Advanced Search
Volume 40 Issue 6
Dec.  2022
Turn off MathJax
Article Contents

GE JiaWang, ZHU XiaoMin, WANG Rui, TAN MingXuan, ZHAO XiaoMing. Tectono⁃sedimentary Interaction of Early Syn-rift Successions: A case study from the Tobomiao Formation, Tanan Depression, Tamtsag Basin, Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1582-1598. doi: 10.14027/j.issn.1000-0550.2022.109
Citation: GE JiaWang, ZHU XiaoMin, WANG Rui, TAN MingXuan, ZHAO XiaoMing. Tectono⁃sedimentary Interaction of Early Syn-rift Successions: A case study from the Tobomiao Formation, Tanan Depression, Tamtsag Basin, Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1582-1598. doi: 10.14027/j.issn.1000-0550.2022.109

Tectono⁃sedimentary Interaction of Early Syn-rift Successions: A case study from the Tobomiao Formation, Tanan Depression, Tamtsag Basin, Mongolia

doi: 10.14027/j.issn.1000-0550.2022.109
Funds:

National Natural Science Foundation of China 41902124

National Natural Science Foundation of China 42072183

China Postdoctoral Science Foundation 2019M653477

Open Fund Project of Key Laboratory of Structure and Oil and Gas Resources of Ministry of Education 2019-15

  • Received Date: 2022-05-30
  • Rev Recd Date: 2022-09-02
  • Publish Date: 2022-12-10
  • Rift-related basins are rich in petroleum reservoirs. The evolutionary stages of rift systems are diagnosed by their stratigraphic patterns and depositional assemblages, forming distinctive hydrocarbon accumulation systems. Recent discoveries of rich petroleum resources in initial rift-related stratigraphic successions have aroused much interest in the petroleum industry. Furthermore, multi-stage fault activation and stacking patterns associated with geomorphic drainages networks and depositional responses during the initial rifting phase have become an important scientific focus internationally. The Lower Cretaceous Tongbomiao Formation in the Tanan Depression in Mongolia records such initial rift-related stratigraphic successions; its dense well penetration and large-scale seismic data make an ideal study area. Seismic, core and logging data were used to reconstruct the tectono-sedimentary evolution and source-to-sink system during the initial rifting phase, indicating that the first stage of initial rifting formed isolated small-scale sags, which were filled for a short distance by small-scale alluvial fans / deltaic fans in response to the pre-rift ‘high mountain / deep valley’ geomorphology. The second stage was accompanied by fault interactions with rapidly increasing fault length; it then transitioned into a wide connected but shallow basin structure, with three low-gradient but large-scale (> 50 km2) relay ramp zones. The 28 km-long dip-slope allowed long-distance transport to form a fan-deltaic sand-rich system, without an axially-sourced or footwall-supplied depositional system. This case study and previous studies show that the pre-existing drainage catchment and the rift-related physiography jointly control the depositional pattern and source-to-sink system in the initial rifted basins. The basins in the first stage of initial rifting were either overfilled with sand-rich sediments (connected with pre-existing drainage) or sediment-starved (not connected with pre-existing drainage). Small-scale, short-distance transport of sediments was facilitated in the isolated basins dominated by young short-range drainage. However, the second stage of initial rifting is characterized by two distinctive infill patterns in response to the fault linking process. Early fault linkage contributed to rapid fault propagation to their full length (L), whereas the displacement (D) remained almost constant before significant basin formation. This type of basin benefitted from expanded drainage basins and long dispersal depositional systems of sand-rich sediments. By contrast, other basins are commonly observed with a constant D-L relationship that resulted from later fault linking; these basins are isolated and are characterized by local drainage catchments and relatively small-scale deltaic systems. This study provides a detailed example of reporting tectonic-sedimentary interaction and source-to-sink systems for early rift-related successions in rift basins, and has significant implications for good sandstone prediction and petroleum exploration in other rift basins.
  • [1] 李丕龙. 陆相断陷盆地油气地质与勘探(卷二):陆相断陷盆地沉积体系与油气分布[M]. 北京:石油工业出版社,2003.

    Li Pilong. Petroleum geology and exploration of continental fault basin (II): Sedimentary system and oil-gas distribution in continental faulted basins[M]. Beijing: Petroleum Industry Press, 2003.
    [2] 于兴河,姜辉,李胜利,等. 中国东部中、新生代陆相断陷盆地沉积充填模式及其控制因素:以济阳坳陷东营凹陷为例[J]. 岩性油气藏,2007,19(1):39-45.

    Yu Xinghe, Jiang Hui, Li Shengli, et al. Depositional filling models and controlling factors on Mesozoic and Cenozoic fault basins of terrestrial facies in eastern China: A case study of Dongying Sag of Jiyang Depression[J]. Lithologic Reservoirs, 2007, 19(1): 39-45.
    [3] Lin C S, Eriksson K, Li S T, et al. Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, northeast China[J]. AAPG Bulletin, 2001, 85(11): 2017-2043.
    [4] 周海民,董月霞,刘蕴华,等. 断陷盆地油气勘探理论与实践:以渤海湾盆地南堡凹陷为例[M]. 东营:石油大学出版社,2005:1-20.

    Zhou Haimin, Dong Yuexia, Liu Yunhua, et al. Theory and practice of oil and gas exploration in faulted basins: A case study of Nanpu Sag, Bohai Bay Basin[M]. Dongying: China University of Petroleum Press, 2005: 1-20.
    [5] 林畅松,郑和荣,任建业,等. 渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制[J]. 中国科学(D辑):地球科学,2003,33(11):1025-1036.

    Lin Changsong, Zheng Herong, Ren Jianye, et al. The control of syndepositional faulting on the Eogene sedimentary basin fills of the Dongying and Zhanhua sags, Bohai Bay Basin[J]. Science China (Seri. D): Earth Sciences, 2003, 33(11): 1025-1036.
    [6] Zhou Y, Ji Y L, Pigott J D, et al. Tectono-stratigraphy of Lower Cretaceous Tanan sub-basin, Tamtsag Basin, Mongolia: Sequence architecture, depositional systems and controls on sediment infill[J]. Marine and Petroleum Geology, 2014, 49: 176-202.
    [7] Ge J W, Zhu X M, Yu F S, et al. Controls of faulting on synrift infill patterns in the Eocene PY4 Sag, Pearl River Mouth Basin, South China Sea[J]. Australian Journal of Earth Science, 2019, 66(1): 111-132.
    [8] 林畅松,刘景彦,张英志,等. 构造活动盆地的层序地层与构造地层分析:以中国中、新生代构造活动湖盆分析为例[J]. 地学前缘,2005,12(4):365-374.

