2738]和储层特征[34,39]是诸多学者关注的热点。前人提出古油藏带白云岩成因包括混合水成因[3031]、高温埋藏成因[32,37]、热液交代成因[27]以及多期次白云石化叠加成因[35,38]。古油藏带储集层白云岩均被油浸成暗褐色,晶间孔残留有轻质油,含油白云岩平均孔隙度达14.7%,渗透率平均值为22.3×10-3 μm,厚度可达100 m[26,40]。值得关注的是,古油藏带中选择性溶蚀孔隙广泛发育,目前对其成因机制尚未有深入的研究。本研究选取位于隆鄂尼区块白云岩古油藏带的GK-1井开展选择性溶蚀成因机制分析(图1b)。

      • GK-1井岩心观察中,通过肉眼、放大镜和5%稀盐酸识别岩心的岩性(白云岩、灰岩),并系统采集176个样品,采样间距0.2~3.0 m。所有采集样品均磨制普通光学薄片,并使用茜素红染色以区分白云石和方解石。室内使用光学显微镜分析样品的颗粒组成、化石种类和微观结构,并借助前人建立的碳酸盐组分含量模板估测所有薄片中的选择性溶孔的面孔率。

      • 利用小型牙钻在样品新鲜面钻取200目的样品粉末用于无机碳氧同位素(n=69)和主微量元素分析(n=22)。无机碳氧同位素测试在长江大学地球科学学院实验中心完成。采用Thermofisher同位素比质谱仪进行测试,仪器型号DELTA V Advantage,测试方法依据SY/T 5238—2019。测试标样为IAEA-CO-8,碳同位素允许偏差小于±0.2‰,氧同位素允许偏差小于±0.3‰。

        主量元素和微量元素分析在南京宏创地质勘查技术服务有限公司进行。主量元素前处理操作如下:称取0.1 g的200目样品与0.4 g无水偏硼酸锂充分研磨混匀后倒入石墨坩埚中,放石墨坩埚于1 000 ℃的马弗炉中熔融15 min后取出冷却;将含有50 mL、5%王水的250 mL烧杯放置于电热磁搅拌器上加热水温至80 ℃,取冷却后的玻璃球放入烧杯中恒温搅拌30 min,待玻璃球完全溶解并冷却后用5%王水溶液定容至100 mL。测试工作在HORIBA公司ICP-OES上完成,测试方法依据GB/T14506.31—2019,测试结果的相对误差小于3%。

        微量元素分析前处理具体操作步骤如下:称取50 mg碳酸盐岩粉末至15 mL的离心管中,加入1 mol/L HAC水浴超声三次,每次20 min,后经5 000 rpm转速离心提取上清液,并将其蒸干,重复加入两次浓HNO3,分别蒸干,转化样品为硝酸盐,加入300 μL HNO3消解样品,用H2O稀释至10 mL。测试在Agilent 7900 ICP-MS上完成,所有元素重复扫描次数五次,检测标样为AGV-2,其精度1RSD<5%。

      • 通过岩心观察和显微镜下鉴定,羌塘盆地GK-1井布曲组由白云岩和灰岩互层组成。垂向上,岩心识别出8个沉积旋回,自下而上为C1~C8(图2)。每个旋回下部发育灰岩,上部发育白云岩。根据旋回中的碳酸盐组分特征,8个沉积旋回可分为A(C1~C4)、B(C5~C8)两类。

        图  2  GK⁃1井布曲组地层、同位素及元素综合柱状图

        Figure 2.  Stratigraphy and chemostratigraphy of the Buqu Formation in the well GK⁃1

        A类旋回灰岩为生物碎屑泥粒灰岩和颗粒灰岩(图3a~d),颗粒以生物碎屑和鲕粒为主,含量20%~40%,其次为似球粒以及少量核形石。生物碎屑见蓝绿藻、棘皮碎片、有孔虫、腹足和双壳,基质见亮晶方解石胶结物,局部发生白云石化。鲕粒类型为泥晶鲕粒,其内部结构模糊但部分鲕粒可见同心纹层结构,鲕粒核心表现为泥晶方解石、亮晶方解石和以文石质双壳为主的生物碎屑(图3b)。文石质腹足和双壳发生重结晶作用使原始组构被破坏(图3b,c),含量介于2%~10%。生物碎屑经历强烈的泥晶化作用,几乎所有生物碎屑颗粒被泥晶套包裹。

        图  3  GK⁃1井布曲组碳酸盐岩岩心和镜下照片

        Figure 3.  Core and microscopic pictures of carbonate rocks from the Buqu Formation in the well GK⁃1

        B类旋回灰岩为粒泥灰岩和泥粒灰岩(图3e,f),成分主要为似球粒,其次为生物碎屑,见蓝绿藻、棘皮碎片、有孔虫。与A类灰岩相比基质几乎全为泥晶方解石,文石质的腹足和双壳变少,含量介于1%~5%。

        两类旋回中,白云岩主要为晶粒白云岩(图3g,h),粉—细晶白云岩到中—粗晶白云岩均有发育。白云石晶粒之间呈直线状或弯曲状紧密镶嵌接触,普遍发育先驱灰岩原始颗粒的幻影结构(图3g,h)。

