-
新元古代是地球演化历史上重大的变革时期之一,该时期全球发生了一系列重要的地质事件,特别是罗迪尼亚(Rodinia)超大陆由聚合向裂解的转换,以及对全球海平面变化、大气含氧量变化、气候变化、矿产资源形成及生命演化等有着深刻、广泛的影响[1⁃6]。扬子陆块因参与了Rodinia超大陆的聚散过程而备受关注,也造就了该时期时空各异的盆山结构,其形成演化过程一直是国际研究的热点和难点[7⁃12]。一方面,许多原来被认为中元古代褶皱基底的地层实际为新元古代,如扬子陆块东南缘的冷家溪群形成于860~830 Ma,江南造山带的形成时间要晚于全球格林威尔造山期[13⁃15];另一方面,现有成果多集中在岩浆岩领域[16⁃22],极少将岩浆岩、沉积地层和物源相结合来综合分析盆地的性质与演化。随着研究的不断深入,扬子陆块周缘的构造演化及盆山格局需要重新认识。
沉积地层时代的确定是区域地层划分对比的重要依据,也是进行古地理重建和沉积盆地演化研究的重要前提[23⁃28]。物源作为连接造山带与沉积盆地的纽带,能够反映块体亲缘关系、古地理格局、盆地性质、构造演化等关键信息[29⁃34]。因此,地层时代和物源的确定,可以有效制约区域大地构造背景和构造演化过程。
火地垭群是扬子陆块前寒武纪重要的地层单元,创名于四川南江,原称火地垭层,并与三峡陡山沱组进行对比[35]。经过一系列的变革,现指铁船山组之下、后河杂岩之上的一套岩系,自下而上划分为麻窝子组和上两组。早期火地垭群的沉积时限主要是依据野外地质关系、变质程度和叠层石进行约束,多被置于中元古代,其形成时代、物源和大地构造背景对理解扬子陆块西北缘乃至整个华南前寒武纪构造演化至关重要。虽然也有少量K-Ar和U-Pb法年龄数据的报道[35⁃36],但其数据的准确度不高,因此其形成时代存在较大争论,一种观点认为是中元古代中晚期的产物,可与扬子陆块北缘神农架群和打鼓石群进行对比[37];另一种观点认为其时代为中元古代早期,与西缘东川群等是同时代的产物[38]。另外,火地垭群的物源特征、沉积大地构造背景等也鲜有研究和报道。鉴于此,对四川旺苍地区火地垭群进行了碎屑锆石U-Pb年代学研究,目的在于(1)限定火地垭群的沉积时代,分析其物源特征;(2)结合已有研究成果,综合判定火地垭群形成的大地构造背景,从而为重建区域构造演化历史提供依据。
-
研究区位于扬子陆块西北缘米仓山地区,其北侧为汉南古隆起和秦岭造山带,西接龙门山推覆构造带,东邻大巴山推覆构造带(图1a)。米仓山地区出露的前震旦纪岩石地层主要有后河杂岩、火地垭群和铁船山组,以及大面积的侵入岩(图1b)。后河杂岩由原火地垭群解体出来,主要由花岗质片麻岩、混合岩、斜长角闪岩等组成[39];铁船山组分布于碑坝地区,以火山岩和火山碎屑岩为主,其流纹岩锆石U-Pb定年为817±5 Ma[40]。区内前寒武纪岩浆侵入活动较为强烈,岩性主要为辉长岩、闪长岩、花岗闪长岩、花岗岩等,时代多为新元古代[19]。如前所述,火地垭群是区内重要的前寒武纪地层单元,同时也是中国重要的石墨矿含矿层位,主要分布于四川的旺苍—南江地区、陕西的碑坝地区,与下伏的后河杂岩和上覆的铁船山组或震旦系观音崖组均为不整合接触,包括下部麻窝子组和上部上两组,其中麻窝子组主要为长英角岩、(石墨)大理岩、白云岩、钙质板岩、硅质板岩、碳质板岩、钙质砾岩、白云母片岩等;上两组以绢云板岩、粉砂质板岩、碳质板岩、绿泥板岩、白云质灰岩、绢云千枚岩、石英片岩、变砂岩为主(图2)。
图 1 (a)扬子陆块北缘及周缘构造纲要及研究区大地构造位置图(据文献[23]修改);(b)米仓山—汉南地区前寒武纪地质简图(据文献[19]修改);(c)研究区区域地质图
Figure 1. (a) Tectonic outline of the northwestern margin of the Yangtze Block and its periphery and the tectonic position of the study area (modified from reference [23]); (b) simplified geological map showing the distribution of Precambrian rocks in the Micangshan and Hannan area (modified from reference [19]); (c) regional geological map of the study area
四川省地质局第2区测队. 南江幅I- 48-35 1/20万区域地质测量报告[R]. 北京:全国地质资料馆,1965.