    Lin Changsong, Liu Jingyan, Zhang Yingzhi, et al. Sequence stratigraphy and tectono-stratigraphic analysis of tectonically active basins: A case study on the Cenozoic-Mesozoic lacustrine basins in China[J]. Earth Science Frontiers, 2005, 12(4): 365-374.
    [9] Jackson J, Leeder M. Drainage systems and the development of normal faults: An example from Pleasant Valley, Nevada[J]. Journal of Structural Geology, 1994, 16(8): 1041-1059.
    [10] 邓宏文,郭建宇,王瑞菊,等. 陆相断陷盆地的构造层序地层分析[J]. 地学前缘,2008,15(2):1-7.

    Deng Hongwen, Guo Jianyu, Wang Ruiju, et al. Tectono-sequence stratigraphic analysis in continental faulted basins[J]. Earth Science Frontiers, 2008, 15(2): 1-7.
    [11] 解习农,任建业. 沉积盆地分析基础[M]. 武汉:中国地质大学出版社有限责任公司,2013:11-40.

    Xie Xinong, Ren Jianye. Principles of sedimentary basin analysis[M]. Wuhan: China University of Geosciences Press Co., Ltd, 2013: 11-40.
    [12] 张建林,林畅松,郑和荣. 断陷湖盆断裂、古地貌及物源对沉积体系的控制作用:以孤北洼陷沙三段为例[J]. 油气地质与采收率,2002,9(4):24-27.

    Zhang Jianlin, Lin Changsong, Zheng Herong. Controlling action of fractures, palaeogeomorphology and material sources of rift lake-basin on sedimentary system-taking Es3 Gubei subsag as example[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(4): 24-27.
    [13] Hemelsdaël R, Ford M, Malartre F, et al. Interaction of an antecedent fluvial system with early normal fault growth: Implications for syn-rift stratigraphy, western Corinth Rift (Greece)[J]. Sedimentology, 2017, 64(7): 1957-1997.
    [14] Ge J W, Zhu X M, Wang R, et al. Tectono-sedimentary evolution and hydrocarbon reservoirs in the Early Cretaceous Tanan Depression, Tamtsag Basin, Mongolia[J]. Marine and Petroleum Geology, 2018, 94: 43-64.
    [15] 葛家旺,朱筱敏,雷永昌,等. 多幕裂陷盆地构造—沉积响应及陆丰凹陷实例分析[J]. 地学前缘,2021,28(1):77-89.

    Ge Jiawang, Zhu Xiaomin, Lei Yongchang, et al. Tectono-sedimentary development of multiphase rift basins: An example of the Lufeng Depression[J]. Earth Science Frontiers, 2021, 28(1): 77-89.
    [16] 王宏语,李瑞磊,朱建峰,等. 陆相裂谷盆地构造沉积学特征:以松辽盆地伏龙泉断陷为例[J]. 现代地质,2019,33(6):1151-1162.

    Wang Hongyu, Li Ruilei, Zhu Jianfeng, et al. Tectonic sedimentology characteristics of continental rift basin: Case study from Fulongquan fault depression of Songliao Basin[J]. Geoscience, 2019, 33(6): 1151-1162.
    [17] 杨文杰,胡明毅,苏亚拉图,等. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏,2020,32(4):59-68.

    Yang Wenjie, Hu Mingyi, Latu Suya, et al. Sedimentary characteristics of fan delta during initial rifting stage in Sujiatun sub-depression, Songliao Basin[J]. Lithologic Reservoirs, 2020, 32(4): 59-68.
    [18] 姚树青,刘招君,陈永成,等. 蒙古国塔南凹陷下白垩统铜钵庙组地震反射特征[J]. 世界地质,2011,30(4):641-647.

    Yao Shuqing, Liu Zhaojun, Chen Yongcheng, et al. Seismic reflection characteristics of Lower Cretaceous Tongbomiao Formation in Tanan Sag, Mongolia[J]. Global Geology, 2011, 30(4): 641-647.
    [19] Lewis M M, Jackson C A L, Gawthorpe R L. Tectono-sedimentary development of early syn-rift deposits: The Abura Graben, Suez Rift, Egypt[J]. Basin Research, 2017, 29(Suppl.1): 327-351.
    [20] Prosser S. Rift-related linked depositional systems and their seismic expression[M]//Williams G D, Dobb A. Tectonics and seismic sequence stratigraphy. Geological Society, London, Special Publications, 1993, 71(1): 35-66.
    [21] Gupta S, Cowie P A, Dawers N H, et al. A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution[J]. Geology, 1998, 26(7): 595-598.
    [22] Cowie P A, Gupta S, Dawers N H. Implications of fault array evolution for synrift depocentre development: Insights from a numerical fault growth model[J]. Basin Research, 2000, 12(3/4): 241-261.
    [23] Gawthorpe R L, Leeder M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12(3/4): 195-218.
    [24] Cartwright J A, Trudgill B D, Mansfield C S. Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah[J]. Journal of Structural Geology, 1995, 17(9): 1319-1326.
    [25] Eliet P P, Gawthorpe R L. Drainage development and sediment supply within rifts, examples from the Sperchios Basin, central Greece[J]. Journal of the Geological Society, 1995, 152(5): 883-893.
    [26] McLeod A E, Underhill J R, Davies S J, et al. The influence of fault array evolution on synrift sedimentation patterns: Controls on deposition in the Strathspey-Brent-Statfjord half graben, northern North Sea[J]. AAPG Bulletin, 2002, 86(6): 1061-1093.
    [27] Davies S J, Dawers N H, McLeod A E, et al. The structural and sedimentological evolution of early synrift successions: The Middle Jurassic Tarbert Formation, North Sea[J]. Basin Research, 2002, 12(3/4): 343-365.
    [28] Morley C K. Evolution of large normal faults: Evidence from seismic reflection data[J]. AAPG Bulletin, 2002, 86(6): 961-978.
    [29] Wu G Y, Wang Y, Liu M. Palinspastic reconstruction and geological evolution of Jurassic Basins in Mongolia and neighboring China[J]. Journal of Palaeogeography, 2013, 2(3): 306-317.
    [30] 陈玮常,漆家福,姜洪福,等. 蒙古国东方省海塔盆地塔南凹陷断裂特征及其油气意义[J]. 古地理学报,2013,15(4):539-550.

