Advanced Search
Volume 40 Issue 6
Dec.  2022
Turn off MathJax
Article Contents

ZHAO WeiGuang, XIA ChuLin, CHEN Lei. Research on the Paleosedimentary Environments of Marble in the Zhaertai and Buyant Groups: A case study of Huogeqi area, Inner Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1660-1675. doi: 10.14027/j.issn.1000-0550.2021.039
Citation: ZHAO WeiGuang, XIA ChuLin, CHEN Lei. Research on the Paleosedimentary Environments of Marble in the Zhaertai and Buyant Groups: A case study of Huogeqi area, Inner Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1660-1675. doi: 10.14027/j.issn.1000-0550.2021.039

Research on the Paleosedimentary Environments of Marble in the Zhaertai and Buyant Groups: A case study of Huogeqi area, Inner Mongolia

doi: 10.14027/j.issn.1000-0550.2021.039
Funds:

Science and Technology Plan Project of Qinghai Province 2020-ZJ-762

  • Received Date: 2020-12-13
  • Rev Recd Date: 2021-02-24
  • Publish Date: 2022-12-10
  • Huogeqi, Inner Mongolia, is located in the western region of the northern margin of the North China Platform. The marble content of both the Zhaertai Group and the Buyant Group in this area is significant for revealing the paleosedimentary environment of the northern margin of the North China Platform in the Meso- to Neoproterozoic. Following detailed geological fieldwork, representative samples of marble from both groups were selected for C and O isotopic analysis. Zhaertai Group marble samples contained δ13CV-PDB values between -2.4‰ and 4.3‰; δ18OV-PDB values between -39.0‰ and -15.3‰; and δ18OV-SMOW values between -8.2‰ and 15.2‰. Buyant Group marble samples contained δ13CV-PDB values from -1.1‰ to 5.9‰; δ18OV-PDB values from -18.5‰ to -7.8‰; and δ18OV-SMOW values from 12.0‰ to 22.7‰. The C isotopes in both groups display an apparent positive drift, and their O isotopes are strongly depleted. A comprehensive analysis of geological and geochemical characteristics indicated that: (1) The protolith of Zhaertai Group marble was formed in a shallow anoxic marine environment. It was contaminated by abundant terrigenous clastic materials during the depositional stage, and obvious carbonate dissolution occurred after deposition. The positive drift of the C isotope is closely related to the break-up of the northern margin of the North China Platform. (2) The protolith of Buyant Group marble was formed in a relatively closed shallow marine environment, and underwent somewhat less contamination by terrigenous clastic materials during deposition. After the deposition stage, obvious carbonate dissolution occurred. The positive drift of C isotopes may be related to occlusion of the sedimentary basin. (3) The protoliths of the marble in the Zhaertai Group and Buyant Group experienced similar paleosedimentary environments.
  • [1] 彭润民,王建平. 华北克拉通北缘西段新元古代裂谷的确认与成矿[J]. 地学前缘,2020,27(2):420-441.

    Peng Runmin, Wang Jianping. Confirmation and metallogenesis of the Neoproterozoic rift in the western section of the northern margin of the North China Craton[J]. Earth Science Frontiers, 2020, 27(2): 420-441.
    [2] 公王斌,胡建民,李振宏,等. 华北克拉通北缘裂谷渣尔泰群LA-ICP-MS碎屑锆石U-Pb测年及地质意义[J]. 岩石学报,2016,32(7):2151-2165.

    Gong Wangbin, Hu Jianmin, Li Zhenhong, et al. Detrital zircon U-Pb dating of Zhaertai Group in the north margin rift zone of North China Craton and its implications[J]. Acta Petrologica Sinica, 2016, 32(7): 2151-2165.
    [3] 彭润民,翟裕生,王建平,等. 华北地台北缘西段构造演化与狼山新元古代裂解—成矿作用[J]. 矿物学报,2015,35(增刊1):537-538.

    Peng Runmin, Zhai Yusheng, Wang Jianping, et al. The tectonic evolution of the western part of Taipei margin in North China and Langshan Neoproterozoic cracking-mineralization[J]. Acta Mineralogica Sinica, 2015, 35(Suppl.1): 537-538.
    [4] 彭润民,翟裕生,韩雪峰,等. 内蒙古狼山造山带构造演化与成矿响应[J]. 岩石学报,2007,23(3):679-688.

    Peng Runmin, Zhai Yusheng, Han Xuefeng, et al. Mineralization response to the structural evolution in the Langshan orogenic belt, Inner Mongolia[J]. Acta Petrologica Sinica, 2007, 23(3): 679-688.
    [5] 彭润民,翟裕生,韩雪峰,等. 内蒙古狼山—渣尔泰山中元古代被动陆缘裂陷槽裂解过程中的火山活动及其示踪意义[J]. 岩石学报,2007,23(5):1007-1017.

    Peng Runmin, Zhai Yusheng, Han Xuefeng, et al. Sinsedimentry volcanic activities in the cracking process of the Mesoproterozoic aulacogen of passive continental margin in Langshan-Zhaertai area, Inner Mongolia, and its indicating significance[J]. Acta Petrologica Sinica, 2007, 23(5): 1007-1017.
    [6] 彭润民,翟裕生,王志刚,等. 内蒙古狼山—渣尔泰山矿集区海底喷流成矿特征与勘查[J]. 矿床地质,2006,25(增刊1):221-224.

    Peng Runmin, Zhai Yusheng, Wang Zhigang, et al. Characteristics and exploration of submarine sedex deposits in the Langshan-Zhaertai ore concentration area, Inner Mongilia[J]. Minneral Deposits, 2006, 25(Suppl.1): 221-224.
    [7] 彭润民,翟裕生. 内蒙古狼山—渣尔泰山中元古代被动陆缘热水喷流成矿特征[J]. 地学前缘,2004,11(1):257-268.

    Peng Runmin, Zhai Yusheng. The characteristics of hydrothermal exhalative mineralization of the Langshan-Zhaertai belt, Inner Mongolia, China[J]. Earth Science Frontiers, 2004, 11(1): 257-268.
    [8] 沈存利,王守光,苏新旭,等. 内蒙古中元古界渣尔泰山群区域成矿特征研究[J]. 地学前缘,2004,11(1):279-286.

    Shen Cunli, Wang Shouguang, Su Xinxu, et al. Regional metallogenic characteristics in Proterozoic Chaertaishan Group, Inner Mongolia[J]. Earth Science Frontiers, 2004, 11(1): 279-286.
    [9] 彭润民,翟裕生,邓军,等. 内蒙古狼山—渣尔泰山中元古代SEDEX型矿带火山活动与成矿的关系[J]. 地质论评,1999,45(增刊1):1139-1150.

    Peng Runmin, Zhai Yusheng, Deng Jun, et al. Relationship between mineraizing process and synsedimentary submarine volcanic activity in the Langshan-Zhaertai Mesoproterozoic SEDEX belt, Inner Mongolia[J]. Geological Review, 1999, 45(Suppl.1): 1139-1150.
    [10] 彭润民,翟裕生. 内蒙古东升庙矿区狼山群中变质“双峰式”火山岩夹层的确认及其意义[J]. 地球科学:中国地质大学学报,1997,22(6):587-594.

    Peng Runmin, Zhai Yusheng. The confirmation of the metamorphic double-peaking volcanic rocks in Langshan Group of the Dongshengmiao ore district, Inner Mongolia and its significance[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(6): 587-594.
    [11] 王春增,张明华,曾剑. 狼山群的层序划分与霍各乞矿区复式倒转向斜的厘定[J]. 大地构造与成矿学, 1996,20(3):212-219.