样品SM-5采于旺苍县水磨镇北东约8 km处(图1c),位于火地垭群上两组的上部,上下均为绢云板岩,野外露头呈灰色,中—薄层状,向上地层厚度变厚、岩石粒度变粗(图2),地理坐标为32°28′27″ N、106°34′24″ E。
显微镜下观察表明,岩石具斑点状结构,基质为粒状鳞片状变晶结构、千枚状构造。岩石原岩为粉砂质泥岩,由粉砂级碎屑和泥质组成。主要成分为泥质,其成分主要为黏土矿物及粒径小于0.005 mm的长英质成分,约占岩石总量的65%;砂级碎屑,主要为粉砂级的长英质碎屑,少量碎屑粒径达细粒级,约占岩石总量的35%。在后期变质作用下,岩石中大部分泥质变质为鳞片状的绢云母和微粒的石英,绢云母定向排列,呈千枚状构造;岩石中未变质的黏土矿物与少量的石英碎屑、鳞片状的绢云母形成斑点状的集合体,斑点呈椭圆状、透镜状,其长轴方向与千枚理方向一致,斑点粒径介于0.5~2.0 mm,含量约占总量的15%。镜下定名为斑点状绢云千枚岩(图3)。
-
岩石样品经破碎、淘洗、重液分离和电磁分离后,在双目镜下挑选晶形完好、具有代表性的锆石颗粒粘在树脂台上,打磨抛光,制成样靶,然后对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,确定锆石的内部结构和成因,以选取最佳的待测锆石部位。锆石U-Pb同位素定年和微量元素含量在武汉上谱分析科技有限责任公司利用LA-ICP-MS同时分析完成。GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。本次分析的激光束斑为32 µm。U-Pb同位素定年和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正。每个时间分辨分析数据包括20~30 s空白信号和50 s样品信号。详细的仪器参数和分析流程见文献[41]。
-
样品SM-5锆石粒度较小,长轴一般介于60~100 μm,长宽比以1.5∶1~2∶1为主。锆石多呈自形至半自形、棱角状至次圆状的形态特征,少数表面发育裂纹。阴极发光(CL)图像中,绝大部分锆石显示岩浆振荡环带结构,指示岩浆成因。根据磨蚀程度,这些锆石可大致分为两类:第一类以自形为主,棱角分明;第二类有不同程度的磨圆,多呈自形至半自形、次棱角状至次圆状的形态特征(图4)。
图 4 旺苍地区火地垭群上两组绢云千枚岩样品SM⁃5代表性锆石CL图像(比例尺均为50 μm)
Figure 4. Cathodeluminescence (CL) images of typical zircon grains of sericite phyllite sample SM⁃5 from the Shangliang Formation of the Huodiya Group in the Wangcang area
对该样品的41颗锆石进行了41个分析点的U-Pb同位素年龄测定,分析结果列于表1。其中40颗给出了有效年龄(谐和度≥90%),这些有效年龄颗粒的Th和U的含量分别介于13×10-6~315×10-6和29×10-6~492×10-6,Th/U比介于0.30~1.22,也说明它们为岩浆结晶的产物。40个有效年龄介于832~988 Ma,集中分布于832~843 Ma、855~883 Ma、895~936 Ma和952~973 Ma四个区间;相对概率峰值为ca. 840 Ma、ca. 868 Ma、ca. 918 Ma、ca. 954 Ma(图5)。最年轻一组锆石206Pb/238U年龄的加权平均值为837.6±6.0 Ma(MSWD=0.60,n=5)(图5a),代表了该样品的最大沉积年龄。
表 1 旺苍地区火地垭群上两组绢云千枚岩样品SM⁃5锆石U⁃Pb 同位素定年结果
Table 1. Zircon U⁃Pb isotope data of the sericite phyllite sample SM⁃5 from the Shangliang Formation of the Huodiya Group in the Wangcang area
测试点号 Th/U 同位素比值 同位素年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 谐和度/% 1 0.54 0.071 7 0.002 2 1.577 7 0.045 9 0.159 5 0.001 5 976 57.0 961 18.1 954 8.6 99 2 0.55 0.069 7 0.002 6 1.388 6 0.051 3 0.144 6 0.001 4 918 78.0 884 21.8 871 8.0 98 3 0.75 0.070 9 0.002 4 1.510 8 0.048 2 0.154 2 0.001 2 955 68.0 935 19.5 924 6.5 98 4 0.53 0.073 2 0.002 4 1.611 6 0.050 7 0.159 8 0.001 5 1 020 68.0 975 19.7 956 8.6 98 5 0.69 0.081 4 0.002 8 1.610 0 0.052 5 0.143 3 0.001 5 1 232 67.0 974 20.4 863 8.3 87 6 0.66 0.070 5 0.001 9 1.406 8 0.037 4 0.144 0 0.001 2 943 54.2 892 15.8 867 6.6 97 7 0.71 0.066 0 0.002 5 1.303 6 0.048 7 0.143 4 0.001 8 807 78.9 847 21.5 864 10.2 98 8 0.75 0.067 5 0.001 8 1.324 8 0.035 9 0.142 2 0.001 5 852 55.6 857 15.7 857 8.7 99 9 0.43 0.069 2 0.001 9 1.332 0 0.035 8 0.139 3 0.001 2 906 52.8 860 15.6 841 7.1 97 10 0.30 0.071 1 0.001 6 1.573 5 0.034 3 0.159 7 0.001 1 961 44.4 960 13.6 955 5.9 99 11 0.47 0.072 2 0.002 6 1.588 8 0.053 5 0.161 2 0.002 0 992 74.1 966 21.0 963 11.3 99 12 0.63 0.068 2 0.001 8 1.445 6 0.039 7 0.153 4 0.001 7 876 55.6 908 16.5 920 9.3 98 13 1.22 0.065 9 0.002 2 1.251 9 0.040 7 0.137 9 0.001 4 806 70.4 824 18.4 833 7.7 98 14 0.43 0.068 0 0.003 6 1.402 3 0.067 5 0.152 2 0.002 0 878 105.0 890 28.5 913 11.4 97 15 0.58 0.072 1 0.003 3 1.449 3 0.065 0 0.146 9 0.002 0 991 93.4 910 26.9 883 11.3 97 16 0.53 0.072 0 0.001 5 1.454 4 0.032 4 