      • GK-1井布曲组每个沉积旋回中白云岩段发育组构选择性溶孔,而灰岩中不发育(图3)。选择性溶孔发育在白云岩颗粒幻影中(图3g),即颗粒内部被选择性溶蚀而形成颗粒幻影内部选择性溶孔(粒内溶孔),颗粒边缘残留不被溶蚀的部分。颗粒幻影的大小和形态表明发生选择性溶蚀的原始颗粒由鲕粒和较大的生物碎屑颗粒组成,其中鲕粒是发生选择性溶蚀的主要颗粒。选择性溶孔大小不一,溶孔内部边缘呈不规则状和港湾状,且含有沥青薄膜,部分溶孔内部局部充填白云石或完全充填方解石胶结物(图3h)。并且,GK-1井选择性溶蚀作用在不同沉积旋回中存在明显的差异性,选择性溶孔的面孔率呈旋回性变化,在A类旋回中面孔率整体较高,向上B类旋回面孔率整体变低(图2)。

      • GK-1井布曲组碳酸盐岩样品碳氧同位素测试结果见表1,C1~C8沉积旋回中,灰岩样品的δ13CPDB值介于-0.09‰~2.90‰,平均值为0.99‰;δ18OPDB值介于-15.59‰~-10.88‰,平均值为-12.33‰。白云岩样品的δ13CPDB值介于-0.23‰~3.84‰,平均值为3.18‰;δ18OPDB值介于-13.13‰~-9.90‰,平均值为-11.34‰。总体来看,白云岩的碳同位素值明显高于灰岩,氧同位素值略高于灰岩。在每个沉积旋回中,相对灰岩部分,白云岩δ13CPDB发生明显正偏,δ18OPDB同样也略微正偏(图2)。

        表 1  GK⁃1井布曲组碳酸盐岩样品碳氧同位素数据

        Table 1.  Carbon and oxygen isotope data of carbonate rocks from the Buqu Formation of the well GK⁃1

        样品编号岩性旋回深度/mδ13CPDB /‰δ18OPDB /‰样品编号岩性旋回深度/mδ13CPDB/‰δ18OPDB/‰
        GK-1-172粗晶白云岩C77.653.18-10.77GK-1-59粗晶白云岩C480.83-0.23-12.66
        GK-1-170细晶白云岩C78.573.33-12.15GK-1-58粗晶白云岩C481.570.24-11.68
        GK-1-168粗晶白云岩C711.193.35-11.25GK-1-57粗晶白云岩C481.89-0.04-12.11
        GK-1-167似球粒泥粒灰岩C711.421.32-15.59GK-1-55粗晶白云岩C483.471.28-11.85
        GK-1-165似球粒泥粒灰岩C713.870.41-12.56GK-1-52粗晶白云岩C486.601.40-11.72
        GK-1-162生屑泥粒灰岩C715.870.66-12.33GK-1-51鲕粒颗粒灰岩C487.47-0.09-12.00
        GK-1-161粗晶白云岩C616.673.28-11.63GK-1-49鲕粒颗粒灰岩C489.700.81-12.24
        GK-1-156粗晶白云岩C620.452.73-11.60GK-1-47生屑泥粒灰岩C490.500.77-12.56
        GK-1-152中粗晶白云岩C623.723.17-11.44GK-1-46粗晶白云岩C390.883.20-11.83
        GK-1-145细晶白云岩C628.553.75-10.79GK-1-44细晶白云岩C392.103.36-11.92
        GK-1-141中晶白云岩C630.683.09-11.63GK-1-42粗晶白云岩C392.993.06-11.38
        GK-1-136细晶白云岩C634.492.10-11.32GK-1-40细晶白云岩C394.152.51-11.59
        GK-1-132中粗晶白云岩C636.513.23-11.34GK-1-39生屑泥粒灰岩C395.592.90-11.36
        GK-1-128细晶白云岩C639.363.73-11.07GK-1-37生屑泥粒灰岩C397.290.89-12.01
        GK-1-125细晶白云岩C641.732.95-11.55GK-1-35生屑颗粒灰岩C399.010.54-12.19
        GK-1-124生屑泥粒灰岩C642.390.34-13.83GK-1-33生屑泥粒灰岩C3100.901.10-11.65
        GK-1-122生屑泥粒灰岩C643.311.34-12.89GK-1-31生屑泥粒灰岩C3104.870.96-11.21
        GK-1-121细晶白云岩C543.733.18-10.97GK-1-29生屑泥粒灰岩C3106.391.05-11.24
        GK-1-115中粗晶白云岩C548.372.58-11.71GK-1-28中粗晶白云岩C2106.782.97-11.46
        GK-1-109细晶白云岩C551.093.43-10.80GK-1-26鲕粒泥粒灰岩C2107.473.08-12.16
        GK-1-104粗晶白云岩C553.933.35-10.77GK-1-24细晶白云岩C2108.533.32-11.58
        GK-1-99细晶白云岩C555.823.81-10.11GK-1-22细晶白云岩C2109.273.38-9.90
        GK-1-98生屑粒泥灰岩C556.460.79-10.88GK-1-20粗晶白云岩C2110.963.32-11.22
        GK-1-96似球粒泥粒灰岩C557.501.18-13.23GK-1-18中粗晶白云岩C2112.003.56-11.02
        GK-1-94生屑泥粒灰岩C558.101.87-11.59GK-1-16粗晶白云岩C2113.133.17-12.40
        GK-1-91粗晶白云岩C458.953.39-10.85GK-1-15鲕粒泥粒灰岩C2113.620.40-13.03
        GK-1-85粗晶白云岩C462.503.50-10.47GK-1-14粗晶白云岩C1114.023.15-12.03
        GK-1-79中粗晶白云岩C465.993.46-10.73GK-1-12粗晶白云岩C1114.602.97-11.77
        GK-1-74粗晶白云岩C470.342.69-11.88GK-1-10粗晶白云岩C1115.543.15-11.16
        GK-1-71粗晶白云岩C472.332.44-13.19GK-1-8粗晶白云岩C1119.422.68-12.12
        GK-1-69粗晶白云岩C473.823.84-11.24GK-1-6中粗晶白云岩C1120.422.96-11.50
        GK-1-66粗晶白云岩C475.233.16-11.07GK-1-5生屑泥粒灰岩C1121.642.06-12.28
        GK-1-63粗晶白云岩C477.480.10-12.25GK-1-3生屑颗粒灰岩C1123.530.94-11.76
        GK-1-61粗晶白云岩C478.840.50-12.34GK-1-1生屑泥粒灰岩C1125.280.60-12.59
        GK-1-60粗晶白云岩C480.052.96-11.61
      • GK-1井布曲组碳酸盐岩样品稀土元素测试结果及相关参数见表2,测试结果均采用澳大利亚后太古平均页岩(PAAS)标准化[41],标准化结果和参数以下标N标注。对Ce异常(Ce/Ce*)进行了计算,采用的计算公式为:Ce/Ce*=CeN/(2PrN-NdN[42]。结果显示布曲组碳酸盐岩样品稀土元素总量∑REY整体较低,而白云岩的∑REY又低于灰岩。白云岩样品的∑REY介于0.440×10-6~1.605×10-6(平均值为0.923×10-6n=15);灰岩样品的∑REY介于2.341×10-6~7.254×10-6(平均值为3.894×10-6n=7)。