    Wang Chunzeng, Zhang Minghua, Zeng Jian. Reestablishing stratigraphic sequence of Langshan Group and the determination of huogeqi overturned composite syncline, Inner Mongolia[J]. Geotectonica et Metallogenia, 1996, 20(3): 212-219.
    [12] 沈存利,张梅,杨帅师. 华北陆块北缘西段狼山—渣尔泰山裂陷槽西延的地质依据及其意义[J]. 地质与勘探,2009,45(6):661-668.

    Shen Cunli, Zhang Mei, Yang Shuaishi. The geological evidences and significance of westard extension of Langshan-Zhaertaishan rift system, northern margin of North China Terrane[J]. Geology and Exploration, 2009, 45(6): 661-668.
    [13] 滕飞,滕学建,刘洋,等. 内蒙古宝音图—霍各乞地区宝音图岩群的时代约束及构造属性[J]. 地球科学,2019,44(1):161-178.

    Teng Fei, Teng Xuejian, Liu Yang, et al. Geochronological constraint on the Baoyintu Group and its tectonic significance in Baoyintu-Huogeqi area, Inner Mongolia[J]. Earth Science, 2019, 44(1): 161-178.
    [14] 陈亚平,魏春景,张晋瑞,等. 内蒙古中西部地区宝音图群石榴石斜长角闪岩的变质作用和锆石U-Pb年代学[J]. 科学通报,2015,60(36):3636.

    Chen Yaping, Wei Chunjing, Zhang Jinrui, et al. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia[J]. Chinese Science Bulletin, 2015, 60(36): 3636.
    [15] 陈井胜,李斌,邢德和,等. 赤峰东部宝音图群斜长角闪岩锆石U-Pb年龄及地质意义[J]. 地质调查与研究,2015,38(2):81-88,99.

    Chen Jingsheng, Li Bin, Xing Dehe, et al. Zircon U-Pb ages and geological significance of the plagioclase amphibolite in the Baoyintu Group eastern of Chifeng[J]. Geological Survey and Research, 2015, 38(2): 81-88, 99.
    [16] 朱洛婷,侯青叶. 内蒙维拉斯托铜多金属矿区宝音图群的岩石学、地球化学和构造背景[C]//中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 南京:中国矿物岩石地球化学学会,2013.

    Zhu Luoting, Hou Qingye. Petrology, geochemistry and tectonic background of the Baoyintu Group in the Vilasto Copper Polymetallic Mine, Inner Mongolia[C]//Proceedings of the 14th annual conference of Chinese Society of Mineralogy, Petrology and Geochemistry. Nanjing: Chinese Society of Mineralogy and Petrochemistry, 2013.
    [17] 孙立新,任邦方,赵凤清,等. 内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征[J]. 地质通报,2013,32(2):327-340.

    Sun Lixin, Ren Bangfang, Zhao Fengqing, et al. Zircon U-Pb dating and Hf isotopic compositions of the Mesoporterozoic granitic gneiss in Xilinhot Block, Inner Mongolia[J]. Geological Bulletin of China, 2013, 32(2): 327-340.
    [18] 杜理科,葛梦春. 内蒙古锡林浩特宝音图群斜长角闪岩原岩恢复的地球化学示踪[J]. 新疆地质,2010,28(2):200-203.

    Du Like, Ge Mengchun. Geochemical tracing on protolith reconstruction of amphibolite of Baoyintu Group in Xilinhot, Inner Mongolia[J]. Xinjiang Geology, 2010, 28(2): 200-203.
    [19] 孙立新,赵凤清,王惠初,等. 内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义[J]. 地质学报,2013,87(2):197-207.

    Sun Lixin, Zhao Fengqing, Wang Huichu, et al. Zircon U-Pb geochronology of metabase rocks from the Baoyintu Block in the Langshan area, Inner Mongolia, and its tectonic significance[J]. Acta Geologica Sinica, 2013, 87(2): 197-207.
    [20] 张玉清. 内蒙古白云鄂博北部宝音图岩群变质基性火山岩的年龄、构造背景及地质意义[J]. 地质通报,2004,23(2):177-183.

    Zhang Yuqing. Ages, tectonic environment and geological significance of metabasic volcanic rocks of the Buyant Group-complex in the north of Bayan Obo, Inner Mongolia[J]. Geological Bulletin of China, 2004, 23(2): 177-183.
    [21] 胡建中,潘永胜. 内蒙古固阳渣尔泰山群层序地层学及其控制因素[J]. 现代地质,2003,17(4):402-407.

    Hu Jianzhong, Pan Yongsheng. Sequence stratigraphy and its controlling factors of the Zhaertaishan Group in the Guyang district of Inner Mongolia[J]. Geoscience, 2003, 17(4): 402-407.
    [22] 徐备,刘树文,王长秋,等. 内蒙古西北部宝音图群Sm-Nd和Rb-Sr地质年代学研究[J]. 地质论评,2000,46(1):86-90.

    Xu Bei, Liu Shuwen, Wang Changqiu, et al. Sm-Nd, Rb-Sr geochronology of the Baoyintu Group in northwestern Inner Mongolia[J]. Geological Review, 2000, 46(1): 86-90.
    [23] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364.
    [24] Wang Z Z, Han B F, Feng L X, et al. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the western North China Craton: Evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 2016, 261: 278-295.
    [25] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京:地质出版社,1991.

    Bureau of Geology and Mineral Resources of Inner Mongolia. Regional geology of Inner Mongolia[M]. Beijing: Geological Publishing House, 1991.
    [26] 中华人民共和国地质矿产行业标准. DZ/T 0184.17—1997 碳酸盐矿物或岩石中碳、氧同位素组成的磷酸法测定 [S]. 1997.

    Geology and Mineral Industry Standard of The People's Republic of China. DZ/T 0184.17-1997 Determination of carbon and oxygen isotopes in carbonate minerals or rocks by phosphoric acid method [S]. 1997.
    [27] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
    [28] 郑永飞,傅斌,龚冰. 大别造山带超高压变质岩稳定同位素地球化学[J]. 安徽地质,2000,10(3):161-165.

    Zheng Yongfei, Fu Bin, Gong Bing. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks[J]. Geology of Anhui, 2000, 10(3): 161-165.
    [29] 陈威宇,陈衍景. 大氧化事件在山西滹沱群中的记录:碳酸盐岩碳同位素资料分析[J]. 岩石学报,2018,34(12):3709-3720.

    Chen Weiyu, Chen Yanjing. Records of the great oxidation event in the Hutuo Group, Shanxi, China: A reassessment of the δ 13Cdata [J]. Acta Petrologica Sinica, 2018, 34(12): 3709-3720.
    [30] 徐世林,杨瑞东. 黔东南新元古代下江群甲路组大理岩的碳氧同位素组成及其意义[J]. 贵州地质,2016,33(2):91-95,107.

    Xu Shilin, Yang Ruidong. Carbon and oxygen isotopic composition and its significance of Jialu Fm. marble, Neoproterozoic Xiajiang Gr. in southeast Guizhou, China[J]. Guizhou Geology, 2016, 33(2): 91-95, 107.
    [31] 朴贤旭,翟明国,杨正赫,等. 朝鲜平南盆地祥原超群的沉积时代与拉伸纪早期碳同位素负漂移[J]. 岩石学报,2016,32(7): 2181-2195.

    Park H U, Zhai Mingguo, Yang J H, et al. Deposition age of the Sangwon Supergroup in the Pyongnam Basin (Korea) and the Early Tonian negative carbon isotope interval[J]. Acta Petrologica Sinica, 2016, 32(7): 2181-2195.
    [32] 徐备,郑海飞,姚海涛,等. 塔里木板块震旦系碳同位素组成及其意义[J]. 科学通报,2002,47(22):1740-1744.

    Xu Bei, Zheng Haifei, Yao Haitao, et al. C-isotope composition and significance of the Sinian on the Tarim Plate[J]. Chinese Science Bulletin, 2002, 47(22): 1740-1744.
    [33] 冯伟民,郑永飞,周建波. 大别—苏鲁造山带大理岩碳氧同位素地球化学研究[J]. 岩石学报,2003,19(3):468-478.