0.145 9 0.001 3 985 42.6 912 13.4 878 7.3 96 17 0.46 0.069 0 0.002 1 1.431 5 0.040 8 0.150 7 0.001 3 898 65.7 902 17.0 905 7.4 99 18 0.71 0.073 3 0.001 8 1.527 3 0.037 1 0.151 2 0.001 4 1 022 51.1 941 14.9 907 7.6 96 19 0.76 0.069 4 0.001 7 1.489 8 0.037 4 0.155 4 0.001 5 909 50.8 926 15.2 931 8.4 99 20 0.51 0.074 9 0.003 0 1.550 6 0.059 2 0.151 0 0.001 7 1 065 80.1 951 23.6 907 9.8 95 21 0.90 0.072 6 0.001 3 1.665 5 0.032 6 0.165 6 0.001 5 1 003 36.7 995 12.4 988 8.1 99 22 0.54 0.071 1 0.001 4 1.601 7 0.031 6 0.162 8 0.001 4 961 39.7 971 12.3 973 7.5 99 23 0.45 0.073 1 0.001 7 1.551 7 0.035 7 0.153 7 0.001 3 1 017 48.2 951 14.2 922 7.4 96 24 0.67 0.071 1 0.002 1 1.516 6 0.045 8 0.154 2 0.001 6 961 61.1 937 18.5 924 9.0 98 25 0.64 0.069 7 0.001 5 1.470 3 0.033 3 0.152 4 0.001 4 920 44.4 918 13.7 914 7.6 99 26 0.30 0.070 1 0.001 3 1.546 3 0.028 9 0.159 2 0.001 1 931 37.0 949 11.5 952 6.2 99 27 0.73 0.070 3 0.001 7 1.360 5 0.032 7 0.139 7 0.001 0 939 49.2 872 14.1 843 5.9 96 28 0.81 0.072 4 0.001 7 1.516 9 0.034 3 0.151 5 0.001 3 998 47.1 937 13.9 909 7.2 96 29 0.76 0.071 8 0.001 9 1.511 5 0.038 7 0.152 2 0.001 2 989 53.2 935 15.6 913 7.0 97 30 0.64 0.068 1 0.002 0 1.455 7 0.042 0 0.154 5 0.001 6 872 60.0 912 17.4 926 8.9 98 31 0.34 0.069 8 0.002 2 1.456 8 0.043 8 0.151 2 0.001 5 924 64.8 913 18.1 908 8.4 99 32 0.62 0.068 0 0.001 7 1.295 7 0.030 5 0.137 7 0.001 0 878 50.0 844 13.5 832 5.9 98 33 0.56 0.069 5 0.001 6 1.472 0 0.032 8 0.153 0 0.001 2 922 47.1 919 13.5 918 6.7 99 34 0.58 0.068 5 0.002 2 1.336 3 0.040 3 0.141 9 0.001 5 883 65.6 862 17.5 855 8.4 99 35 0.58 0.067 4 0.002 6 1.294 6 0.050 0 0.139 3 0.001 6 850 79.6 843 22.1 840 9.1 99 36 0.49 0.070 5 0.001 7 1.584 8 0.040 6 0.162 2 0.001 5 944 50.0 964 16.0 969 8.3 99 37 0.46 0.068 7 0.001 9 1.480 7 0.041 3 0.155 9 0.001 5 900 57.4 923 16.9 934 8.1 98 38 1.00 0.069 3 0.001 5 1.465 8 0.031 6 0.153 1 0.001 2 906 45.2 916 13.0 918 6.7 99 39 0.66 0.069 0 0.002 3 1.480 6 0.047 7 0.156 3 0.001 6 900 70.4 922 19.5 936 8.8 98 40 1.05 0.073 9 0.001 9 1.581 2 0.039 1 0.154 9 0.001 3 1 039 50.0 963 15.4 928 7.2 96 41 0.54 0.071 4 0.001 9 1.469 1 0.037 9 0.148 9 0.001 3 969 49.5 918 15.6 895 7.5 97 -
如前所述,早期火地垭群虽然有一些数据的报道,但由于受测定方法所限,其年龄数据的准确度均不高。如四川省地质矿产局[35]根据侵入火地垭群角闪辉石岩1 065 Ma的K-Ar年龄和石英闪长岩956 Ma的U-Pb年龄,将火地垭群限定为中元古代;何政伟等[36]在火地垭群上两组纤闪钠长黑云千枚岩中获得单颗粒锆石Pb-Pb年龄为1 619±28 Ma,而麻窝子组含华北蓟县系贝加尔叠层石、喀什叠层石、铁岭叠层石等,时限相当于1 000~1 400 Ma,因此将上两组置于麻窝子组之下,时代也定为中元古代[42]。最近,Li et al.[43]对陕西碑坝地区麻窝子组的砾岩进行锆石U-Pb定年研究,获得砾岩最大的沉积年龄为1 970±27 Ma,并根据区域上ca. 1.79 Ga的白玉花岗岩[44],将麻窝子组砾岩的沉积时代限定在1.79~1.97 Ga[43]。值得一提的是,碑坝地区ca. 1.79 Ga花岗岩与火地垭群没有确凿的侵入关系的证据,因此根据花岗岩的侵位年龄来限定火地垭群的上限年龄有待商榷。
限定地层单元的绝对年龄,提供地层的最大沉积年龄是碎屑锆石U-Pb年代学的重要应用之一,高质量的碎屑锆石定年数据对限定地层时代十分有效[45⁃46]。所采的绢云千枚岩(SM-5)位于火地垭群上部,其锆石最年轻一组206Pb/238U年龄的加权平均值为837.6±6.0 Ma(MSWD=0.60,n=5),代表了样品的最大沉积年龄。如前所述,本次样品的锆石可分为两类,最年轻一组的锆石棱角分明,而其他组(较老)锆石多有搬运磨蚀痕迹,呈次棱状至圆状(图4),因此最年轻一组锆石有同沉积火山灰喷发形成的可能,其838 Ma的年龄应该趋近于顶界年龄。另外,火地垭群上覆铁船山组流纹岩锆石U-Pb定年为817±5 Ma[40],而火地垭群和铁船山组之间又为不整合接触,因此火地垭群的沉积时限应大于817 Ma,其上限年龄在838~817 Ma。鉴于上述讨论,将旺苍地区火地垭群的顶界年龄限定为ca. 835 Ma。汪正江等①从火地垭群下部凝灰岩中获得锆石U-Pb年龄为ca. 907 Ma。据此,进一步将旺苍地区火地垭群的沉积时代限定为910~835 Ma,而非前人长期认为的中元古代,可与扬子陆块东南缘冷家溪群及其相当地层进行对比。
①待刊.