    Chen Weichang, Qi Jiafu, Jiang Hongfu, et al. Characteristics of fault structure in Tanan Sag, Haita Basin in Dornod Aymag, Mongolia and its hydrocarbon significance[J]. Journal of Palaeogeography, 2013, 15(4): 539-550.
    [31] 杨永华,纪友亮,曹瑞成,等. 蒙古塔木察格盆地塔南凹陷下白垩统层序结构类型、控制因素与层序发育模式[J]. 现代地质,2009,23(4):655-666.

    Yang Yonghua, Ji Youliang, Cao Ruicheng, et al. Types of sequences, controlling factors and sequence models for Lower Cretaceous of Tanan Depression in Tamtsag Basin, Mongolia[J]. Geoscience, 2009, 23(4): 655-666.
    [32] 纪友亮,蒙启安,曹瑞成,等. 蒙古国东部塔木察格盆地南部白垩系地层结构及沉积充填特征[J]. 古地理学报,2010,12(6):729-736.

    Ji Youliang, Meng Qi’an, Cao Ruicheng, et al. Stratigraphic architecture and sedimentary infilling characteristics of the Cretaceous in southern Tamuchage Basin, East Mongolia[J]. Journal of Palaeogeography, 2010, 12(6): 729-736.
    [33] 李强,张革,孙效东,等. 蒙古国塔木察格盆地塔南凹陷下白垩统铜钵庙组沉积特征和构造—古地理意义[J]. 古地理学报,2014,16(6):897-906.

    Li Qiang, Zhang Ge, Sun Xiaodong, et al. Sedimentary features and its tectono-palaeogeographic significance of the Lower Cretaceous Tongbomiao Formation in Tanan Sag, Tamtsag Basin, Mongolia[J]. Journal of Palaeogeography, 2014, 16(6): 897-906.
    [34] Xue X Y, Zhang Y F, Jiang Z X, et al. Wave and storm signals in a lacustrine succession and their relationship to paleowind direction (Tanan Depression, Mongolia, Early Cretaceous)[J]. Sedimentary Geology, 2021, 419: 105911.
    [35] Leeder M R, Seger M J, Stark C P. Sedimentation and tectonic geomorphology adjacent to major active and inactive normal faults, southern Greece[J]. Journal of the Geological Society, 1991, 148(2): 331-343.
    [36] Ravnås R, Steel R J. Contrasting styles of Late Jurassic syn-rift turbidite sedimentation: A comparative study of the Magnus and Oseberg areas, northern North Sea[J]. Marine and Petroleum Geology, 1997, 14(4): 417-449.
    [37] Schlische R W, Anders M H. Stratigraphic effects and tectonic implications of the growth of normal faults and extensional basins[M]//Beratan K K. Reconstructing the history of basin and range extension using sedimentology and stratigraphy. Boulder: Geological Society of America, 1996, 303: 183-203.
    [38] Blair T C, Bilodeau W L. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism[J]. Geology, 1988, 16(6): 517-520.
    [39] Noll C A, Hall M. Normal fault growth and its function on the control of sedimentation during basin formation: A case study from field exposures of the Upper Cambrian Owen Conglomerate, West Coast Range, western Tasmania, Australia[J]. AAPG Bulletin, 2006, 90(10): 1609-1630.
    [40] 葛家旺,朱筱敏,张向涛,等. 珠江口盆地陆丰凹陷文昌组构造—沉积演化模式[J]. 中国矿业大学学报,2018,47(2):308-322.

    Ge Jiawang, Zhu Xiaomin, Zhang Xiangtao, et al. Tectono-sedimentation model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin[J]. Journal of China University of Mining & Technology, 2018, 47(2): 308-322.
    [41] 朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870.

    Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870.
    [42] 谈明轩,朱筱敏,张自力,等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118.

    Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “source-to-sink” systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118.
    [43] 马立民,林承焰,范梦玮. 塔南凹陷铜钵庙组油气分布特征及主控因素[J]. 油气地质与采收率,2013,20(5):28-32.

    Ma Limin, Lin Chengyan, Fan Mengwei. Distribution features and major controlling factors of hydrocarbons in Tongbomiao Formation, Tanan Sag[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(5): 28-32.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(1)

Article Metrics

Article views(195) PDF downloads(83) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-05-30
  • Revised:  2022-09-02
  • Published:  2022-12-10

Tectono⁃sedimentary Interaction of Early Syn-rift Successions: A case study from the Tobomiao Formation, Tanan Depression, Tamtsag Basin, Mongolia

doi: 10.14027/j.issn.1000-0550.2022.109
Funds:

National Natural Science Foundation of China 41902124

National Natural Science Foundation of China 42072183

China Postdoctoral Science Foundation 2019M653477

Open Fund Project of Key Laboratory of Structure and Oil and Gas Resources of Ministry of Education 2019-15