    Feng Weimin, Zheng Yongfei, Zhou Jianbo. Carbon and oxygen isotope geochemistry of marbles from the Dabie-Sulu orogenic belt[J]. Acta Petrologica Sinica, 2003, 19(3): 468-478.
    [34] Hoefs J. Stable isotope geochemistry[M]. Berlin, Heidelberg, New York: Springer-Verlag, 1987: 1-241.
    [35] 代堰锫,朱玉娣,张惠华,等. 川西江浪穹窿二叠纪大理岩微量元素与碳、氧同位素组成:对古沉积环境的指示[J]. 地球化学,2017,46(3):231-239.

    Dai Yanpei, Zhu Yudi, Zhang Huihua, et al. Trace element and C-O isotopic constraints on the ancient depositional environment of Permian marble in the Jianglang dome, western Sichuan province[J]. Geochimica, 2017, 46(3): 231-239.
    [36] 翟明国,胡波,彭澎,等. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘,2014,21(1):100-119.

    Zhai Mingguo, Hu Bo, Peng Peng, et al. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC[J]. Earth Science Frontiers, 2014, 21(1): 100-119.
    [37] 刘玉堂,金岩,徐九华. 内蒙古狼山后山地区海相火山岩特征及找矿前景[J]. 地质与勘探,2005,41(3):38-44.

    Liu Yutang, Jin Yan, Xu Jiuhua. Characteristics of oceanic volcanic rocks in Houshan area of Langshan Mountains, Inner Mongolia[J]. Geology and Prospecting, 2005, 41(3): 38-44.
    [38] 郑永飞,傅斌,龚冰,等. 大别山与榴辉岩共生大理岩的碳同位素异常[J]. 科学通报,1997,42(21):2316-2320.

    Zheng Yongfei, Fu Bin, Gong Bing, et al. Carbon isotope anomaly in marbles associated with eclogites from the Dabie Mountains [J]. Chinese Science Bulletin, 1997, 42(21): 2316-2320.
    [39] 储雪蕾. 地幔的碳同位素[J]. 地球科学进展,1996,11(5):446-452.

    Chu Xuelei. Carbon isotopes in mantle[J]. Advance in Earth Sciences, 1996, 11(5): 446-452.
    [40] Schobben M, Ullmann C V, Leda L, et al. Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: An example from the Permian-Triassic boundary of Iran[J]. Chemical Geology, 2016, 422: 94-107.
    [41] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
    [42] Derry L A, Brasier M D, Corfield R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 671-681.
    [43] Veizer J, Demovic R. Strontium as a tool in facies analysis[J]. Journal of Sedimentary Research, 1974, 44(1): 93-115.
    [44] 刘家军,何明勤,李志明,等. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J]. 矿床地质,2004,23(1):1-10.

    Liu Jiajun, He Mingqin, Li Zhiming, et al. Oxygen and carbon isotopic geochemistry of baiyangping silver-copper polymetallic ore concentration area in Lanping Basin of Yunnan province and its significance[J]. Mineral Deposits, 2004, 23(1): 1-10.
    [45] 彭润民,翟裕生,王建平,等. 内蒙狼山新元古代酸性火山岩的发现及其地质意义[J]. 科学通报,2010,55(26):2611-2620.

    Peng Runmin, Zhai Yusheng, Wang Jianping, et al. Discovery of Neoproterozoic acid volcanic rock in the south-western section of Langshan, Inner Mongolia[J]. Chinese Science Bulletin, 2010, 55(26): 2611-2620.
    [46] 应迪先. 从同位素地质年龄讨论内蒙古中部白云鄂博群及渣尔泰群地层的时代[J]. 中国区域地质,1985,14(4):125-135.

    Ying Dixian. The ages of the Bayan Obo and Chaertai Groups in central Nei Monggol discussed in the light of isotope geochronology[J]. Regional Geology of China, 1985, 14(4): 125-135.
    [47] 杨海明,苏尚国. 内蒙古狼山北侧中元古代变基性岩特征及其成矿意义[J]. 矿床地质,1992,11(2):142-153.

    Yang Haiming, Su Shangguo. Characteristics and metallogenic significance of Middle Proterozoic metavolcanites on the northern side of Langshan Mountain, Inner Mongolia[J]. Mineral Deposits, 1992, 11(2): 142-153.
    [48] 彭润民. 内蒙古狼山炭窑口一带钾质细碧岩的发现[J]. 科学通报,1998,43(2):212-216.

    Peng Runmin. Discovery of potassic spilite (or poenite) in Langshan Group of Tanyaokou district, Inner Mongolia, China[J]. Chinese Science Bulletin, 1998, 43(2): 212-216.
    [49] 刘超辉,刘福来. 华北克拉通中元古代裂解事件:以渣尔泰—白云鄂博—化德裂谷带岩浆与沉积作用研究为例[J]. 岩石学报,2015,31(10):3107-3128.

    Liu Chaohui, Liu Fulai. The Mesoproterozoic rifting in the North China Craton: A case study for magmatism and sedimentation of the Zhaertai-Bayan Obo-Huade rift zone[J]. Acta Petrologica Sinica, 2015, 31(10): 3107-3128.
    [50] 陆松年,李惠民. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年[J]. 地球学报,1991,12(1):137-146.

    Lu Songnian, Li Huimin. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation Changcheng system in Jixian[J]. Acta Geoscientica Sinica, 1991, 12(1): 137-146.
    [51] 陆松年. 关于中国元古宙地质年代划分几个问题的讨论[J]. 前寒武纪研究进展,1998,21(4):1-9.

    Lu Songnian. A review on subdivision of Proterozoic EON in China[J]. Progress in Precambrian Research, 1998, 21(4): 1-9.
    [52] 李明荣,王松山,裘冀. 京津地区铁岭组、景儿峪组海绿石40Ar-39Ar年龄[J]. 岩石学报,1996,12(3):416-423.

    Li Mingrong, Wang Songshan, Qiu Ji. The ages of glauconites from Tieling and Jingeryu Formations, Beijing-Tianjin area[J]. Acta Petrologica Sinica, 1996, 12(3): 416-423.
    [53] 李怀坤,李惠民,陆松年. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义[J]. 地球化学,1995,24(1):43-48.

    Li Huaikun, Li Huimin, Lu Songnian. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implications[J]. Geochimica, 1995, 24(1): 43-48.
    [54] 王松山,桑海清,裘冀,等. 蓟县剖面杨庄组和雾迷山组形成年龄的研究[J]. 地质科学,1995,30(2):166-173.

    Wang Songshan, Sang Haiqing, Qiu Ji, et al. The forming ages of Yangzhuang and Wumishan Formations in Jixian section, northern China[J]. Scientia Geologica Sinica, 1995, 30(2): 166-173.
    [55] 罗顺社,汪凯明. 河北宽城地区中元古代高于庄组碳酸盐岩碳氧同位素特征[J]. 地质学报,2010,84(4):492-499.

    Luo Shunshe, Wang Kaiming. Carbon and oxygen isotope composition of carbonatic rock from the Mesoproterozoic Gaoyuzhuang Formation in the Kuancheng area, Hebei province[J]. Acta Geologica Sinica, 2010, 84(4): 492-499.
    [56] 旷红伟,李家华,彭楠,等. 燕山地区1.6~1.0Ga时期碳酸盐岩碳、氧同位素组成、演化及其地质意义[J]. 地学前缘,2009,16(5):118-133.

    Kuang Hongwei, Li Jiahua, Peng Nan, et al. The C and O isotopic compositions and their evolution recorded in the carbonate interval of the Yanshan area from 1.6 to 1.0 Ga, and their geological implications[J]. Earth Science Frontiers, 2009, 16(5): 118-133.
    [57] 赵震. 从氧、碳同位素组成看蓟县元古宙碳酸盐岩特征[J]. 沉积学报,1995,13(3):46-53.