-
火地垭群上两组上部的碎屑锆石U-Pb有效年龄记录了多期构造热事件,统计表明主要分布于832~843 Ma、855~883 Ma、895~936 Ma和952~988 Ma四个区间,相对概率峰值为ca. 840 Ma、ca. 868 Ma、ca. 918 Ma、ca. 954 Ma(图5)。这几期岩浆事件在研究区的周围均有发现,如Dong et al.[19]报道了米仓山地区840±6 Ma的南江闪长岩、838±17 Ma的光雾山正长花岗岩、871±77 Ma的旺苍花岗闪长岩;Zhou et al.[47]获得米仓山地区坪河霓霞岩的年龄为891±7 Ma;Berkana et al.[22]报道了旺苍地区865~860 Ma的火山岩;凌文黎等[48]和Luo et al.[21]分别获得碑坝地区花岗闪长岩和辉长岩的年龄为863±10 Ma和879±6 Ma;Wu et al.[49⁃50]发现略阳地区985~930 Ma的岩浆岩,并认为其形成于格林威尔期的洋内弧环境。由于研究区未出露比火地垭群更老的地层,且样品的锆石形态以近源特征为主(图4),因此认为火地垭群的物源主要来自上述周围的岩体。905~988 Ma可作为物源的岩浆岩主要出露于研究区西北部的略阳地区,而832~843 Ma和855~883 Ma的岩浆岩在研究区的西北部和东(南)部(碑坝地区)均有发育,因此火地垭群上两组的物源可能西北部和东(南)部均有供应。
碎屑锆石近年来在约束构造背景方面发挥了重要作用[51],汇聚板块边缘以强烈的岩浆活动为特征,在这种背景下的沉积盆地中存在大量结晶年龄与寄主岩石沉积时代非常接近的碎屑锆石颗粒(50%以上),如弧前盆地和海沟盆地碎屑锆石年龄谱存在一个与沉积年龄接近的年龄单峰,而弧后盆地随着与相邻陆块的距离而展现不同的年龄谱;相比而言,形成于碰撞和伸展构造背景下的沉积物中则包含更多年龄偏老的锆石颗粒。如果将838 Ma作为上两组样品SM-5的沉积年龄,其碎屑锆石结晶年龄(CA)与沉积年龄(DA)之差小于150 Ma的碎屑锆石比例为98%,该特征指示样品可能形成于汇聚构造环境,考虑到样品的碎屑锆石年龄呈多峰式分布,倾向认为形成于弧后盆地。另外,米仓山地区ca. 860 Ma与俯冲相关的基性岩脉[52]、ca. 840 Ma弧相关的中酸性侵入岩[19]、865~860 Ma的富Nb玄武岩[22],碑坝地区ca. 860 Ma形成于弧后伸展背景的I型花岗岩[21]等都证实了该时期弧环境的存在。以目前的研究成果来看,本次研究的旺苍地区火地垭群从岩石组合、地层序列和碎屑锆石年龄谱系特征等方面均与碑坝地区的火地垭群存在差异,如果它们产于同一沉积盆地,应该能接收到相似的物源信息,特别是碑坝地区发育了大规模879~860 Ma的岩浆岩,但是碑坝地区的火地垭群中并未发现该时期的锆石信息[43],且有资料认为碑坝地区该时期的岩浆岩侵入到火地垭群中[21,48];而本文厘定的旺苍地区火地垭群的沉积上限已达ca. 835 Ma,碑坝地区879~860 Ma的岩浆岩可能是其物源之一,因此认为这两个地区的火地垭群应该区别看待,可能是不同时代的产物。
另外值得注意的几个方面是:(1)目前整个汉南―米仓山地区只有碑坝发现了古元古代的结晶基底物质[39,44,53],因此推测碑坝地区有微陆块的可能,早期与其他块体拼贴,新元古代早期在洋壳俯冲作用下,形成碑坝弧;(2)火地垭群及其相当地层的上覆地层,如以双峰式火山岩为特征的铁船山组[40]、以紫红色碎屑岩及火山碎屑岩为特征的西乡群[23],它们都是典型陆内裂谷盆地的沉积充填物,应是Rodinia超大陆初始裂解响应的产物,与火地垭群是不同的构造―沉积旋回。因此推测火地垭群与铁船山组之间(即835~817 Ma)应该有一次构造热事件,代表了整个扬子陆块真正的“克拉通化”,其他地区与之对应的、较为典型的是东南缘冷家溪群与板溪群之间的“晋宁造山运动”,之后的裂谷作用形成了广泛的、大规模的以莲沱组为代表的陆相紫红色砂砾岩。综合火地垭群沉积时代、物源、碎屑锆石年龄、区域岩浆岩时空分布及成因特征等,认为旺苍地区的火地垭群上两组形成于接收双向物源的弧后盆地(图6),是Rodinia超大陆聚合晚期在扬子陆块西北缘的响应。
-
(1) 旺苍地区火地垭群上两组绢云千枚岩最大沉积年龄为837.6±6.0 Ma,结合已有研究成果,火地垭群的沉积时限为ca. 910 Ma至ca. 835 Ma。
(2) 碎屑锆石年龄集中分布于832~843 Ma、855~883 Ma、895~936 Ma和952~973 Ma四个区间,相对概率峰值为ca. 840 Ma、ca. 868 Ma、ca. 918 Ma、ca. 954 Ma;物源主要来自周围的岩体,主体方向为东(南)和西北。
(3) 样品碎屑锆石结晶年龄与沉积年龄非常接近,指示形成于汇聚构造环境。综合其他成果,旺苍地区火地垭群上两组形成于接收双向物源的弧后盆地,是Rodinia超大陆聚合晚期在扬子陆块西北缘的响应。
Depositional Age, Provenance and Tectonic Significance of the Huodiya Group in the Wangcang Area, Northwestern Margin of the Yangtze Block: Constraints from detral zircon U-Pb geochronology
-
摘要: 目的 火地垭群是扬子陆块西北缘前寒武纪重要的地层单元,同时也是中国重要的石墨矿含矿层位,但其沉积时代、物源及形成的构造背景长期存在争论。 方法 对旺苍地区火地垭群上两组的绢云千枚岩进行了LA-ICP-MS锆石U-Pb定年研究。 结果与结论 获得碎屑锆石的年龄范围为832~988 Ma,集中分布于832~843 Ma 、855~883 Ma 、895~936 Ma 和952~973 Ma 四个区间,最大沉积年龄为837.6±6.0 Ma(MSWD=0.60,n=5)。结合已有研究成果,将旺苍地区火地垭群的沉积时代限定为910~835 Ma,而非前人长期认为的中元古代;物源主要来自周围的岩体,主体方向为东(南)和西北;综合沉积时代、物源、碎屑锆石年龄及区域地质特征,旺苍地区火地垭群上两组形成于接收双向物源的弧后盆地,是Rodinia超大陆聚合晚期在扬子陆块西北缘的响应。Abstract: Objective The Huodiya Group is an important Precambrian stratigraphic unit in the northwestern margin of the Yangtze Block and an important graphite-bearing stratum in China. However, its depositional age, provenance, and tectonic attribution have long been debated. Methods In this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating was conducted on the sericite phyllite from the Shangliang Formation of the Huodiya Group, Wangcang area. [Results and Conclusions] The results show that maximum depositional age of the sample is 837.6±6.0 Ma (MSWD=0.60, n=5). Combined with existing data, the depositional age of Huodiya Group in the Wangcang area is constrained between ca. 910 Ma and ca. 835 Ma, rather than previously-considered Mesoproterozoic strata. The age populations of detrital zircons are concentrated in four peaks of 832-843 Ma, 855-883 Ma, 895-936 Ma, and 952-973 Ma, and the detrital provenance is mainly from the southeast and northwest magmatic rocks. A synthesis of depositional age, provenance and regional geological background indicates that the Shangliang Formation of the Huodiya Group in the Wangcang area were likely deposited in a back-arc basin receiving provenance from both sides, which is a response to the late-stage convergence of the Rodinia supercontinent in the northwestern margin of the Yangtze Block.