Abstract: Rift-related basins are rich in petroleum reservoirs. The evolutionary stages of rift systems are diagnosed by their stratigraphic patterns and depositional assemblages, forming distinctive hydrocarbon accumulation systems. Recent discoveries of rich petroleum resources in initial rift-related stratigraphic successions have aroused much interest in the petroleum industry. Furthermore, multi-stage fault activation and stacking patterns associated with geomorphic drainages networks and depositional responses during the initial rifting phase have become an important scientific focus internationally. The Lower Cretaceous Tongbomiao Formation in the Tanan Depression in Mongolia records such initial rift-related stratigraphic successions; its dense well penetration and large-scale seismic data make an ideal study area. Seismic, core and logging data were used to reconstruct the tectono-sedimentary evolution and source-to-sink system during the initial rifting phase, indicating that the first stage of initial rifting formed isolated small-scale sags, which were filled for a short distance by small-scale alluvial fans / deltaic fans in response to the pre-rift ‘high mountain / deep valley’ geomorphology. The second stage was accompanied by fault interactions with rapidly increasing fault length; it then transitioned into a wide connected but shallow basin structure, with three low-gradient but large-scale (> 50 km2) relay ramp zones. The 28 km-long dip-slope allowed long-distance transport to form a fan-deltaic sand-rich system, without an axially-sourced or footwall-supplied depositional system. This case study and previous studies show that the pre-existing drainage catchment and the rift-related physiography jointly control the depositional pattern and source-to-sink system in the initial rifted basins. The basins in the first stage of initial rifting were either overfilled with sand-rich sediments (connected with pre-existing drainage) or sediment-starved (not connected with pre-existing drainage). Small-scale, short-distance transport of sediments was facilitated in the isolated basins dominated by young short-range drainage. However, the second stage of initial rifting is characterized by two distinctive infill patterns in response to the fault linking process. Early fault linkage contributed to rapid fault propagation to their full length (L), whereas the displacement (D) remained almost constant before significant basin formation. This type of basin benefitted from expanded drainage basins and long dispersal depositional systems of sand-rich sediments. By contrast, other basins are commonly observed with a constant D-L relationship that resulted from later fault linking; these basins are isolated and are characterized by local drainage catchments and relatively small-scale deltaic systems. This study provides a detailed example of reporting tectonic-sedimentary interaction and source-to-sink systems for early rift-related successions in rift basins, and has significant implications for good sandstone prediction and petroleum exploration in other rift basins.

GE JiaWang, ZHU XiaoMin, WANG Rui, TAN MingXuan, ZHAO XiaoMing. Tectono⁃sedimentary Interaction of Early Syn-rift Successions: A case study from the Tobomiao Formation, Tanan Depression, Tamtsag Basin, Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1582-1598. doi: 10.14027/j.issn.1000-0550.2022.109
Citation: GE JiaWang, ZHU XiaoMin, WANG Rui, TAN MingXuan, ZHAO XiaoMing. Tectono⁃sedimentary Interaction of Early Syn-rift Successions: A case study from the Tobomiao Formation, Tanan Depression, Tamtsag Basin, Mongolia[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1582-1598. doi: 10.14027/j.issn.1000-0550.2022.109
  • 裂陷盆地蕴含丰富的油气资源,是全球重要的含油气盆地。据统计,世界877个大型油气田(探明地质储量大于5亿桶油当量)中约31%的油气田位于裂陷盆地[13]。我国东部内陆及近海分布约230个各具特色的中、新生代陆相伸展裂陷盆地,是世界上最大的陆相含油气盆地聚集区,在这类盆地中均发现了不同规模的油气藏[4]。长期勘探实践表明,分布广泛、物性优良的砂体储层是规模油气聚集成藏的物质基础,亦是盆地构造—沉积及源—汇系统领域的热点研究对象。

    我国东部中—新生代裂陷盆地多数具有典型的“下断上坳”的二元结构特征,即早期裂陷构造层到晚期坳陷构造层[3,57]。一个完整裂陷旋回的盆地往往经历了构造活动由弱变强再减弱的过程;根据构造沉降史及沉积地层记录,可划分为初始裂陷期(幼年阶段)、裂陷高峰期(青壮年阶段)及裂陷萎缩(老年衰弱阶段)等三个阶段。初始裂陷期,低构造沉降条件下形成较低的可容纳空间,该时期常常表现为冲积或扇三角洲—局限湖盆沉积环境[3,67];裂陷高峰期,湖盆加速至最大沉降速率,湖阔且水深广泛发育厚层优质烃源岩层;最后裂陷盆地进入老年衰弱阶段,构造沉降弱,该时期盆地逐步填平补齐,最终演化进入坳陷热沉降阶段[68]

    同裂陷期生长断裂体系建造是控制盆地结构、地貌单元、层序地层构型的根本因素;其边界断裂生长、交互、联结和消亡过程动态塑造了盆地内部断块的沉降或者抬升、剥蚀状态,进而决定了剥蚀地貌高低及平缓程度和源区汇水面积[911];盆内次一级同生断裂在演化历程中则相互作用并形成多种组合样式,并通过断距上的变化调节盆内地貌形态并严格控制水系湖盆入口位置、沉积物分散路径方式及搬运距离,最终决定了砂体沉积类型、发育规模及储层质量[1213]。裂陷盆地从青壮年演变到老年阶段,断裂作用与可容纳空间、构造地貌、沉积组合及物堆砌样式关系已被广泛关注;在裂陷高峰期盆地受控于统一的边界断层,断块高幅度掀斜并伴随断层上升盘形成多个点状水系供给体系(近岸扇体或重力流砂体);在裂陷高峰晚期以及裂陷衰弱期湖盆底形变得平缓均一,利于轴向水系携带碎屑进入湖盆内部形成大型轴向源—汇系统[1415]

    比较而言,前人针对初始裂陷阶段源—汇系统及大型规模砂体成因研究则相对薄弱,其与油气勘探密切的构造动态演化响应机制尚不明晰。初始裂陷期断裂解析及沉积响应规律研究相对缺乏的原因主要有:1)遭受晚期构造叠加往往使得早期裂陷层系埋深大,地震资料信噪比低且分辨率低;2)深层的钻井造价高、数量少而野外露头较为缺乏[1619]。目前,初始裂陷盆地砂体分散方式多样性给优质储层预测及储层评价带来严峻挑战。因此,加强初始裂陷期断裂作用转换下的砂体分配机制研究,不仅对揭示裂陷盆地构造—沉积演化及源—汇系统耦合关系具有理论参考价值,而且对裂陷盆地油气勘探开发亦具有积极意义。因此笔者系统调研前人文献并总结湖盆初始裂陷阶段的构造—地层特性及一般规律;以蒙古塔南凹陷铜钵庙组为研究实例,综合利用地震、测井和岩心资料,明确其沉积体系类型及分布规律,建立入湖水系与断层活动演化历史之间的演化模式,以期对裂陷盆地早期阶段砂体成因预测提供科学依据。