    Zhao Zhen. Characteristics of Proterozoic carbonate rocks in Jixian by means of the oxygen and carbon isotope composition[J]. Acta Sedimentologica Sinica, 1995, 13(3): 46-53.
    [58] 李任伟,陈锦石,张淑坤. 中元古代雾迷山组碳酸盐岩碳和氧同位素组成及海平面变化[J]. 科学通报,1999,44(16):1697-1702.

    Li Renwei, Chen Jinshi, Zhang Shukun. Carbon and oxygen isotopic compositions and sea level changes of carbonate rocks in the Mesoproterozoic Wumishan Formation[J]. Chinese Science Bulletin, 1999, 44(16): 1697-1702.
    [59] 王可法,陈锦石. 燕山地区铁岭组稳定同位素组成特征及其地质意义[J]. 地球化学,1993(1):10-17.

    Wang Kefa, Chen Jinshi. Constaints on the stable isotopic composition of sedimentary carbonates from the Tieling Formation in the Yanshan region[J]. Geochimca, 1993(1): 10-17.
    [60] 钟华,陈锦石. 距今14亿年低生物量的碳同位素证据[J]. 地质科学,1992(2):160-168.

    Zhong Hua, Chen Jinshi. Carbon isotope evidence for lower biomass about 1400 Ma ago[J]. Scientia Geologica Sinica, 1992(2): 160-168.
    [61] Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth[J]. Journal of African Earth Sciences, 1999, 28(1): 17-33.
    [62] 朱士兴,孙淑芬,黄学光,等. 燕山常州沟组(约1800Ma)碳质压型化石及其多细胞组织的发现[J]. 科学通报,1999,44(14):1552-1556.

    Zhu Shixing, Sun Shufen, Huang Xueguang, et al. Carbonaceous compacted fossils from the Changzhougou Formation (about 1800 Ma), Yanshan, and its discovery of multicellular tissue[J]. Chinese Science Bulletin, 1999, 44(14): 1552-1556.
    [63] 孙淑芬. 内蒙古渣尔泰山群微古植物化石[C]//中国地质科学院天津地质矿产研究所文集. 北京:地质出版社,1995.

    Sun Shufen. Micropalaeoflora of the Zhaertaishan Group in Inner Mongolia[C]//Collected works of Tianjin institute of geology and mineral resources, Chinese Academy of Geological Sciences. Beijing: Geological Publishing House, 1995.
    [64] 孙立新,张云,胡晓佳,等. 内蒙狼山北部古元古代变质花岗岩地球化学特征、锆石U-Pb年代学:哥伦比亚超大陆裂解事件的岩浆记录[J]. 岩石学报,2018,34(10):3116-3136.

    Sun Lixin, Zhang Yun, Hu Xiaojia, et al. Geochemical characteristics and zircon U-Pb geochronology of Paleoproterozoic metamorphic granites from northern Langshan, Inner Mongolia: Magmatic response to the breakup of Columbia supercontinent[J]. Acta Petrologica Sinica, 2018, 34(10): 3116-3136.
    [65] 张玉清,苏宏伟. 内蒙古宝音图岩群变质基性火山岩锆石U-Pb年龄及意义[J]. 前寒武纪研究进展,2002,25(3/4):199-204,213.

    Zhang Yuqing, Su Hongwei. U-Pb single zircon ages of metamorphic basic volcanic rocks of Baoyintu rock group in Inner Mongolia[J]. Progress in Precambrian Research, 2002, 25(3/4): 199-204, 213.
    [66] 储雪蕾,张同钢,张启锐,等. 蓟县元古界碳酸盐岩的碳同位素变化[J]. 中国科学(D辑):地球科学,2003,33(10): 951-959.

    Chu Xuelei, Zhang Tonggang, Zhang Qirui, et al. Carbon isotopic variations of Proterozoic carbonates in Jixian, Tianjin, China[J]. Science China (Seri. D): Earth Sciences, 2003, 33(10): 951-959.
    [67] Bartley J K, Semikhatov M A, Kaufman A J, et al. Global events across the Mesoproterozoic boundary: C and Sr isotopic evidence from Siberia[J]. Precambrian Research, 2001, 111: 165-202.
    [68] Kah L C, Lyons T W, Chesley J T. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: Implications for Mesoproterozoic marine evolution[J]. Precambrian Research, 2001, 111(1/2/3/4): 203-234.
    [69] Kah L C, Sherman A G, Narbonne G M, et al. δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for regional lithostratigraphic correlations[J]. Canadian Journal of Earth Sciences, 1999, 36(3): 313-332.
    [70] Knoll A H, Kaufman A J, Semikhatov M A. The carbon-isotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk Uplift)[J]. American Journal of Science, 1995, 295(7): 823-850.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(102) PDF downloads(45) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-12-13
  • Revised:  2021-02-24
  • Published:  2022-12-10

Research on the Paleosedimentary Environments of Marble in the Zhaertai and Buyant Groups: A case study of Huogeqi area, Inner Mongolia

doi: 10.14027/j.issn.1000-0550.2021.039
Funds:

Science and Technology Plan Project of Qinghai Province 2020-ZJ-762

Abstract: Huogeqi, Inner Mongolia, is located in the western region of the northern margin of the North China Platform. The marble content of both the Zhaertai Group and the Buyant Group in this area is significant for revealing the paleosedimentary environment of the northern margin of the North China Platform in the Meso- to Neoproterozoic. Following detailed geological fieldwork, representative samples of marble from both groups were selected for C and O isotopic analysis. Zhaertai Group marble samples contained δ13CV-PDB values between -2.4‰ and 4.3‰; δ18OV-PDB values between -39.0‰ and -15.3‰; and δ18OV-SMOW values between -8.2‰ and 15.2‰. Buyant Group marble samples contained δ13CV-PDB values from -1.1‰ to 5.9‰; δ18OV-PDB values from -18.5‰ to -7.8‰; and δ18OV-SMOW values from 12.0‰ to 22.7‰. The C isotopes in both groups display an apparent positive drift, and their O isotopes are strongly depleted. A comprehensive analysis of geological and geochemical characteristics indicated that: (1) The protolith of Zhaertai Group marble was formed in a shallow anoxic marine environment. It was contaminated by abundant terrigenous clastic materials during the depositional stage, and obvious carbonate dissolution occurred after deposition. The positive drift of the C isotope is closely related to the break-up of the northern margin of the North China Platform. (2) The protolith of Buyant Group marble was formed in a relatively closed shallow marine environment, and underwent somewhat less contamination by terrigenous clastic materials during deposition. After the deposition stage, obvious carbonate dissolution occurred. The positive drift of C isotopes may be related to occlusion of the sedimentary basin. (3) The protoliths of the marble in the Zhaertai Group and Buyant Group experienced similar paleosedimentary environments.