-
Key words:
- Huodiya Group /
- depositional age /
- provenance /
- zircon U-Pb dating /
- Yangtze Block /
- Neoproterozoic
-
图 1 (a)扬子陆块北缘及周缘构造纲要及研究区大地构造位置图(据文献[23]修改);(b)米仓山—汉南地区前寒武纪地质简图(据文献[19]修改);(c)研究区区域地质图
Figure 1. (a) Tectonic outline of the northwestern margin of the Yangtze Block and its periphery and the tectonic position of the study area (modified from reference [23]); (b) simplified geological map showing the distribution of Precambrian rocks in the Micangshan and Hannan area (modified from reference [19]); (c) regional geological map of the study area
表 1 旺苍地区火地垭群上两组绢云千枚岩样品SM⁃5锆石U⁃Pb 同位素定年结果
Table 1. Zircon U⁃Pb isotope data of the sericite phyllite sample SM⁃5 from the Shangliang Formation of the Huodiya Group in the Wangcang area
测试点号 Th/U 同位素比值 同位素年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 谐和度/% 1 0.54 0.071 7 0.002 2 1.577 7 0.045 9 0.159 5 0.001 5 976 57.0 961 18.1 954 8.6 99 2 0.55 0.069 7 0.002 6 1.388 6 0.051 3 0.144 6 0.001 4 918 78.0 884 21.8 871 8.0 98 3 0.75 0.070 9 0.002 4 1.510 8 0.048 2 0.154 2 0.001 2 955 68.0 935 19.5 924 6.5 98 4 0.53 0.073 2 0.002 4 1.611 6 0.050 7 0.159 8 0.001 5 1 020 68.0 975 19.7 956 8.6 98 5 0.69 0.081 4 0.002 8 1.610 0 0.052 5 0.143 3 0.001 5 1 232 67.0 974 20.4 863 8.3 87 6 0.66 0.070 5 0.001 9 1.406 8 0.037 4 0.144 0 0.001 2 943 54.2 892 15.8 867 6.6 97 7 0.71 0.066 0 0.002 5 1.303 6 0.048 7 0.143 4 0.001 8 807 78.9 847 21.5 864 10.2 98 8 0.75 0.067 5 0.001 8 1.324 8 0.035 9 0.142 2 0.001 5 852 55.6 857 15.7 857 8.7 99 9 0.43 0.069 2 0.001 9 1.332 0 0.035 8 0.139 3 0.001 2 906 52.8 860 15.6 841 7.1 97 10 0.30 0.071 1 0.001 6 1.573 5 0.034 3 0.159 7 0.001 1 961 44.4 960 13.6 955 5.9 99 11 0.47 0.072 2 0.002 6 1.588 8 0.053 5 0.161 2 0.002 0 992 74.1 966 21.0 963 11.3 99 12 0.63 0.068 2 0.001 8 1.445 6 0.039 7 0.153 4 0.001 7 876 55.6 908 16.5 920 9.3 98 13 1.22 0.065 9 0.002 2 1.251 9 0.040 7 0.137 9 0.001 4 806 70.4 824 18.4 833 7.7 98 14 0.43 0.068 0 0.003 6 1.402 3 0.067 5 0.152 2 0.002 0 878 105.0 890 28.5 913 11.4 97 15 0.58 0.072 1 0.003 3 1.449 3 0.065 0 0.146 9 0.002 0 991 93.4 910 26.9 883 11.3 97 16 0.53 0.072 0 0.001 5 1.454 4 0.032 4 0.145 9 0.001 3 985 42.6 912 13.4 878 7.3 96 17 0.46 0.069 0 0.002 1 1.431 5 0.040 8 0.150 7 0.001 3 898 65.7 902 17.0 905 7.4 99 18 0.71 0.073 3 0.001 8 1.527 3 0.037 1 0.151 2 0.001 4 1 022 51.1 941 14.9 907 7.6 96 19 0.76 0.069 4 0.001 7 1.489 8 0.037 4 0.155 4 0.001 5 909 50.8 926 15.2 931 8.4 99 20 0.51 0.074 9 0.003 0 1.550 6 0.059 2 0.151 0 0.001 7 1 065 80.1 951 23.6 907 9.8 95 21 0.90 0.072 6 0.001 3 1.665 5 0.032 6 0.165 6 0.001 5 1 003 36.7 995 12.4 988 8.1 99 22 0.54 0.071 1 0.001 4 1.601 7 0.031 6 0.162 8 0.001 4 961 39.7 971 12.3 973 7.5 99 23 0.45 0.073 1 0.001 7 1.551 7 0.035 7 0.153 7 0.001 3 1 017 48.2 951 14.2 922 7.4 96 24 0.67 0.071 1 0.002 1 1.516 6 0.045 8 0.154 2 0.001 6 961 61.1 937 18.5 924 9.0 98 25 0.64 0.069 7 0.001 5 1.470 3 0.033 3 0.152 4 0.001 4 920 44.4 918 13.7 914 7.6 99 26 0.30 0.070 1 0.001 3 1.546 3 0.028 9 0.159 2 0.001 1 931 37.0 949 11.5 952 6.2 99 27 0.73 0.070 3 0.001 7 1.360 5 0.032 7 0.139 7 0.001 0 939 49.2 872 14.1 843 5.9 96 28 0.81 0.072 4 0.001 7 1.516 9 0.034 3 0.151 5 0.001 3 998 47.1 937 13.9 909 7.2 96 29 0.76 0.071 8 0.001 9 1.511 5 0.038 7 0.152 2 0.001 2 989 53.2 935 15.6 913 7.0 97 30 0.64 0.068 1 0.002 0 1.455 7 0.042 0 0.154 5 0.001 6 872 60.0 912 17.4 926 8.9 98 31 0.34 0.069 8 0.002 2 1.456 8 0.043 8 0.151 2 0.001 5 924 64.8 913 18.1 908 8.4 99 32 0.62 0.068 0 0.001 7 1.295 7 0.030 5 0.137 7 0.001 0 878 50.0 844 13.5 832 5.9 98 33 0.56 0.069 5 0.001 6 1.472 0 0.032 8 0.153 0 0.001 2 922 47.1 919 13.5 918 6.7 99 34 0.58 0.068 5 0.002 2 1.336 