        表 2  GK⁃1井布曲组碳酸盐岩稀土元素含量(×10-6)、元素比值及Ce异常

        Table 2.  Rare earth element concentrations (×10-6), elemental ratios, and Ce anomaly of carbonate rocks from the Buqu Formation in the well GK⁃1

        样品编号岩性旋回LaCePrNdSmEuGdTbDyYHoErTmYbLuREYY/Ho(La/Yb)NCe/Ce*
        GK-1-172粗晶白云岩B0.1150.1510.0320.1460.0360.0060.0360.0060.0390.3160.0070.0220.0030.0200.0030.93845.140.420.64
        GK-1-152中粗晶白云岩B0.0600.0630.0110.0430.0070.0020.0100.0020.0130.1990.0040.0110.0020.0110.0020.44049.750.400.65
        GK-1-136细晶白云岩B0.0650.1100.0180.0750.0190.0040.0240.0040.0320.2850.0080.0210.0030.0180.0030.68935.630.270.74
        GK-1-115中粗晶白云岩B0.0710.0660.0130.0490.0100.0030.0130.0030.0200.3310.0050.0180.0030.0200.0030.62866.200.260.55
        GK-1-109细晶白云岩B0.0770.0750.0160.0650.0150.0030.0190.0040.0280.4190.0070.0250.0040.0250.0050.78759.860.230.55
        GK-1-85粗晶白云岩A0.0780.1220.0200.0840.0190.0030.0190.0030.0220.3190.0050.0170.0030.0170.0030.73463.800.340.55
        GK-1-71粗晶白云岩A0.1160.1110.0270.1160.0300.0060.0330.0060.0410.5460.0100.0300.0050.0320.0051.11454.600.270.52
        GK-1-66粗晶白云岩A0.0910.1250.0220.0890.0200.0040.0230.0040.0300.3870.0070.0220.0040.0230.0040.85555.290.290.55
        GK-1-55粗晶白云岩A0.1820.3040.0470.1820.0380.0080.0380.0060.0380.4880.0080.0240.0040.0200.0031.39061.000.670.72
        GK-1-46粗晶白云岩A0.0860.1160.0200.0840.0190.0030.0220.0040.0300.3720.0080.0240.0040.0250.0040.82146.500.250.71
        GK-1-40细晶白云岩A0.1770.3280.0480.1900.0450.0070.0460.0090.0610.5930.0130.0410.0060.0360.0051.60545.620.360.78
        GK-1-28中粗晶白云岩A0.0960.1120.0210.0880.0210.0040.0240.0040.0300.3660.0070.0220.0030.0210.0040.82352.290.340.65
        GK-1-24细晶白云岩A0.0890.0960.0200.0820.0230.0040.0270.0050.0350.4000.0080.0250.0040.0260.0040.84850.000.250.57
        GK-1-16粗晶白云岩A0.1200.1120.0220.0980.0230.0050.0280.0050.0380.5340.0090.0280.0040.0300.0051.06159.330.300.67
        GK-1-6中粗晶白云岩A0.1470.1480.0280.1130.0240.0050.0290.0050.0370.4970.0090.0290.0040.0290.0051.10955.220.370.62
        GK-1-165似球粒泥粒灰岩B0.4680.7660.0980.3580.0620.0120.0560.0080.0440.6530.0100.0280.0030.0220.0032.59165.301.570.83
        GK-1-124生屑泥粒灰岩B1.2232.2970.3051.1190.1860.0370.1620.0230.1281.5560.0280.0810.0120.0840.0137.25455.571.070.80
        GK-1-96似球粒泥粒灰岩B0.7161.1340.1350.4850.0890.0190.0850.0120.0690.5910.0140.0380.0050.0290.0043.42542.211.820.88
        GK-1-49鲕粒颗粒灰岩A0.8451.1160.1320.4640.0670.0200.0740.0080.0480.8310.0110.0320.0050.0290.0053.68775.552.150.86
        GK-1-35生屑颗粒灰岩A0.9861.3070.1550.5470.0820.0250.0920.0110.0600.8290.0120.0320.0040.0260.0044.17269.082.800.87
        GK-1-15鲕粒泥粒灰岩A0.3250.5300.0750.2940.0570.0120.0590.0090.0590.8150.0140.0410.0060.0390.0062.34158.210.620.80
        GK-1-1生屑泥粒灰岩A0.8321.0080.1290.4590.0760.0220.0830.0110.0690.9900.0150.0430.0060.0360.0063.78566.001.710.81
        PAAS38.279.68.8333.95.551.084.660.7744.68270.9912.850.4052.820.433