ZHAO WeiGuang, XIA ChuLin, CHEN Lei. Research on the Paleosedimentary Environments of Marble in the Zhaertai and Buyant Groups: A case study of Huogeqi area, Inner Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1660-1675. doi: 10.14027/j.issn.1000-0550.2021.039
Citation: ZHAO WeiGuang, XIA ChuLin, CHEN Lei. Research on the Paleosedimentary Environments of Marble in the Zhaertai and Buyant Groups: A case study of Huogeqi area, Inner Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1660-1675. doi: 10.14027/j.issn.1000-0550.2021.039
  • 内蒙古霍各乞位于狼山北侧,区内出露的元古界地层有渣尔泰山群和宝音图群,这两个岩群蕴含丰富的地质历史演化信息,对于反演华北地台北缘的古沉积环境和大地构造演化过程具有重要的价值。中元古界渣尔泰山群记录了自狼山—渣尔泰山裂陷槽裂解[1]以来的地质历史演化信息,是狼山造山带内非常重要的含矿地层。由于该岩群矿产资源储量巨大,前人已对该地层进行了系统的研究,主要集中在地层层序划分与对比、成岩年龄的限定、成矿条件分析、大地构造演化的探讨等多个方面[1-11]。这些研究成果在大的框架内对渣尔泰山群的形成过程以及后期变化做出了表述,但对渣尔泰山群的沉积环境未做详尽的报道,仅仅说明其形成于中元古代大陆边缘裂谷环境,极少数学者对渣尔泰山群各个岩组的沉积环境进行了探讨[12],但也只是泛泛而谈。晚中元古界—早新元古界[13]宝音图群研究较为贫乏,研究程度较低。前人对于宝音图群的研究主要集中在两方面,一是对于宝音图群形成年代的限定,二是对于宝音图群古构造环境的示踪,且这两个研究方向大多以斜长角闪岩为研究对象[13-22],却鲜有关注与其密切共生的大理岩,而大理岩可以提供丰富的古环境信息。

    内蒙古渣尔泰山群和宝音图群形成的具体沉积环境以及其沉积盆地的环境属性特征还是一个亟待解决的问题。现如今对于大理岩的研究技术已经相当成熟,前人在大理岩的沉积环境研究方面已经积累了大量的经验,主要的研究技术手段为地球化学分析,大理岩的C、O同位素可以有效地反映原始沉积环境的沉积相以及沉积相的属性特征,同时还可以指示大理岩在成岩期后受到风化作用、岩浆作用、变质作用、构造作用以及全球性地质事件的影响程度。因此,鉴于渣尔泰山群和宝音图群所蕴含的科学价值以及大理岩C、O同位素特征对示踪古沉积环境的有效性,笔者从渣尔泰山群和宝音图群大理岩的C、O同位素特征入手探讨了中新元古代时期华北地台北缘的古沉积环境。

  • 狼山造山带位于华北地台北缘西段(图1a),构造方向整体上呈NE—SW向。造山带内主要出露新太古界色尔腾山群、中元古界渣尔泰山群、中元古—新元古界宝音图群以及少量上古生界石炭系—二叠系和中生界白垩系等地层。狼山地区经历了漫长的构造演化历史(新太古代狼山裂陷槽基底形成—古元古代狼山裂陷槽初步格架形成—中元古代狼山裂陷槽裂解—新元古到早古生代活动陆缘—晚古生代挤压造山—中新生代进一步挤压造山)[4],主体为一复背斜构造,次级背斜和向斜构造广泛存在,在复背斜基础上其间区域性规模的大断裂以及次级同生断裂发育。该地区岩浆作用强烈,大面积出露海西期的花岗岩以及花岗闪长岩,此外还有少量前寒武纪、燕山期以及第三纪的火成岩体出露(图1b)。

    Figure 1.  Geological sketch map of northern Langshan area, Inner Mongolia

    渣尔泰山群是华北地台北缘西段的重要含矿建造,该套地层呈近NE—SW向展布,在内蒙古地区分布较广,是较为发育的一套浅变质—热变质沉积建造,主要岩性有板岩、片岩、石英岩、大理岩、千枚岩以及少量斜长角闪岩。由于该套地层经历了多次构造变动和多期(次)岩体的侵入改造,岩石普遍变质、变形,同时该套地层还含有硫、磷等沉积变质矿产及铁、铜、铅、锌等多金属矿产,是狼山—渣尔泰山多金属成矿带中最重要的含矿岩系。1∶50 000居力格台敖包幅1将霍各乞渣尔泰山群自下而上划分为书记沟组、增隆昌组和阿古鲁沟组。霍各乞出露的渣尔泰山群总体构成了以霍各乞铜矿为核部的大型复式向斜构造。宝音图群主要分布在内蒙古中西部狼山、霍各乞、宝音图、图古日格一带(图1b),由一套石英岩、云母片岩、绿泥片岩、二长片岩、云母石英片岩、大理岩,局部夹斜长角闪岩,中上部地层中出露变粒岩、浅粒岩等岩性组成。从岩石组合类型推测其应为正常沉积的碎屑岩以及火山碎屑岩。该岩群在地表出露厚度大于7 664 m[15,25]。内蒙古1∶25万区巴音查干及乌拉特后旗幅区域地质调查2将宝音图群分为了一、二、三岩组。宝音图群的变质程度为高绿片岩相—低角闪岩相的递增变质序列。滕飞等[13]通过对霍各乞地区宝音图群的年代学研究将宝音图群的形成时代限定在晚中元古代—早新元古代时期(1 284.0~895.5 Ma)。

  • 内蒙古霍各乞渣尔泰山群和宝音图群大理岩在空间上呈星散状分布,出露面积均小于5%,渣尔泰山群大理岩分布在增隆昌组和阿古鲁沟组中,宝音图群大理岩在一、二、三岩组中均有分布。两岩群大理岩层总体呈NE向展布,延续性较差,产出状态多为条带状、透镜状,出露厚度普遍为1~20 m,延伸长度约为10~200 m,部分大理岩条带出露长度可达500 m以上,甚至1 000 m。就岩性共生关系而言,两岩群大理岩与斜长角闪岩具有密切的共生关系,多呈整合状产出(图2a,e),局部地段呈互层状产出,且大理岩在斜长角闪岩附近出现的几率极高。渣尔泰山群大理岩总体结晶程度偏低,大多呈青灰色,刀砍纹发育,风化强烈,碎屑物质含量高,甚至局部地段与硅质条带呈互层状产出,镜下呈细晶结构或微晶结构,主要矿物成分为方解石,半自形—它形粒状结构,大小一般为50~100 μm,部分具微晶结构,晶粒粒度小于30 μm,含量约为70%~90%,次要矿物为石英、白云母、黑云母、长石等,另外个别样品镜下可见含碳质(图2b~d);宝音图群大理岩总体重结晶程度较高,变余层理发育,碎屑成分少,成分较纯,呈灰白色,中粗粒状结构,自形—半自形晶,大小约为200 μm,含量一般大于90%,定向排列特征明显(图2f~h)。通过霍各乞渣尔泰山群和宝音图群1∶10 000地质填图和1∶2 000地质剖面测量,在充分了解大理岩的分布状况、产出状态、共生关系等地质情况的基础上,选取典型、有代表性的层位进行样品采集。

    Figure 2.  Field and microscopic features of marble in Huogeqi Zhaertai Group and Buyant Group, Inner Mongolia

  • 大理岩C、O同位素分析测试于核工业北京地质研究院分析测试研究中心,所依据的检测方法为DZ/T0184.17—1997《碳酸盐矿物或岩石中碳、氧同位素组成的磷酸法测定》[26],使用仪器为MAT253型质谱仪,测量结果均以VPDB为标准,记为δ13CV-PDB(精度优于0.1‰),δ18OV-PDB(精度优于0.2‰)。

    大理岩X射线衍射分析(X-ray diffraction,XRD)完成于北京矿冶研究总院,使用仪器为日本理学(Rigaku)Ultima Ⅵ X射线衍射分析仪,X射线靶源为铜靶,工作电压为40 kV,扫描范围(2θ)为-3°~162°。

    大理岩能谱分析完成于北京矿冶研究总院,使用仪器为FEI Quanta 600环境扫描电镜搭载的EDAX Genesis 7000能谱仪,工作电压为25 kV,束斑大小为4 μm。