3 0.040 3 0.141 9 0.001 5 883 65.6 862 17.5 855 8.4 99 35 0.58 0.067 4 0.002 6 1.294 6 0.050 0 0.139 3 0.001 6 850 79.6 843 22.1 840 9.1 99 36 0.49 0.070 5 0.001 7 1.584 8 0.040 6 0.162 2 0.001 5 944 50.0 964 16.0 969 8.3 99 37 0.46 0.068 7 0.001 9 1.480 7 0.041 3 0.155 9 0.001 5 900 57.4 923 16.9 934 8.1 98 38 1.00 0.069 3 0.001 5 1.465 8 0.031 6 0.153 1 0.001 2 906 45.2 916 13.0 918 6.7 99 39 0.66 0.069 0 0.002 3 1.480 6 0.047 7 0.156 3 0.001 6 900 70.4 922 19.5 936 8.8 98 40 1.05 0.073 9 0.001 9 1.581 2 0.039 1 0.154 9 0.001 3 1 039 50.0 963 15.4 928 7.2 96 41 0.54 0.071 4 0.001 9 1.469 1 0.037 9 0.148 9 0.001 3 969 49.5 918 15.6 895 7.5 97 -
[1] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. [2] Campbell I H, Allen C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 2008, 1(8): 554-558. [3] Nance R D, Murphy J B, Santosh M. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29. [4] 赵国春,韩以贵,李建华,等. 超大陆聚散的环境效应[J]. 地质学报,2022,96(9):3120-3127. Zhao Guochun, Han Yigui, Li Jianhua, et al. Environmental effects of assembly and breakup of supercontinents[J]. Acta Geologica Sinica, 2022, 96(9): 3120-3127. [5] Lan Z W, Huyskens M H, Le Hir G, et al. Massive volcanism may have foreshortened the Marinoan snowball Earth[J]. Geophysical Research Letters, 2022, 49(6): e2021GL097156. [6] Lan Z W, Mitchell R N, Gernon T M, et al. Did an asteroid impact cause temporary warming during snowball Earth?[J]. Earth and Planetary Science Letters, 2022, 581: 117407. [7] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2): 163-166. [8] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. [9] Zhou M F, Ma Y X, Yan D P, et al. The Yanbian Terrane (southern Sichuan province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144(1/2): 19-38. [10] Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan massif[J]. Precambrian Research, 2011, 189(1/2): 66-90. [11] Lu K, Li X H, Zhou J L, et al. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan complex[J]. Precambrian Research, 2020, 346: 105787. [12] 邓奇,崔晓庄,汪正江,等. 扬子陆块北缘构造演化新认识:来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质,2023,43(1):212-225. Deng Qi, Cui Xiaozhuang, Wang Zhengjiang, et al. New understanding of the tectonic evolution of the northern margin of Yangtze Block: Constraints from the geochronology and geochemistry of the Huashan Group[J]. Sedi- mentary Geology and Tethyan Geology, 2023, 43(1): 212-225. [13] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1/2): 117-131. [14] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302. [15] 邓奇,王剑,汪正江,等. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约[J]. 大地构造与成矿学,2016,40(4):753-771. Deng Qi, Wang Jian, Wang Zhengjiang, et al. Middle Neoproterozoic magmatic activities and their constraints on tectonic evolution of the Jiangnan orogen[J]. Geotectonica et Metallogenia, 2016, 40(4): 753-771. [16] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma[J]. Precambrian Research, 2003, 122(1/2/3/4): 45-83. [17] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67. [18] Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China[J]. Precambrian Research, 2008, 163(3/4): 351-383. [19] Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: Constraints from zircon U-Pb geochronology and geochemistry[J]. Precambrian Research, 2012, 196-197: 247-274. [20] Deng Q, Wang J, Wang Z J, et al. Continental flood basalts of the Huashan Group, northern margin of the Yangtze Block: Implications for the breakup of Rodinia[J]. International Geology Review, 2013, 55(15): 1865-1884. [21] Luo B J, Liu R, Zhang H F, et al. Neoproterozoic continental back-arc rift development in the northwestern Yangtze Block: Evidence from the Hannan intrusive magmatism[J]. Gondwana Research, 2018, 59: 27-42. [22] Berkana W, Wu H, Ling W L, et al. Neoproterozoic metavolcanic suites in the Micangshan terrane and their implications for the tectonic evolution of the NW Yangtze Block, South China[J]. Precambrian Research, 2022, 368: 106476. [23] 邓奇,王剑,汪正江,等. 