  • 大量的实例研究表明,一次裂陷过程往往包括裂陷初始、裂陷高峰和裂陷萎缩三个阶段,每个构造阶段的构造沉降和沉积物供给存在特定的配置关系,并形成对应的地震层序样式和盆地充填类型(图1)。Prosser[20]认为,在初始裂陷阶段,物源供给速率往往大于构造沉降速率,形成补偿型盆地充填样式;裂陷高峰期构造沉降速率大且远远超过沉积物供给速率,则形成退积型准层序组,以欠补偿型盆地充填样式为特征。裂陷萎缩期构造沉降减弱,沉积物持续供给形成补偿型盆地(图1c),或者缺乏物源供给则形成欠补偿型盆地。

    Figure 1.  Tectonic evolutional stages of rift basins and diagnostic stratigraphic stacking pattern[20]

    控盆边界断裂的生长和连锁使得湖盆构造沉降速率发生陡然变化。例如典型的埃及Suez rift中新统初始裂陷期盆地沉降速率仅为8.4 m/Ma,而断裂发生连锁以后裂陷高峰时期盆地沉降速率可达137.5 m/Ma[21]。Cowie et al.[22]通过数值模拟认为,裂陷盆地初始阶段到高峰期沉降速率的陡然增大,归因于盆地的应力反馈机制(stress feedback mechanism)。即在盆地形成的初始阶段,众多小断裂分散了应力作用;伴随盆地演化进程,应力开始集中于特定的边界断裂上,因此部分小断裂发生交互并连锁形成控盆边界大断裂,而另一部分位于应力屏蔽区的小断裂不再活动,从此湖盆发生构造沉降速率的陡增并进入裂陷高峰期。值得说明的是,这一过程并不特别需要区域伸展应力方向的变化,恒定应力场下断裂连锁过程导致的应力分配差异是初始裂陷到裂陷高峰阶段转换的根本原因[2324]

  • 裂陷盆地边界断层系演化一般经历区段式断层的扩展—生长、联结—贯通和最后停止的历程;为突出其断裂演化特点,Gawthorpe et al.[23]将裂陷盆地演化划分为四个阶段:孤立断裂作用、相互作用、联结—贯通和断层衰亡阶段。其中孤立断裂作用阶段对应于Prosser[20]方案中的初始裂陷阶段,该时期盆地表现为低构造沉降速率特征。受基底属性包括基底先存构造及岩性物质非均质性等影响,区域应力拉伸作用下初始裂陷时期盆地结构可表现为分散孤立和宽缓碟状的盆地形态,对应不同的水系网络及沉积充填特征。

  • 盆内主要断裂系统的幕式活动及其活动性沿走向的迁移深刻影响了盆内构造古地貌特征,依据断层活动特征可分为孤立断层发育和断层相互作用—联结两个阶段。前裂陷层先存断裂/构造或复杂岩性基底条件下,区域性伸展作用下发育复杂裂陷结构。该阶段由于应力分散作用到数量众多的正断层上,这些断裂破裂露出地表形成相互独立的小洼陷群。还有部分“盲断”正断层隐伏于地表之下,往往形成生长单斜或挠曲褶皱[11]。因此,断层孤立发育阶段众多的分割小型盆地内可识别出①典型的加厚楔形地层样式,以及②向上盘挠曲向斜加厚撒开且向断层端部挠曲背斜变薄等两种地层结构样式[23]。此阶段,沉积物输送体系主要受控于前裂陷层的先存水系网络。裂陷初期,地层挠曲褶皱和断层作用联合形成“地形漏斗”可引发先存水系网络向盆地一侧偏转(图2a)。同时,盆地边缘发育一系列侧向短轴的陡坡带及缓坡带水系;流域面积与径流量及沉积物输出量关系密切,进而控制了盆内扇体分布面积[25]

    Figure 2.  Antecedent drainage dominated tectono⁃sedimentary relationship during initial stage of rift phase[23]

    随着裂陷作用进行,区域应力逐渐“选择性”作用在某些特定的断层之上,这部分断层区段侧向拓展并相互作用联结在一起,扩大形成更大范围的湖盆面积。与此同时,其他断裂不再活动。初始裂陷第二阶段,断裂下降盘陡崖和缓坡区面积扩大,形成一系列不同类型的陡坡和缓坡区侧向供给水系(图2b),构成多套大型源—汇沉积系统。相对于短而陡崖带汇水区,缓坡带汇水区长而缓,进而发育高流量、高沉积物供给沉积体系类型和配置关系。陡崖区形成高流量、低沉积物供给体系,发育小规模扇裙体系(图2b)。

  • 与上述典型分散孤立的湖盆结构不同,McLeod et al.[26]在研究晚侏罗世北海盆地北部Strathspey-Brent-Statfjord半地堑认为,该地区初始裂陷期构造—沉积表现出以下特点:1)盆地拉张形成宽缓的向斜盆地结构;2)地层朝盆地中心方向增厚;3)众多旋转和非旋转正断层的位移量相似且位移速率极低;4)断层延伸距离短(小于2~5 km)且无明显的优势断层走向(图3a)。形成这类宽缓向斜的初始湖盆结构主要与其较为均一的基底岩性或构造属性有关。应力分布均匀背景下,盆地具有断裂分布相对连续、极低构造速率、盆内开阔且极平缓地貌等特征[2728]。与典型的孤立分割的小洼陷群的盆地地貌迥然不同,此阶段该类型地形地貌起伏极低,缺乏典型的陡坡带及缓坡带水系发育条件。这一类的盆地往往具有非常低的沉降速率,近源水系则相对不发育;在低新增可容纳空间(A)/沉积物供给(S)比值条件下难以记录较深水沉积,以滨浅湖或者浅海冲积平原为主,易发育干旱盐湖沉积。

    Figure 3.  Rift⁃related paleomorphology and drainage dispersion patterns in the initial rift basin of a broadly saucer⁃shaped basin structure[26]

    裂陷高峰期,盆地内数量众多的小规模断裂开始停止活动,部分大断层发育并相互影响,构造沉降速率增大且差异性明显增强,上盘形成连片的沉积/沉降中心,盆地演变为类似的半地堑结构(图3b)[26]。尽管该时期盆地海平面升高,但沉积物供给速率高且超过盆地沉降速率。陡坡带断裂掀斜形成局部重力流沉积物,浅海/湖的高能环境下缺乏富有机质泥岩沉积。