  • 内蒙古霍各乞渣尔泰山群5件大理岩样品的δ13CV-PDB值为-2.4‰~4.3‰,平均值为1.6‰;δ18OV-PDB值为-39.0‰~-15.3‰,平均值为-20.9‰;δ18OV-SMOW值为-8.2‰~15.2‰,平均值为9.7‰。由δ13CV-PDBδ18OV-PDB计算所得的Z值为113~128,平均值为120。宝音图群7件大理岩样品的δ13CV-PDB值为-1.1‰~5.9‰,平均值为3.2‰;δ18OV-PDB值为-18.5‰~-7.8‰,平均值为-14.5‰;δ18OV-SMOW值为12.0‰~22.7‰,平均值为16.1‰。由δ13C和δ18O相关的盐度公式Z=2.048×(δ13CV-PDB+50)+0.498×(δ18OV-PDB+50)[27]计算所得的Z值为117~135,平均值为127(表1)。

    岩群样品号样品名称δ13CV-PDB/‰δ18OV-PDB/‰δ18OV-SMOW/‰Z
    渣尔泰山群Z1灰黑色碳质大理岩4.3-15.315.2128
    Z2青灰色大理岩2.7-39.0-8.2113
    Z3青灰色大理岩2.1-17.712.9123
    Z4青灰色大理岩1.4-16.214.3122
    Z5青灰色大理岩-2.4-16.314.3114
    平均1.6-20.99.7120
    宝音图群B1灰白色大理岩1.6-17.712.9122
    B2灰白色大理岩2.0-15.215.4124
    B3灰白色大理岩5.9-7.822.7135
    B4灰白色大理岩4.2-15.215.3128
    B5灰白色大理岩4.0-18.512.0126
    B6青灰色大理岩5.7-11.219.3133
    B7灰色大理岩-1.1-15.714.8117
    平均3.2-14.516.1127
  • 碳酸盐岩的C同位素不仅可以很好地指示原岩的沉积环境还可以对原岩的沉积时代作出一定的限定。在地质演化历史上,海相碳酸盐岩的C同位素一般位于0±2‰左右[28],但是在古元古代时期(2.4~2.0 Ga)和新元古代时期(0.8~0.6 Ga)的一些地层中发生了非常显著的漂移[29-32]。大理岩的C同位素值与高压超高压变质条件之间没有必然的联系,而是反映了原始沉积盆地的环境属性[33]。原始沉积环境的C、O同位素值可能保存在具有最高C、O同位素值的大理岩样品中。

    野外及手标本上变质成因的碳酸盐岩和火成的碳酸岩在矿物组成和组构特征上具有较大的相似性,但两者的C同位素值具有明显的差别。地幔碳酸盐的δ13C值为-7‰~-3‰[34],与沉积成因的碳酸盐岩的δ13C值具有明显差异。霍各乞渣尔泰山群和宝音图群大理岩的δ13C值基本都为正值,结合野外产出状态显示其为沉积变质作用的产物。此外,内蒙古霍各乞渣尔泰山群和宝音图群大理岩的δ13CV-PDBδ18OV-SMOW与重要的地质储库相比,其δ13CV-PDB值分布范围与海相碳酸盐岩的分布范围相似,δ18OV-SMOW值分布范围与海相碳酸盐岩以及变质岩的分布范围相似,说明渣尔泰山群和宝音图群大理岩原岩的沉积环境可能为海相环境(图3)。

    Figure 3.  C and O isotopes in important geological reservoirs and in this study (modified from reference [35])

    前人研究认为δ13C和δ18O值与水体的盐度有关,一般水体的盐度越大,δ13C和δ18O值就越大,因此提出了δ13C和δ18O相关的盐度公式Z=2.048×(δ13CV-PDB+50)+0.498×(δ18OV-PDB+50),此公式被广泛地应用于沉积相的判断:Z值大于120时为海相,Z值小于120时为淡水相[27]。内蒙古霍各乞渣尔泰山群5件大理岩样品的Z值为113~128,平均值为120,结合碳酸盐岩的C、O同位素受后期成岩作用的影响会发生不同程度的降低,那么渣尔泰山群大理岩原岩在原始沉积时的Z值应比由计算所得的Z值大,因此中元古界渣尔泰山群大理岩原岩的古沉积环境应为海相环境。渣尔泰山群研究成果较为丰富,前人研究得出从1.8 Ga到新元古代,华北克拉通一直处于伸展构造体制控制之下,经历了多期裂谷盆地事件[36]。中新元古代时期狼山—渣尔泰山地区为华北古陆北缘拉张条件下的裂谷构造体制控制,并在此基础上进一步拉张、沉陷形成了多个被动大陆边缘的次级断陷盆地。渣尔泰山群大理岩产出于增隆昌组和阿古鲁沟组中,在这两个岩组中碳质千枚岩、碳质板岩、碳质石英岩等富含碳质的岩性普遍发育,甚至在局部层位可见大理岩与碳质千枚岩整合产出,说明原始沉积盆地普遍富含碳质。一般碳酸盐岩的沉积需要一个相对稳定、陆源供给少的浅水环境,只有通过长期稳定的沉积作用才能形成巨厚的沉积[30]。渣尔泰山群大理岩产出形式大都为细条带状、透镜状,无巨厚层的大理岩产出,加之碳酸盐岩的沉积需要稳定的水体环境且大理岩中石英、云母、长石类矿物含量丰富,甚至局部地段大理岩中产出大量硅质条带(图2c,d),说明大理岩沉积时期陆缘碎屑物质的输入量较为丰富,且沉积环境较为动荡,只有在间歇性的稳定期才沉积了少量薄层的碳酸盐岩。总之,内蒙古霍各乞渣尔泰山群大理岩形成于华北地台北缘裂谷构造体制控制之下的缺氧的浅海相环境,沉积期水体环境不稳定,有丰富的陆源碎屑物质输入。

    内蒙古霍各乞宝音图群7件大理岩样品的Z值为117~135,平均值为127,且结合碳酸盐岩的δ13C和δ18O在沉积成岩过程中会有不同程度的降低,计算所得的宝音图群大理岩的Z值应高于其实际值,因此表明内蒙古霍各乞宝音图群大理岩原岩的沉积环境应为海相环境且海水的盐度较高。霍各乞宝音图群大理岩野外透镜状、细条带状的产出形式显示大理岩形成于浅海环境,但沉积时水体环境较为动荡,仅在相对稳定的时期沉积了薄层碳酸盐岩,而且相对渣尔泰山群大理岩成分较纯,表明在沉积过程中受陆源碎屑物质的混染程度相对有限。此外,研究得出与大理岩密切共生的斜长角闪岩为大陆边缘裂谷环境下产出的玄武岩[13],这为宝音图群的形成环境提供了佐证。总之,内蒙古霍各乞宝音图群形成于浅海相环境,沉积期水体环境不稳定,受陆源碎屑物质的影响相对较小。

  • 内蒙古霍各乞渣尔泰山群和宝音图群大理岩与斜长角闪岩具有密切的共生关系,且斜长角闪岩的原岩为幔源玄武岩[15,18,20,37],玄武岩在大理岩的形成过程中起到了什么样的作用以及大理岩的C、O同位素是否受其影响,郑永飞等[38]通过对大别山与榴辉岩共生的大理岩C同位素的研究表明即使是经历超高压变质的大理岩在俯冲至地幔深度后,地幔岩石与大理岩之间的C同位素交换也非常微弱。此外,地幔玄武岩的δ13C值分布范围大都在-4‰~-5‰之间[39],而霍各乞渣尔泰山群和宝音图群大理岩的δ13C值分布范围与地幔玄武岩的δ13C值分布范围相差甚远,说明内蒙古霍各乞渣尔泰山群和宝音图群中与大理岩密切共生的斜长角闪岩在成岩过程中对大理岩的C同位素值影响微弱。另外,霍各乞渣尔泰山群和宝音图群大理岩样品的O同位素分布范围与变质岩的O同位素分布范围一致,与玄武岩的O同位素分布范围显著不同(图3),指示霍各乞渣尔泰山群和宝音图群大理岩的O同位素未受到变基性岩的改造。