        白云岩和灰岩的稀土元素配分模式如图4所示,白云岩的(La/Yb)N比值小于1,其稀土元素配分模式为相对富集HREE的“左倾”样式;灰岩样品的(La/Yb)N比值大于1,只有一个样品小于1,其相对富集LREE,配分模式趋于平坦。所有样品的稀土元素配分模式具有明显的Y正异常,Y/Ho值介于35.63~75.55(平均值为56,n=22)。白云岩的Ce/Ce*介于0.55~0.78(平均值为0.63,n=15),灰岩的Ce/Ce*介于0.80~0.88(平均值为0.84,n=7)。每个旋回中白云岩的Ce/Ce*小于灰岩(图2)。

        图  4  GK⁃1井布曲组碳酸盐岩PAAS标准化REY配分模式

        Figure 4.  PAAS⁃normalized REY patterns for the carbonate rocks from Buqu Formation in the well GK⁃1

      • GK-1井布曲组碳酸盐岩样品主微量数据见表3,碳酸盐岩样品主量元素主要由CaO、MgO组成,总体上灰岩CaO含量高,白云岩MgO含量高。白云岩CaO含量介于30.20%~35.90%(平均值为31.69%,n=15),MgO含量介于16.80%~21.70%(平均值为20.34%,n=15);灰岩的CaO含量介于44.40%~55.10%(平均值为52.37%,n=7),MgO含量介于0.37%~9.49%(平均值为2.71%,n=7);所有测试样品的Al2O3含量介于0.061%~0.120%(平均值为0.085%,n=22),TiO2含量介于0.000 2%~0.001 3%(平均值为0.000 7%,n=22)。

        白云岩和灰岩氧化还原敏感元素(U、Mo、V)含量均很低,分别介于0.050×10-6~2.792×10-6、0.003×10-6~0.076×10-6、0.328×10-6~4.529×10-6。白云岩和灰岩的V/(V+Ni)比值介于0.01~0.39,在每个旋回中,与灰岩相比白云岩具有高Mn、低Sr含量特征。大多数白云岩样品的Mn/Sr比值介于1.77~2.98(平均值为2.33,n=13),只有两个样品Mn/Sr大于3;灰岩的Mn/Sr比值介于0.16~0.99(平均值为0.34,n=7)。总体来看,单个旋回中白云岩的Cu、Zn含量高于灰岩,并且从A类旋回到B类旋回有减小的趋势(图2)。

      • 用碳酸盐岩碳氧同位素进行古海洋环境研究时,仅代表原始海相环境的碳氧同位素组成的数据才有指示意义。样品的氧同位素值、碳氧同位素交会图、Mn/Sr值常用于评估埋藏成岩蚀变程度[4344]。碳酸盐岩氧同位素对成岩蚀变作用反应灵敏。通常认为,当δ18O介于-10‰~-5‰时,反映碳酸盐岩受成岩蚀变的影响较小;当δ18O小于-10‰时,反映碳酸盐岩已发生强烈的成岩蚀变,氧同位素组成发生明显变化[4546]。相反,由于成岩流体中碳含量有限,成岩过程中需要高的水岩比值(>1 000)才能使碳酸盐矿物碳同位素组成显著改变[47],因此海相碳酸盐岩中无机碳同位素信号易于保存。通常认为Mn/Sr值小于2或3,指示样品的成岩蚀变程度较弱;Mn/Sr值小于10时,反映成岩蚀变程度较强,但仍保留有原始海水的同位素信息[45]。GK-1井布曲组碳酸盐岩δ13CPDBδ18OPDB不具有明显的相关性(R2=0.272 2,图5a),表明成岩影响较弱。此外,灰岩样品Mn/Sr平均值为0.38,白云岩样品Mn/Sr平均值为2.33,表明样品遭受的成岩蚀变程度较弱,整体上白云岩受成岩改造相对强烈,并保留了原始海洋信号。如下所示,碳氧同位素受陆源输入影响也很小。

        图  5  GK⁃1井布曲组碳酸盐岩δ13CPDBδ18OPDB和Y/Ho⁃∑REY(REE+Y)交会图

        Figure 5.  Cross⁃plots of δ13CPDB versus δ18OPDB and Y/Ho versus ∑REY (REE+Y) of carbonate rocks from the Buqu Formation in the well GK⁃1