  • 塔南凹陷位于蒙古海拉尔—塔木察格盆地的南端,凹陷面积约为3 510 km2,基底埋深最大达4 500 m。塔木察格盆地前裂陷层为上侏罗统中酸性火山喷出岩及碎屑岩,火山基底总体表现为高低起伏的地势[29]。在早白垩世区域性北西—北北西向拉张应力体制下,海拉尔—塔木察格盆地伸展盆地群形成。在塔南凹陷内发育了一系列北东和北北东向控盆控洼断裂系统,这一类断裂带具有发育早、延伸长和长期活动等特征,常常断穿基底并控制凹陷或凸起展布。研究区内有11条主要断层,自南向北命名为塔南凹陷1号至11号断层。塔南凹陷属于并联式复合半地堑结构,并具有继承性叠加特征[3031]。塔南凹陷由三个半地堑次凹组成(图4a),次凹本身也是复式断陷,自西向东可分为东部鼻状隆起带、东部次凹、中部断裂潜山带、中部次凹、西部断裂潜山带、西部次凹和西部斜坡带等次级构造单元[32]

    Figure 4.  (a) Tectonic subdivision, fault distribution and (b) tectono⁃stratigraphical context in Tanan Depression, Tamtsag Basin, Mongolia

    塔南凹陷裂陷期下白垩统自下而上发育铜钵庙组(裂陷初始期)、南屯组(裂陷高峰期)和大拐河组(裂陷萎缩期)。前人通过古生物、岩矿、井—震资料可将下白垩统划分为四套三级层序(自下而上命名为SQ1~SQ4[6,3132])(图4b)。其下白垩统铜钵庙组顶底和内部可识别T5、T3和T31等三个不整合界面,其中T5和T3是广泛的削截和上超面,为区域性的不整合面(图5);T5和T3界面分别代表了铜钵庙组顶界面和底界面。在铜钵庙组内部识别局部削截面T31,该界面上下的地震相差异明显[18,33]。铜钵庙组记录了塔南凹陷裂陷层系第一套沉积信息,该时期气候较干旱—半干旱,古生物组合为Bayanhuasporites sp.⁃Hailarspora sp.⁃Concentrisporites sp.Ass.(145~139.4 Ma)[6]。铜钵庙组下段(SQ1,145~143 Ma)发育一套杂色富砾含砂的混杂岩性组合,常见凝灰岩和角砾岩;铜钵庙组上段(SQ2,143~139.4 Ma)主要为灰白色砂砾岩、粗砂—中细砂岩夹薄层粉砂岩[3233]。研究区三维地震工区约1 500 km2,地震品质较好,丰富的钻井和取心资料为探索初始裂陷阶段的构造—沉积响应模式奠定了良好基础。

    Figure 5.  (a) Seismic reflection and (b) stratigraphic sequence framework of Tanan Depression (location of seismic line AA’ and BB’ shown in Fig.4a)

  • 基于大量岩心观察描述结果,结合测井曲线、地震反射特征及前人研究成果[6,18,3133],认为塔南凹陷下白垩统铜钵庙组主要发育冲积扇、扇三角洲和浅湖等三种沉积相类型。

  • 冲积扇主要表现为砂、砾、泥混杂堆积的特征,主要在塔南凹陷西北部地区SQ1发育;由于北部隆起带的发育,在6号断层和7号断层的下降盘发育冲积扇沉积。沉积物主要为大套粗碎屑的凝灰质砾岩、角砾岩和凝灰岩等(图6),砂砾岩层厚度可达百米。测井曲线形态显示为高幅箱形特征,由于凝灰岩频繁互层,GR曲线显示高值(>100 API)。目前,研究区的少部分钻井资料显示红色泥岩和砂砾混杂特征,以及杂乱的地震相特征[18]

    Figure 6.  Depositional facies and lithology for wells Y19⁃41, T19⁃30 and T19⁃46⁃1 in Tanan Depression

  • 铜钵庙组沉积时期,凹陷周缘的冲积扇进入湖泊形成扇三角洲沉积体系,主体为扇三角洲平原和扇三角洲前缘(图7,8)。

    Figure 7.  Depositional characteristics of fan⁃deltaic system in Tongbomiao Formation, Tanan Depression

    Figure 8.  Seismic reflections and depositional signatures of the fan⁃deltaic system in Tanan Depression

    (1) 扇三角洲平原

    该部分为扇三角洲的陆上部分,其单层厚度一般大于2 m,包括水上分流河道微相和分流河道间微相(图7,8)。

    水上分流河道:岩性主要为颗粒支撑砾岩和砂砾岩,底部见侵蚀冲刷界面,砾石呈叠瓦状排列。岩石分选差,呈次棱角—次圆状,成分复杂。其内发育大型交错层理、块状层理、递变层理,单层厚度可达5~10 m。自然伽马和电阻率曲线呈箱形或钟形。分流河道内可发育碎屑流,岩性主要为杂色砾岩和灰色凝灰质含砾砂岩,发育块状层理和正递变层理,砾石颜色多样、成分复杂,分选差,磨圆差。

    分流河道间:岩性主要由灰黑色碳质泥岩与灰色粉砂岩组成,与河道砂体呈突变接触。

    (2) 扇三角洲前缘

    扇三角洲前缘亚相岩性主要为灰色、深灰色的砂砾岩、砂岩和泥岩。包括水下分流河道、水下分流河道间、河口坝和席状砂微相(图8,9)。

    Figure 9.  Active fault arrays and deposition of sequence SQ2, Tanan Depression

    水下分流河道:岩性主要为凝灰质砂岩和砾岩,垂向上呈正韵律(2~4 m),底部常见冲刷界面,发育块状层理、槽状交错层理和平行层理等。沉积物分选中等,次棱角—次圆状,颗粒支撑。测井组合以中高幅箱形或齿化箱形、钟形为主。其与水上分流河道的差别主要体现粒度偏细、分选较好,且水下分流河道底部滞留沉积物中泥砾多为灰色,水下分流河道顶部的细粒沉积多为浅灰色泥岩,而水上分流河道多夹薄层碳质泥岩。