    根据碳酸盐岩的C、O同位素值的相关性可以查看碳酸盐岩经受后期成岩作用的影响程度[40-41]。如果碳酸盐岩的C、O同位素值呈正相关关系,则说明碳酸盐岩的C、O同位素值遭受到了成岩作用的一致影响;如果碳酸盐岩的C、O同位素值无明显的正相关关系,则表明成岩作用对碳酸盐岩的C、O同位素值未造成统一影响。内蒙古霍各乞渣尔泰山群5件大理岩样品和宝音图群7件大理岩样品的δ13CV-PDBδ18OV-SMOW值经线性拟合均表现出明显的不相关性,相关系数分别为0.351 6和0.050 9,远小于1(图4),说明霍各乞渣尔泰山群和宝音图群大理岩C、O同位素在成岩过程中未遭受一致性的改造。

    Figure 4.  Bivariate C and O isotope diagram for marble in Huogeqi Zhaertai Group and Buyant Group, Inner Mongolia

    此外,在沉积期后,若不考虑流体作用的影响,变质过程中碳酸盐岩的去气作用会导致δ13C和δ18O值降低约1‰~2‰[34]。因此,内蒙古霍各乞渣尔泰山群和宝音图群大理岩的δ13C和δ18O的最大值更接近于原始沉积时的C、O同位素组成特征,即渣尔泰山群和宝音图群大理岩均具有明显的碳同位素正漂移现象,且渣尔泰山群和宝音图群大理岩样品的原始C、O同位素组成分别保存在样品Z1和B3中。

    碳酸盐岩的O同位素可以对后期的环境变化做出灵敏的反应。一般情况下,灰岩的δ18OV-SMOW初始值位于25‰~30‰之间,在其后的成岩作用和变质作用中灰岩的O同位素会发生明显的降低,其分布范围大致为18‰~25‰[34]。前人研究认为碳酸盐岩的δ18OV-PDB值小于-10‰时,指示其O同位素组成已经受到了强烈的影响[41],而δ18OV-PDB值在-5‰~-10‰之间时,说明O同位素值较之于初始值略有改变[42]。一般正常海相碳酸盐岩的δ18OV-PDB值约为-10‰~-2‰[43],在碳酸盐岩的成岩过程中δ13C和δ18O均会有不同程度的降低,相较于C同位素的变化,O同位素的波动较大。内蒙古霍各乞渣尔泰山群大理岩的δ18OV-PDB值为-39.0‰~-15.3‰,δ18OV-SMOW值为-8.2‰~15.2‰,宝音图群大理岩的δ18OV-PDB值为-18.5‰~-7.8‰,δ18OV-SMOW值为12.9‰~22.7‰,两者与正常海相碳酸盐的δ18O值相比强烈富集轻同位素,与前人研究成果相比较显示两岩群大理岩的O同位素组成已经受到了强烈的影响。在C、O同位素协变图解上,渣尔泰山群和宝音图群大理岩样品均表现出较差的相关性(图4),说明δ18O值的降低可能与成岩期的流体交换作用有关。此外,在δ13C-δ18O图解上(图5),渣尔泰山群和宝音图群大理岩的δ13C值仍分布于海相碳酸盐岩的分布范畴内,表明沉积期后的C同位素组成未受到明显的影响,但δ18O值则远离海相碳酸盐岩的δ18O值分布范围且沿着碳酸盐溶解作用的趋势分布,表明渣尔泰山群和宝音图群大理岩原岩在沉积期后发生了普遍性的溶解作用,这在一定程度上改变了原始沉积的O同位素组成,使得大理岩的O同位素组成发生了强烈的亏损。

    Figure 5.  δ13C⁃δ18O diagram for marble from Huogeqi Zhaertai Group and Buyant Group, Inner Mongolia (after reference [44])

    碳酸盐溶解作用既可以发生在沉积成岩期间,也可以发生在成岩之后,对于大理岩来讲即变质作用期间。渣尔泰山群和宝音图群虽经历了共同变质,O同位素组成均发生了强烈的亏损,但渣尔泰山群大理岩的O同位素(排除一个极异常值Z2:δ18OV-PDB=-39.0‰,δ18OV-SMOW=-8.2‰)比宝音图群大理岩的O同位素亏损程度更大。结合宝音图群大理岩碎屑含量少而渣尔泰山群大理岩富含丰富的碎屑物质甚至与硅质条带互层产出的地质特征分析认为,渣尔泰山群大理岩原岩较之于宝音图群大理岩原岩沉积时期有较多的淡水流入且携带了丰富的陆源碎屑物质进入沉积盆地。这在一定程度上改变了沉积水体的物理化学性质,加剧了碳酸盐的溶解作用,致使渣尔泰山群大理岩具有更小的O同位素组成。

    此外,渣尔泰山群大理岩样品Z2具有极低的O同位素组成(δ18OV-PDB=-39.0‰,δ18OV-SMOW=-8.2‰),与其他样品相比,指示其可能还遭受了其他地质作用的影响。样品Z2重结晶程度较低,粒度较小,光学显微镜下难以辨别除方解石以外的其他矿物种类,通过镜下茜素红染色发现该样品含有较多未染色部分(白色)且呈杂乱交织状分布(图6),显示该样品除方解石以外还含有较多其他矿物成分。进一步进行X射线衍射和能谱分析得出该样品的主要矿物组成为方解石,其次为透闪石,另外还含有极少量的钙铝榴石、钾长石等矿物成分(图7,8)。大理岩样品Z2中透闪石、钙铝榴石、钾长石等高温热液矿物的存在指示该样品遭受了高温热液蚀变作用,致使其O同位素发生了强烈的亏损,形成了极低的氧同位素组成。

    Figure 6.  Alizarin⁃red stained marble sample Z2 from Huogeqi Zhaertai Group, Inner Mongolia

    Figure 7.  XRD analysis of marble sample Z2 in Huogeqi Zhaertai Group, Inner Mongolia

    Figure 8.  Energy spectrum analysis of marble sample Z2 in Huogeqi Zhaertai Group, Inner Mongolia

  • 最新研究成果显示内蒙古渣尔泰山群的形成时代为中—新元古代(1 800~800 Ma)[3,45],但狼山—渣尔泰山地区不同位置所得的地层年代具有差异性。应迪先[46]报道狼山东升庙渣尔泰山群阿古鲁沟组具有1 520~1 600 Ma的沉积年龄。狼山北侧那仁宝力格、霍各乞、电视台和后布敖包4地变基性岩的成岩年龄分布在1 486~1 606 Ma之间,Sm-Nd等时线年龄为1 491 Ma[47]。彭润民等[10]报道内蒙古东升庙地区渣尔泰山群的变质火山岩具有1 805 Ma成岩年龄,指示其为中元古代的产物。彭润民等[48]报道内蒙古炭窑口渣尔泰山群(狼山群二组)中的变质火山岩具有1 824 Ma的Sm-Nd等时线年龄。彭润民等[45]报道内蒙古狼山西南段变质酸性火山岩具有约800 Ma的成岩年龄,表明其为新元古代的产物,指示中元古代裂陷槽可能在后续造山过程中再次发生裂解。公王斌等[2]研究认为渣尔泰山地区渣尔泰山群的最大沉积时限小于1.8~1.9 Ga,表明沉积于中元古代早期。

    根据以上渣尔泰山群不同部位的年代学数据,内蒙古渣尔泰山群的形成年龄为1 800~800 Ma,为中—新元古代的产物,对应于燕辽裂陷槽中的长城系、蓟县系、待建系和青白口系(1.8~0.8 Ga)[36,49-54]。然而,根据同位素年代学数据可知狼山—渣尔泰山裂陷槽的裂解时间是有先后次序的,不可一概而论,狼山地区狼山南侧先发生裂解,狼山北侧后发生裂解[5],因此内蒙古霍各乞地区的渣尔泰山群大理岩C同位素特征可与燕辽裂陷槽中的蓟县系(1 600~1 400 Ma)碳酸盐岩的C同位素值作对比。