        海相碳酸盐岩的主微量元素除海水环境外,还可能受埋藏成岩、陆源输入和热液影响[48]。一般来说,大部分情况热液来源可以忽略不计[4950],并且热液影响常常在PAAS标准后的稀土元素中表现出Eu正异常[42]。利用元素与陆源碎屑元素Al或Ti的相关性能够有效判别陆源碎屑的影响,若元素与Al、Ti呈明显的正相关关系,则说明有大量的陆源碎屑组分混入[48]。如上所示,布曲组样品受埋藏成岩影响相对较弱。此外,经PAAS标准化的稀土元素配分模式无Eu正异常(图4),元素含量、∑REY与Ti无明显相关性(图6),且∑REY、Al2O3和TiO2含量极低,说明布曲组元素受陆源碎屑输入和热液影响较弱。

        图  6  氧化还原敏感元素(U、Mo、V)、营养元素(Cu、Zn)及∑REY与Ti的相关性

        Figure 6.  Cross⁃plots of Ti concentration with concentrations of redox sensitive elements (U, Mo, V), nutrient elements (Cu, Zn), and ∑REY

      • GK-1井岩心发育大量针状溶孔与鲕粒,未见明显的沉积构造和大气淡水溶蚀作用(图2i),结合镜下观察到各沉积旋回中灰岩存在多样生物颗粒,且白云岩含有大量鲕粒幻影,认为布曲组沉积于为较高能的颗粒滩环境[5152]。具体来看,A类旋回中的灰岩常见鲕粒和多类型的生物碎屑,包括蓝绿藻、棘皮、腹足、双壳,基质多为亮晶方解石胶结,指示浅水、高能的搅动环境,沉积环境可能为较高能颗粒浅滩。相对来说,B类旋回中的灰岩鲕粒和生物碎屑含量减少,生物颗粒以蓝绿藻、棘皮和有孔虫为主,似球粒含量增加,基质主要为泥晶方解石,沉积环境为低能颗粒浅滩。

        前人研究认为昂达尔错地区布曲组是炎热、半干旱气候下发育的台地边缘礁滩相碳酸盐岩沉积[33,53],因此GK-1井布曲组主要位于开阔台地—台地边缘相带(图2),滩后存在局限水体[17]。A类旋回为高能浅滩,主要位于向海方向更加靠近台地边缘,水深较大,受到台地边缘强烈的波浪作用,水动力强。B类旋回为低能浅滩,泥晶化作用增强,似球粒增多,位于向陆方向水体较浅。由于向海方向A类旋回颗粒滩的障壁作用,B类旋回颗粒滩受到的波浪作用减弱,水体变得局限,水动力较弱。

      • 前人多认为选择性溶蚀与大气淡水成岩作用相关[611]。大气淡水存在于近地表、大气渗流带以及大气潜流带,由于与大气相互作用以及地表和土壤中有机质氧化分解而富含CO2,对碳酸盐矿物(如文石、镁方解石)强烈不饱和并且具有非常低的δ13C和δ18O值[54]。因此海相碳酸盐岩经大气淡水淋滤而发生同位素交换,与初始海洋值相比具有偏负的δ13C和δ18O值。但是,GK-1井布曲组灰岩样品δ13CPDB介于-0.09‰~2.90‰,基本与侏罗纪同期海水相当[55],反映同期海水而非大气淡水的碳同位素特征。而白云岩样品δ13CPDB介于-0.23‰~3.84‰,高于灰岩,白云岩样品δ18OPDB也略高于灰岩,与大气淡水值13C和18O值偏负相反,这可能与同生期、准同生期白云岩段沉积水体较浅,海水强烈蒸发使重同位素富集有关[32,35]。每个旋回中白云岩的δ13CPDBδ18OPDB相对于灰岩偏正(图2),并且灰岩样品的δ13CPDB值与海水相当,说明发育选择性溶孔的白云岩和旋回下部的灰岩均未受到明显大气淡水的淋滤作用。

        稀土元素地球化学性质稳定,受成岩流体影响较小,沉积于不同地质背景和流体来源不同的碳酸盐岩,其稀土元素配分模式也不同,故常用稀土元素来推测碳酸盐岩的沉积环境和成岩流体的性质及来源[5657]。稀土元素总量∑REY可以反映不同类型岩石的特征,陆源碎屑沉积物∑REY含量一般较高,大于100×10-6,而海相碳酸盐岩的∑REY极低[56]。海水稀土元素配分模式以重稀土(HREE)富集的“左倾”样式、显著的Ce负异常和Y正异常为特征[5859];淡水稀土元素配分模式表现为相对平坦,无明显元素异常[42,60]。Y与Ho的地球化学性质相似,通常保持一致的地球化学行为。但在海水中由于配位性质的差异,Y与Ho表面络合行为不同,海水中的Y/Ho比值高于淡水,现代海水的Y/Ho比值介于44~72[58],而陆源沉积物比值一般介于26~28,因而Y/Ho可以用来指示不同水体类型[6162]。GK-1井白云岩样品的配分模式显示出轻稀土(LREE)相对亏损,重稀土相对富集,明显的Ce负异常和Y正异常的特征,符合现代海水的稀土元素配分模式,表明白云岩及相关选择性溶蚀作用的发生没有遭受大气淡水淋滤。同时,布曲组碳酸盐岩样品∑REY含量极低,远远低于陆源碎屑沉积物,Y/Ho比值几乎全部落在现代海相沉积物的范围内(图5b),进一步说明布曲组及相关选择性溶蚀现象属于海相环境,未受到大气淡水淋滤的影响。