    河口坝:岩性主要由灰色凝灰质中粗砂岩和细砂岩组成,常见平行层理、脉状层理。砂岩分选较好,次棱角—次圆状,颗粒支撑。呈下细上粗的反韵律特征(1~3 m)。自然伽马和电阻率曲线以中幅漏斗形或齿化漏斗形—箱形组合为主,表现为下部多齿化、上部齿化或光滑、顶部多为突变的反粒序结构。

    席状砂:岩性主要为灰色细砂岩、粉砂岩,见虫孔构造。分选好,次棱角—次圆状。自然伽马曲线与电阻率曲线呈中低幅齿化指形,厚度一般介于0.5~1 m。

    水下分流河道间:由浅灰色、灰色泥岩、粉砂岩组成,夹薄层的细砂岩,含植物茎杆化石和植物炭屑,发育块状、水平及波状层理。

  • 滨浅湖是指浪基面以上湖相沉积的部分,岩性主要为细粉砂岩夹灰色泥岩,发育滩坝、湖泥等沉积微相[18],但分布较为局限;测井曲线上呈反韵律及低幅度锯齿状,剖面上单层厚度较薄,一般小于0.5 m。

  • 在岩心相、测井相和地震相的研究基础上,进一步明确铜钵庙组沉积体系展布规律。

    (1) 铜钵庙组下段(SQ1)

    SQ1时期每个次级洼陷为一个独立的沉积单元。东部次凹和中部次凹主要发育扇三角洲和滨浅湖沉积体系。该时期在T19-53-1井以北地区SQ1均被剥蚀,该井以南发育扇三角洲沉积,地震剖面上见典型前积反射特征。中部和西部次凹连为一体,北部、西部和西南部为主要物源,受断层的控制分别发育规模不等的冲积扇—扇三角洲体系,这一类三角洲规模均不大,向前延伸距离一般小于6 km(图8)。在西部次凹北部还发育冲积扇和洪泛平原沉积体系[18,33]

    (2) 铜钵庙组上段(SQ2)

    SQ2时期湖泊水域面积向北扩展,湖盆逐渐扩大并连为一体。该时期发育广泛的扇三角洲砂体,浅湖沉积物局限。平面上发育三套大面积扇三角洲沉积体系:第一套扇三角洲体系位于1号和2号断层叠覆区,向西南方向推进距离约20 km;第二套位于2号和3号断层叠覆区,向西南方向延伸约15 km。第三套位于4号和7号断裂叠覆区,重矿物组合主要为锆石—磁黄铁矿—白磷矿,西南方向砂地比逐渐降低,综合前积反射方向指示三角洲向西南方向推进(距离可达18 km;图8,9);该处持续发育扇三角洲体系,扇三角洲平原分布面积广泛,地震同相轴上表现为弱振幅低连续的反射特征,T19-342-t200取心井扇三角平原特征表现为大套砾岩发育的辫状水道沉积。西部次凹发育多套扇三角洲体系,砂体叠合连片且分布面积大(图9)。东部次凹受边界断层控制在陡坡带发育呈“裙状”的扇三角洲沉积(向湖推进距离小于8 km);6号和7号断层下降盘发育扇三角洲沉积,说明此处沉积环境由陆上向水下的变化。另外,在中部次凹和东部次凹的缓坡带发育砂席(滩坝)沉积,主要位于扇三角洲的侧缘或局部隆起区,呈席状、土豆状分布[34]

  • 将前述沉积体系分布规律研究结合断层演化及地层分布特征分析,对铜钵庙组构造—沉积发育模式归纳总结如下。

  • 塔南凹陷断层幕式活动第一阶段(SQ1沉积期),北东东向控洼断层开始形成使得塔南凹陷被分割成几个独立的洼陷。1号断层的南部和2号断层中段活动速率可以达到222 m/Ma,东部次凹基底古落差超过700 m。控制东部次凹带的3号断层活动速率次之(约148 m/Ma),中部4号断裂活动速率约为200 m/Ma,东西两端断层活动速率较低。该时期,6号、7号、8号和9号断层共同控制了西部次凹带的形成;其中,6号断层和7号断层活动速率相对较小,多在20 m/Ma以下,8号断层活动速率相对较大,该断层中南部的活动速率可达72 m/Ma。其他次一级断层活动速率多数小于20 m/Ma(图10)。

    Figure 10.  Fault displacement and growth history during Tongbomiao Formation deposition, Tanan Depression

    该时期地层厚度中心比较分散且面积局限,SQ1最大厚度约为400 m。3号断层控制了中部次凹的形成,从南至北差异活动性明显,共形成四个次一级的沉降中心。其中,4号断层中心位置最厚(T19-52井附近,残留地层厚度可达300 m,而最南端地层厚度则小于200 m)(图11a)。总体而言,裂陷活动的第一个阶段沉降中心主要位于东部次凹的南洼和北洼以及中部次凹的中部。

    Figure 11.  Stratigraphic thickness of sequences in Tanan Depression

    塔南凹陷初始裂陷期在伸展体制下发育新生的北东向系列洼陷群,与基底断裂及火山“高山深谷”[29, 33]的先存地貌一起构成该时期独特的源—汇系统:孤立的小洼陷群之间分割不连通,洼陷边缘斜坡长度均小于10~15 km;盆地边缘短程水系向四周的盆地低势区供源,无明显优势的水流方向,盆地边缘发育面积局限但数量众多的冲积扇—扇三角洲群。总体来讲此阶段断层刚开始活动,先存的基底构造对物源和沉积格局影响十分关键,与新生湖盆结构一起,发育小规模物源(盆内和盆外)、搬运距离短的粗粒沉积体系(图12a)。

    Figure 12.  Conceptual model of (a) fault growth; and (b) sediment dispersal pattern in the early rift basins