    内蒙古霍各乞渣尔泰山群大理岩的δ13C值为-2.4‰~4.3‰,具有4.3‰的δ13C正高值,C同位素正漂移特征显著。然而,蓟县系由上至下分别为高于庄组、杨庄组、雾迷山组、洪水组和铁岭组,其δ13C值最大分布范围为-3.80‰~1.61‰,整体在0‰附近波动,并且较为靠近负值,仅在雾迷山组可见1.61‰的δ13C正高值(表2),与霍各乞渣尔泰山群大理岩的δ13C值相比较其正异常程度较弱,说明狼山—渣尔泰山裂陷槽与燕辽裂陷槽虽均为裂谷构造环境,但其具体的沉积环境却具有显著的差异。

    地区层位δ13CV-PDB/‰δ13CV-PDB/‰平均值数据来源
    河北宽城高于庄组-1.84~0.07-0.67据文献[55]
    燕山地区高于庄组-2.76~0.07-0.8据文献[56]
    杨庄组-1.39~0.09-0.93
    雾迷山组-2.12~1.560.23
    洪水庄组-1.7-1.7
    铁岭组-1.72~0.98-0.55
    天津高于庄组-0.12~0.10.34据文献[57]
    杨庄组-1.36-1.36
    雾迷山组-0.01~1.08-0.12
    铁岭组-0.28-0.28
    北京十三陵杨庄组-2.33-2.33据文献[58]
    雾迷山组-3.73~1.61-0.12
    天津蓟县铁岭组-0.5~0.7-0.4据文献[59]
    北京门头沟区-3.8~0.9-0.6
    北京十三陵剖面-2.02~-0.1-0.7据文献[60]
    天津蓟县剖面-1.27~-0.22-0.7

    从1.8 Ga到新元古代,华北克拉通一直处于伸展构造体制控制之下,经历了多期裂谷盆地事件[36]。狼山—渣尔泰山群裂陷槽的裂解过程具有不等时性以及次序性,狼山南侧先裂解,且具有由西向东的先后次序,北部后裂解,霍各乞地区在1 486~1 606 Ma之间发生了裂解[5]。Hoffman[61]认为裂解作用会增加大陆边缘的面积,而大陆边缘是生物生存和活动最为繁盛的场所,蕴藏着大量的有机质,因此大陆裂解会使得有机碳的埋藏量增大。古生物学研究显示早在古元古代长城群底层的常州沟组(~1 800 Ma)中就发现了多细胞藻化石[62],另外孙淑芬[63]报道在阴山北麓渣尔泰山群增隆昌组和阿古鲁沟组中发现了大量微古植物化石,共计17个属42个种,由此可见渣尔泰山群沉积时期生物作用繁盛,况且裂谷构造下风化作用强烈,风化所带来的营养物质使得生物的初级生产力大大提升,这为有机质的大量埋藏提供了可能。此外,霍各乞渣尔泰山群富有机质不仅表现在大理岩出现明显的C同位素正漂移,而且地层中富含碳质,除大量出露的碳质板岩、碳质千枚岩以外,片岩类、石英岩类等岩石中均普遍含有碳质。霍各乞渣尔泰山群大理岩C同位素正异常以及普遍发育的富碳质岩石是大陆边缘裂解作用的产物。

  • 内蒙古宝音图群的成岩时代存在较大的争议,部分学者认为其形成于古元古代[15,17-18,20,22,64-65],另一部分学者研究得出其为中新元古代的产物[13]。鉴于内蒙古宝音图群形成时代的争议性,本文在此采用滕飞等[13]对内蒙古霍各乞宝音图群(与本文研究区一致)的年代学研究成果,即霍各乞地区的宝音图群形成于1 284~895.5 Ma,对应于燕辽裂陷槽中的待建系(1.4~1.0 Ga)和青白口系(1.0~0.8 Ga)。储雪蕾等[66]报道天津蓟县剖面在青白口系景儿峪组出现了2±2‰的δ13C正异常值。旷红伟等[56]报道燕山地区代建系下马岭组泥晶灰岩的δ13C值为-1.86‰,青白口系长龙山组含海绿石泥晶灰岩的δ13C值为3.19‰,景儿峪组泥晶灰岩的δ13C值为-1.5‰。天津蓟县景儿峪组石灰岩的δ13C值为0.91‰[57]。总而言之,燕辽裂陷槽待建系和青白口系仅在长龙山组和景儿峪组出现了明显的C同位素正异常,δ13C最大值为3.19‰,但相较于霍各乞宝音图群大理岩5.9‰的δ13C正高值,燕山裂陷槽待建系和青白口系沉积时期的C同位素埋藏速率低于霍各乞宝音图群沉积时的C同位素埋藏速率,说明霍各乞宝音图群沉积时期的古环境特征与燕辽裂陷槽待建系—青白口系沉积时期的克拉通内裂谷环境具有较为显著的差异。

    Bartley et al.[67]通过对西伯利亚南部Uchur⁃Maya地区和西伯利亚西北部Turukhansk隆起地区碳酸盐岩的研究得出:从早中元古代至1 300 Ma之后,碳酸盐的δ13C由0‰附近升高至3.5‰。此外,在中元古代后半期全球不同地区也出现了约4‰的C同位素正漂移[68-70],说明宝音图群大理岩沉积时期C同位素正漂移具有广泛性。郑永飞等[28]通过研究大别地区大理岩认为,西大别大理岩的δ13C为-2.6‰~0.1‰,接近现代大洋C同位素组成,表明其形成环境为宽阔海洋,而东大别大理岩的δ13C为0.5‰~5.7‰,指示其形成环境较为封闭,可能为大陆边缘盆地。滕飞等[13]得出宝音图群(1 284~895.5 Ma)斜长角闪岩形成于大陆边缘裂谷环境,可能是对Rodinia超大陆裂解的响应。彭润民等[45]报道内蒙古狼山西南段约800 Ma的酸性火山岩可能是Rodinia超大陆裂解的产物。因此,霍各乞宝音图群大理岩的δ13C正高值(5.9‰)与东大别大理岩的δ13C正高值(5.7‰)基本一致,与西大别δ13C正高值(0.1‰)相差甚远,且西大别为宽阔海洋环境;而东大别为大陆边缘盆地环境[28],沉积盆地的封闭所导致的水体氧逸度降低可以增大C同位素的沉积速率[38],指示宝音图群大理岩C同位素正漂移与沉积盆地的闭塞性有关。沉积盆地的闭塞性是否受大陆边缘裂谷构造体制控制,以及这种全球普遍性的C同位素异常是否是对Rodinia超大陆裂解的响应,目前由于缺乏充足的证据,还有待进一步的研究。

  • (1) 内蒙古霍各乞渣尔泰山群和宝音图群大理岩C同位素均具有显著的正异常特征,δ13CV-PDB正高值分别为4.3‰和5.9‰;O同位素组成均发生了强烈的亏损。

    (2) 内蒙古霍各乞渣尔泰山群和宝音图群大理岩原岩均形成于浅海相环境,渣尔泰山群沉积期接受了丰富的陆源碎屑物质的混染,而宝音图群受影响相对较小。此外,沉积期后两岩群大理岩均发生了碳酸盐溶解作用。

    (3) 霍各乞渣尔泰山群大理岩C同位素正漂移与大陆边缘裂解作用关系密切,宝音图群大理岩C同位素正漂移与原始沉积盆地的闭塞性有关。

    (4) 综合地质、地球化学特征对比分析,认为内蒙古霍各乞渣尔泰山群和宝音图群大理岩原岩在古沉积环境方面具有较大的相似性。

Reference (70)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return