        此外,大气淡水成岩环境中常形成特征显著的新月形和微型钟乳状胶结物[6,63],而GK-1井岩心未观察到暴露面和岩溶作用(图3i),在镜下未见类似的大气淡水胶结物,说明研究区布曲组没有明显大气淡水流入。碳酸盐颗粒的原始矿物主要为文石和高镁方解石,且大气淡水对于两者均不饱和,若发生大气淡水溶蚀作用,则颗粒整体均会倾向于发生溶解。GK-1井布曲组每个旋回上部白云岩段保存大量鲕粒幻影,选择性溶孔发育于鲕粒幻影内部,这显然不支持选择性溶蚀的大气淡水溶蚀成因。同时,每个旋回下部灰岩中保存的原始矿物为文石质的腹足和双壳碎屑,也说明大气淡水的影响较小。此外,布曲组沉积期气候干旱,陆源输入少支持布曲组未受到大气淡水的影响[33]

        选择性溶蚀也可形成于晚期深埋藏成岩环境中[14],其成因与大块亮晶方解石晶间缝隙和深部酸性流体相关。结合本研究和前人研究,GK-1井布曲组白云石化可能起始于早期海相成岩作用。布曲组白云岩中保存有大量的颗粒幻影,且白云岩仅发育于每个旋回上部,说明存在早期白云石化作用,交代原始碳酸盐颗粒从而使幻影得以保存,并且控制了布曲组白云岩的分布。由上文可知,白云岩段δ13CPDB高于灰岩段,稀土元素PAAS标准化后配分模式与同时期海水类似,指示早期海相成岩特征。Eichenseer et al.[64]报道了白云石化程度差异所导致的选择性溶蚀现象,白云石化程度较低的大颗粒核形石和豆粒被选择性溶蚀,而鲕粒和似球粒未被溶蚀。因此,早期白云石的产生可能不利于选择性溶蚀的发生,选择性溶蚀形成时间应不晚于早期白云化。原始颗粒被早期白云石化完全交代之前,原始的不稳定矿物被溶蚀而形成选择性溶孔,此后相对稳定部分被完全白云石化。旋回中灰岩段虽可见大块亮晶方解石(图3a~c),但是并没有选择性溶蚀发育;白云岩段白云石晶体颗粒也未见选择性溶蚀现象,因此与深埋藏成因不符。此外,在垂向上选择性溶蚀在不同沉积旋回中差异性分布,这不仅与供溶蚀的物质基础有关,也与不饱和流体的来源相联系,晚期埋藏阶段成岩流体难以解释选择性溶蚀的差异性分布。综上所述,白云岩中发育的选择性溶蚀不是深埋藏成因。

        综上所述,基于GK-1井每个旋回白云岩δ13CPDBδ18OPDB相对灰岩偏正,灰岩的δ13CPDB与同期海水相当、白云岩的稀土元素总量∑REY极低、稀土元素配分模式与现代海水一致、Y/Ho位于现代海水的范围内,结合岩石学特征,认为白云岩段的选择性溶蚀作用并不是大气淡水和深埋藏成因,而是发生在早期海相成岩作用阶段。

      • 早期海相成岩阶段若要发生选择性溶蚀作用需要满足以下条件:(1)物质基础,大量现代浅水碳酸盐岩颗粒由文石和高镁方解石组成,相对于高镁方解石来说文石更不稳定,文石颗粒的溶解可形成组构选择性溶蚀;(2)不饱和流体,在天然条件下,海水对原始沉积的文石和高镁方解石都是饱和的。因此,要触发文石的选择性溶蚀需要孔隙水中产生不饱和流体。早期海相成岩过程中的酸性流体主要来自有机质降解和海水酸化[5,65]。然而,布曲组沉积时期全球各地区沉积大量海相碳酸盐岩[6667],旋回中灰岩段保留文石质的腹足和双壳,这与海水酸化现象明显不符。因此,导致研究区布曲组早期海相选择性溶蚀的不饱和流体来自有机质降解。前人研究表明,早期海相成岩过程中,海水—沉积物界面和孔隙水中由微生物诱导的有机质有氧降解,硫酸盐还原与甲烷生成反应,以及缺铁环境下硫酸盐还原产物H2S的氧化会生成CO2和H2SO4[9,6869],降低早成岩孔隙水pH从而引发文石的溶解。由上文可知,布曲组的选择性溶蚀仅发育在每个旋回上部的白云岩中,并且在不同旋回发育程度不同,这指示了选择性溶蚀在不同沉积旋回中形成条件存在差异。

      • 前人研究表明,海相碳酸盐颗粒的原始矿物组成将影响其在成岩作用中的保存,方解石颗粒原始组构倾向保存,而文石颗粒由于不稳定通常发生重结晶或被溶解[34]。基于GK-1井化石组构保存情况和种类,灰岩中识别出重结晶的腹足、双壳碎屑是文石质,而蓝绿藻、有孔虫、棘皮碎屑是高镁方解石质(图3a~d)。灰岩中泥晶鲕粒保存同心纹层结构(图3a,b),这指示其原始矿物为高镁方解石。但在白云石中选择性溶蚀主要发育于鲕粒幻影内部,由此推测选择性溶蚀的被溶物质是鲕粒内部的腹足和双壳碎屑等文石颗粒。同时,灰岩中的文石质腹足和双壳含量从A类旋回到B类旋回减少(图3a~f),与选择性溶孔含量变化趋势相对应,表明在垂向上选择性溶孔的发育在一定程度上受到原始碳酸盐沉积中文石含量的控制。