扬子北缘西乡群大石沟组和三郎铺组凝灰岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版),2013,43(3):797-808,819. Deng Qi, Wang Jian, Wang Zhengjiang, et al. Zircon U-Pb ages for tuffs from the Dashigou and Sanlangpu Formations of the Xixiang Group in the northern margin of Yangtze Block and their geological significance[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 797-808, 819. [24] 邓奇,王剑,汪正江,等. 扬子北缘元古宇马槽园群时代归属新证据:对地层对比和古地理格局的启示[J]. 地质通报,2013,32(4):631-638. Deng Qi, Wang Jian, Wang Zhengjiang, et al. New evidence for the age of the Macaoyuan Group on the northern margin of the Yangtze Block, South China: Implications for stratigraphic correlation and palaeogeographic framework[J]. Geological Bulletin of China, 2013, 32(4): 631-638. [25] 邓奇,汪正江,杨菲,等. 浙西北建德地区休宁组沉积时限的厘定:来自凝灰岩锆石U-Pb年代学的制约[J]. 地质学报,2019,93(2):414-427. Deng Qi, Wang Zhengjiang, Yang Fei, et al. Depositional age of the Xiuning Formation in the Jiande area, northwestern Zhejiang province: Constraints from U-Pb zircon tuff geochronology[J]. Acta Geologica Sinica, 2019, 93(2): 414-427. [26] 宁括步,邓奇,崔晓庄,等. 扬子陆块北缘大洪山地区莲沱组底部凝灰岩锆石U-Pb定年及其地层学意义[J]. 地质通报,2024,43(2/3):363-375. Ning Kuobu, Deng Qi, Cui Xiaozhuang, et al. Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze Block[J]. Geological Bulletin of China, 2024, 43(2/3): 363-375. [27] 韩志宇,王非,师文贝. 沉积岩定年及应用:问题与展望[J]. 沉积学报,2022,40(2):360-379. Han Zhiyu, Wang Fei, Shi Wenbei. Dating and application for sedimentary rocks: Problems and prospects[J]. Acta Sedimentologica Sinica, 2022, 40(2): 360-379. [28] Xiong G Q, Deng Q, Zheng X, et al. Geochemistry and geochronology of Early Triassic tephra from SW China: Implications for biological evolution and tectonics[J]. International Geology Review, 2024, 66(16): 2843-2868. [29] 王平,陈玺贇,朱龙辰,等. 碎屑锆石UPb年代学定量物源分析的基本原理与影响因素:以现代河流砂为例[J]. 沉积学报,2022,40(6):1599-1614. Wang Ping, Chen Xiyun, Zhu Longchen, et al. Principles and biases of quantitative provenance analysis using detrital zircon U-Pb geochronology: Insight from modern river sands[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1599-1614. [30] Zimmermann U, Spalletti L A. Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires province, Argentina): Implications for paleogeographic reconstructions of SW Gondwana[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 7-23. [31] Rodrigues J B, Pimentel M M, Dardenne M A, et al. Age, provenance and tectonic setting of the Canastra and Ibiá Groups (Brasília Belt, Brazil): Implications for the age of a Neoproterozoic glacial event in central Brazil[J]. Journal of South American Earth Sciences, 2010, 29(2): 512-521. [32] Zhang Y, Jia D, Shen L, et al. Provenance of detrital zircons in the Late Triassic Sichuan Foreland Basin: Constraints on the evolution of the Qinling orogen and Longmen Shan thrust-fold belt in central China[J]. International Geology Review, 2015, 57(14): 1806-1824. [33] Zhu M, Chen H L, Zhou J, et al. Provenance change from the Middle to Late Triassic of the southwestern Sichuan Basin, southwest China: Constraints from the sedimentary record and its tectonic significance[J]. Tectonophysics, 2017, 700-701: 92-107. [34] Cui X Z, Lin S F, Wang J, et al. Latest Mesoproterozoic provenance shift in the southwestern Yangtze Block, South China: Insights into tectonic evolution in the context of the supercontinent cycle[J]. Gondwana Research, 2021, 99: 131-148. [35] 四川省地质矿产局. 四川省岩石地层[M]. 武汉:中国地质大学出版社,1997:1-471. Bureau of Geology and Mineral Resources of Sichuan Province. Stratigraphy (Lithostratic) of Sichuan province[M]. Wuhan: China University of Geosciences Press, 1997: 1-471. [36] 何政伟,刘援朝,魏显贵,等. 扬子克拉通北缘米仓山地区基底变质岩系同位素地质年代学[J]. 