      • 氧化还原敏感元素(如U、Mo、V)在沉积物或沉积岩中的富集与沉积时的氧化还原状态密切相关,可以通过氧化还原敏感元素在沉积岩中的含量来重建海洋氧化还原条件[48,70]。氧化还原敏感元素(如U、Mo、V)在氧化水体中能以可溶解形式稳定存在(如MoO42-,UO2(CO334-,HVO42-,H2VO4-),在还原水体中以低溶或者不溶物的形式从海水中析出(如U3O8,U3O,VO(OH)3-,V(OH)3),导致这些元素在氧化环境中不富集或少量富集,在次氧化—缺氧环境中,中等—强烈富集。V/(V+Ni)比值也可以有效反应水体氧化还原条件,V/(V+Ni)比值<0.46,0.46~0.6,0.54~0.82,>0.84分别指示富氧环境、贫氧环境、缺氧环境和硫化环境[7172]。GK-1井布曲组的U、Mo、V含量均非常低,V/(V+Ni)比值全部小于0.46,加之布曲组出现大量鲕粒沉积,其沉积环境为水体不断搅动的颗粒滩,表明布曲组沉积期海水整体上处于氧化环境。Ce是氧化还原敏感元素,以Ce3+和Ce4+两种形式存在于水体中。在氧化水体中,可溶的Ce3+易被氧化成Ce4+而从海水中析出,并吸附于Fe-Mn氧化物的表面,导致氧化海水出现Ce亏损而表现出明显的Ce负异常[7374]。而在早成岩阶段孔隙水还原带中,吸附Ce4+的Fe-Mn氧化物会发生还原溶解从而向孔隙水中释放Ce3+,使孔隙水表现为弱Ce异常,同时有机质颗粒的降解优先向孔隙水释放LREE,从而使孔隙水的HREE富集特征消失,表现为相对平坦稀土元素配分模式[7576]。在每个旋回中,白云岩稀土元素配分模式与现代海水一致,而灰岩的稀土元素配分模式不具有HREE富集的特征(图4)。白云岩Ce/Ce*介于0.51~0.78(平均值为0.66),灰岩Ce/Ce*介于0.80~0.87(平均值为0.83),每个旋回中白云岩Ce/Ce*都低于灰岩(图2)。以上特征综合说明,在每个旋回中白云岩段和灰岩沉积于氧化海水中,但在海相早成岩阶段白云岩段孔隙水相对氧化,氧化还原界面较低,灰岩段孔隙水相对还原,氧化还原界面高于白云岩段,与相对海平面变化相一致(图7)。此外,从A类旋回到B类旋回,由于环境变得局限,水体循环性变差,水动力变小;相对地,B类旋回的氧化还原界面高于A类旋回(图7)。

        图  7  GK⁃1井布曲组(a)沉积旋回特征及(b)选择性溶蚀模式

        Figure 7.  (a) Sedimentary cycle characteristics and (b) selective dissolution of the Buqu Formation in the well GK⁃1

        海洋表层初级生产力是指海洋生物在能量循环中固定能量的速率,越高的初级生产力意味着水体中越高的有机质通量[77]。Cu、Zn、Ni是生命必需的营养元素,主要以有机金属配位体的形式从水体固定到沉积物中。当有机质发生降解,若孔隙水氧化,则Cu、Zn、Ni会被重新释放到孔隙水中;若孔隙水缺氧,发生细菌硫酸盐还原作用(BSR),则Cu、Zn、Ni会与S结合形成硫化物或者以固溶体形成赋存于黄铁矿中[48]。因此,Cu、Zn、Ni的含量可以作为有机质通量的指标,从而反映古生产力的大小,Cu、Zn、Ni含量越高指示越高的生产力。值得注意的是,除古生产力外,Cu、Zn、Ni的含量还受到陆源输入和水体氧化还原条件的影响[48]。但是,布曲组沉积时陆源输入极少,沉积水体表现为氧化环境,因此认为Cu、Zn、Ni的富集主要受到生产力的控制,有机质将Cu、Zn、Ni从海水带到沉积物中。整体来看,每个旋回白云岩的Cu、Zn含量比灰岩高,从A类旋回到B类旋回,Cu、Zn含量有减小趋势(图2),说明白云岩的生产力高于灰岩,A类旋回白云岩较B类旋回有更高的生产力水平。

        综上所述,布曲组早期海相成岩孔隙水中,相对文石不饱和流体的产生受氧化还原环境和古生产力水平控制。每个旋回中,白云岩段孔隙水与灰岩段相比相对氧化,生产力较高,在早成岩阶段白云岩段有更多有机质快速降解产生大量有机酸;另外,虽然整体上A类旋回与B类旋回都发育选择性溶蚀,但A类旋回较B类旋回生产力更高,氧化还原界面低而孔隙水相对更加氧化,故A类旋回更加满足有机酸产生的条件。