矿物岩石,1997,17(增刊1):86-90. He Zhengwei, Liu Yuanchao, Wei Xiangui, et al. Isotopic geochronology of basement metamorphic rock series in the Micangshan area along the northern margin of Yangtze Craton, China[J]. Mineralogy and Petrology, 1997, 17(Suppl.1): 86-90. [37] 汪正江,王剑,江新胜,等. 华南扬子地区新元古代地层划分对比研究新进展[J]. 地质论评,2015,61(1):1-22. Wang Zhengjiang, Wang Jian, Jiang Xinsheng, et al. New progress for the stratigraphic division and correlation of Neoproterozoic in Yangtze Block, South China[J]. Geological Review, 2015, 61(1): 1-22. [38] 耿元生,旷红伟,柳永清,等. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报,2017,91(10):2151-2174. Geng Yuansheng, Kuang Hongwei, Liu Yongqing, et al. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 91(10): 2151-2174. [39] 邓奇,汪正江,任光明,等. 扬子地块西北缘~2.09 Ga和~1.76 Ga花岗质岩石:Columbia超大陆聚合—裂解的岩浆记录[J]. 地球科学,2020,45(9):3295-3312. Deng Qi, Wang Zhengjiang, Ren Guangming, et al. Identification of the ~2.09 Ga and ~1.76 Ga granitoids in the northwestern Yangtze Block: Records of the assembly and break-up of Columbia supercontinent[J]. Earth Science, 2020, 45(9): 3295-3312. [40] Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: Implications for amalgamation and break-up of the Rodinia supercontinent[J]. Precambrian Research, 2003, 122(1/2/3/4): 111-140. [41] Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of Early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan orogen, southern Central Asian orogenic belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. [42] 刘登忠,魏显贵,杜思清,等. 米仓山西段地质研究新进展[J]. 矿物岩石,1997,17(增刊):1-8. Liu Dengzhong, Wei Xiangui, Du Siqing, et al. Advance of geologic study in western of Micangshan area[J]. Journal of Mineralogy and Petrology, 1997, 17(Suppl.): 1-8. [43] Li J Y, Wang X L, Wang D, et al. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction-accretion[J]. Precambrian Research, 2021, 355: 106081. [44] 邓奇,汪正江,王剑,等. 扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约[J]. 地质学报,2017,91(7):1454-1466. Deng Qi, Wang Zhengjiang, Wang Jian, et al. Discovery of the Baiyu ~1.79 Ga A-type granite in the Beiba area of the northwestern margin of Yangtze Block: Constraints on tectonic evolution of South China[J]. Acta Geologica Sinica, 2017, 91(7): 1454-1466. [45] DeCelles P G, Carrapa B, Gehrels G E. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina[J]. Geology, 2007, 35(4): 323-326. [46] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. [47] Zhou J L, Li X H, Tang G Q, et al. Ca. 890 Ma magmatism in the northwest Yangtze Block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications[J]. Journal of Asian Earth Sciences, 2018, 151: 101-111. [48] 凌文黎,高山,程建萍,等. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义:来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束[J]. 岩石学报,2006,22(2):387-396. Ling Wenli, Gao Shan, Cheng Jianping, et al. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: Constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes[J]. Acta Petrologica Sinica, 2006, 22(2): 387-396. [49] Wu P, Zhang S B, Zheng Y F, et al. Amalgamation of South China into Rodinia during the Grenvillian accretionary orogeny: Geochemical evidence from Early Neoproterozoic igneous rocks in the northern margin of the South China Block[J]. Precambrian Research, 2019, 321: 221-243. [50] Wu P, Zhang S B, Zheng Y F, et al. The accretion history of the South China Block at its northwest margin in the Neoproterozoic: Records from the Changba complex in the Mianlue zone[J]. Precambrian Research, 2021, 352: 106006. [51] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. [52] Hui B, Dong Y P, Liu G, et al. Origin of mafic intrusions in the Micangshan massif, central China: Implications for the Neoproterozoic tectonic evolution of the northwestern Yangtze Block[J]. Journal of Asian Earth Sciences, 2020, 190: 104132. [53] Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200-203: 26-37. -
附表1 旺苍地区火地垭群上两组绢云千枚岩样品SM-5锆石U-Pb 同位素定年结果.docx
-