      • 在半干旱—干旱的气候背景下,南羌塘盆地布曲组沉积于羌塘盆地被动大陆边缘坳陷阶段,盆地发生由南向北的大规模海侵,来自中央隆起带的陆源碎屑物质减少[17,21]。隆鄂尼地区整体上处于开阔台地—台地边缘浅滩相带[17],受高频海平面变化控制,GK-1井布曲组发育颗粒灰岩与白云岩的旋回沉积,且从下部旋回到上部旋回沉积环境变局限,水体能量变小。白云岩中发育大量选择性溶蚀孔隙,岩石学和地球化学分析结果显示选择性溶蚀并非淡水成因和深埋藏成因,而是发生在海相早期成岩阶段,流体来源具海水特征。选择性溶孔的发育受文石含量、古生产力和早成岩氧化还原界面的控制:(1)在每个旋回中,白云岩段相对于灰岩沉积水体较浅,水动力较大,孔隙水相对氧化,生产力较高而有利于更多的有机质驱动快速的有氧降解产生大量的有机酸,在开放系统下不饱和流体使文石发生选择性溶蚀从而产生大量的溶孔。相反,灰岩段生产力较低,孔隙水相对还原而不利于有机酸的产生,不发育选择性溶孔(图7a)。(2)在不同旋回之间,选择性溶蚀发育程度不同。A类旋回中水动力较强,文石含量相对较高,氧化还原界面较低,古生产力较高,使得有机质在相对氧化的条件下快速分解产生有机酸而发生选择性溶蚀;B类旋回水体环境呈现出低能、局限的特征,氧化还原界面相对较高,低文石含量和低生产力不利于产生大量的选择性溶蚀(图7b)。

      • 海相沉积期和早成岩阶段文石的选择性溶蚀,对于理解碳酸盐岩的成岩作用和储层的形成具有重要的意义。一直以来,地质学家对海相碳酸盐岩储层尤为关注,在沉积和成岩作用的叠加影响下,碳酸盐岩储层通常发育多种孔隙类型而组成复杂的油气储集空间。一般来说,碳酸盐岩的沉积作用为孔隙发育提供物质基础,沉积相在一定程度上控制着优质储层的分布[7879],而早期和晚期成岩作用对储层孔隙进行多期改造,其中溶蚀作用、白云石化、构造破裂作用等对改善储集空间具有建设性作用[8081]。组构选择性溶蚀形成的铸模孔和粒内溶孔常形成规模储集空间,有助于形成优质储层,但是这类孔隙一般被认为是层序界面下具有高含量不稳定矿物的沉积体暴露于大气淡水并发生溶蚀而形成[1011,82]。而布曲组台缘滩相碳酸盐岩的选择性溶蚀为海相早成岩阶段文石受有机酸选择性溶蚀改造形成而非大气淡水淋滤溶蚀成因,这为海相碳酸盐岩选择性溶蚀成因提供新见解。同时,每套布曲组滩相碳酸盐岩沉积旋回顶部白云岩层段中粒内溶孔边缘含有沥青薄膜,说明在埋藏阶段经历过液态原油的运移富集,属于有效的储集空间,深化了碳酸盐岩储层早成岩阶段孔隙成因认识。此外,Laya et al.[5]提出早成岩阶段文石的选择性溶蚀同样造成了大量再沉积鲕粒的铸模孔,其形成环境是区别于台地边缘滩的深海环境。总的来说,深入研究碳酸盐岩早成岩阶段选择性溶蚀的形成环境及成因机制,能够为孔隙在时空上的发育提供更多启示,对碳酸盐岩储层预测和油气勘探具有重要意义。

      • (1) 南羌塘盆地GK-1井布曲组发育8个沉积旋回,每个旋回由下部灰岩和上部白云岩组成,并划分为A、B两类旋回。两类旋回中白云岩均为晶粒白云岩,白云岩颗粒幻影中广泛发育组构选择性溶孔,从A类旋回到B类旋回,选择性溶孔含量减少。A类旋回灰岩为生物碎屑泥粒灰岩和颗粒灰岩,B类旋回灰岩为生物碎屑粒泥灰岩和泥粒灰岩。两类旋回为海相颗粒滩沉积,其中A类旋回沉积环境为高能浅滩,B类旋回沉积环境为低能浅滩。

        (2) GK-1井布曲组每个旋回中碳氧同位素在白云岩段偏正,白云岩的稀土元素配分模式呈重稀土相对富集,明显的Ce异常和Y异常的海水样式,白云岩与灰岩的Y/Ho值基本位于海水范围内且∑REY含量极低。同时,岩心和镜下观察未见大气淡水和深埋藏标志。综合地球化学指标和岩石学特征认为白云岩段的选择性溶蚀不是大气淡水和深埋藏成因,而是发生在早期海相成岩阶段。

        (3) GK-1井布曲组选择性溶蚀由海相早期成岩阶段有机质降解产生有机酸使文石选择性溶蚀而形成,其发育受文石含量、古生产力和氧化还原界面的波动控制。单个旋回中,白云岩相对于灰岩孔隙水更加氧化,古生产力更高而有利于产生有机酸,形成选择性溶孔;不同旋回之间,A类旋回相对B类旋回文石含量更高,古生产力更高,氧化还原界面低,因而发育大量选择性溶孔。

    参考文献 (82)

    目录

      /

      返回文章
      返回