  • 塔南凹陷裂陷幕式活动的第二阶段(SQ2沉积期),断层活动强度几乎不变但长度明显扩展,盆地的范围快速扩大且三个次级洼陷连为一体,塔南凹陷的盆地形态基本定型。整体上断层活动具有继承性(图10),1号断层的南部和2号断层中部断层活动速率较大,其中前者活动速率可达200 m/Ma,后者的最大活动速率可达230.7 m/Ma。该时期,3号断层活动速率略有减弱,其中部活动速率最大为115 m/Ma,南部和北部活动速率减少到30 m/Ma以下。6号、7号、8号和9号断层的活动也具有继承性,其活动速率较小。其中,6号断层和7号断层活动速率最大达38.4 m/Ma,9号断层整体活动速率略有变大,其中南部活动速率可达96.2 m/Ma。5号断层活动速率较大,可达200 m/Ma。

    相比SQ1,SQ2时期地层厚度中心位置变化不大,但地层展布面积扩大且向北扩展,地层厚度达500 m。其中4号断层上盘发育统一的厚度中心,地层最厚约400 m(图11b)。初始裂陷第二阶段,伴随控洼断层活动性和长度增大进而发生断裂软联结(图11b):1)塔南凹陷连通变为较为宽而浅的盆地结构;2)1号断层北端和2号断层的南端,2号断层北段和3号断层南段,4号断层和7号断层交互叠覆,叠覆距离约10 km;3)形成低坡降的构造转换带(图10),地貌低地势区捕获水系形成三套大型构造转换带三角洲体系,转换带叠覆区汇水面积均大于50 km2;4)西北侧的缓坡地貌长度增至28 km,西部缓坡带物源供给发育大规模的扇三角洲体系(图9)。据汇水面积(A)与斜坡长度(L)之间的关系[35]L=1.4A-0.6),认为该时期低坡降的构造转换带和快速得到建设的缓坡带有能力捕获大型水系网络。远离剥蚀物源区的湖盆区,主要发育滨浅湖沉积,盆内相对局限高地貌区由于波浪作用可发育一定规模的滩坝砂[34]。此外,1、2和3号主干断层下降盘发育断崖短程水系,发育小规模的扇三角洲沉积(图9)。该时期源—汇系统特征:断裂快速拓展交互联结,形成大型低地形坡度的构造转换带,同时缓坡带长度增加;发育大面积展布的转换带及缓坡带水系供给型扇三角洲沉积体系(图12b)。

  • 裂陷盆地不同构造演化阶段,断裂位移、形态及其相互作用关系的转换,主导盆地形态和展布规模发生变化,必然会导致入盆水系网络、沉积物类型及砂体分散方式的转换或迁移。研究表明,在一个完整的裂陷旋回周期演化过程中,响应于断层初始活动、断层交互和联结过程,初始裂陷阶段以短轴水系为主,而在裂陷萎缩期长轴供给体系逐渐占据主导。

    受前裂陷层基底构造性质影响,初始裂陷第一阶段新生湖盆刚刚打开,其结构形态可表现为宽缓碟状或典型半地堑结构,其充填样式与先存水系密切相关[23]。例如在北海盆地晚侏罗世初始裂陷期,先存水系携带充沛的碎屑使得盆地过充填。相反地,在塔木察格盆地塔南凹陷早白垩世初始裂陷期缺失先存水系网络,孤立的窄湖盆(宽度小于10~15 km)缺乏规模化的新生水系网络(图12a)。由此可见,初始裂陷盆地充填样式受控于先存水系,与盆地初始地貌建设亦有紧密联系,这种联控机制加剧了这套地层沉积体系的复杂性和多样性[19]。综合调研以及研究区分析结果,初始裂陷的第一阶段源—汇系统大致可分为以下3类(表1)。

    初始裂陷期源—汇体系盆地结构断裂活动水系特征可能的沉积响应
    第一阶段类型1分散、小型半地堑或地堑群数量多,规模小,走向相似,断裂位移量小先存成熟水系+年轻短程水系河流—三角洲细粒沉积物+近源扇体粗粒沉积物;湖相沉积物局限
    类型2分散、小型半地堑或地堑群数量多,规模小,断裂位移量小年轻短程水系近源扇体;湖相沉积物局限或者中等
    类型3宽缓碟状湖盆群数量众多密集,走向多变化,规模小,断裂位移量特别低先存成熟水系河流—三角洲体系或者风成/干旱盐湖沉积
    第二阶段类型4连通的大型复合半地堑断裂早期联结:断裂位移量相对不变或者略增大,长度迅速增大大型转换带水系及缓坡带水系主导+先存水系(若存在)大面积粗粒三角洲,局限湖相沉积物;或河流—三角洲体系(与先存水系有关)
    类型5半连通或者分割型复合半地堑断裂晚期联结:断裂位移量相对大,长度不变或者略有增大短程侧向(陡崖及缓坡带)水系主导+先存水系(若存在)近源扇体及湖相沉积或河流—三角洲体系(与先存水系有关)

    类型1:先存成熟水系主导的孤立分割型湖盆群,即在裂陷盆地形成前期盆地地貌已经夷平,大型长源性河流水系已然建成,例如晚侏罗世北海盆地北部Lofoten地区[23]以及希腊Corinth裂谷盆地[13]。该时期,近源新生水系与长源先存成熟水系同时发育。盆内同时记录河流—三角洲砂体以及近源扇体沉积物因而满盆富砂[36]

    类型2:先存成熟水系主导的宽缓盆地,该盆地往往缺乏年轻的近源水系,例如晚侏罗世北海盆地北部Strathspey-Brent-Statfjord地区[26],该盆地以长源先存水系供给河流或三角洲砂体为主,该盆地可容纳空间低,物源供给(A)远远大于新增可容纳空间(S),湖盆亦具有满盆富砂过充填特征。

    类型3:发育年轻的短程近源水系主导的小湖盆群,属于陆内裂陷且具有明显的内流性质;该盆地往往缺乏先存水系网络,新生短程水系提供近源沉积碎屑,往往发育小规模的冲积扇、扇三角洲碎屑物和火山岩碎屑物,其沉积物分选磨圆差,成分异常复杂,例如蒙古塔南凹陷下铜钵庙组(图12a)。

    初始裂陷的第二阶段,盆地内应力开始集中作用使得同生断裂发生相互作用并发生联结(图11b),其联结方式对盆地结构及沉积物分散体制影响重大[22,24],可形成两类迥然不同的源—汇系统(表1)。

    类型4:若断裂体系为早期联结型,使得长度快速增加而位移量缓慢增加(或几乎保持不变),即断层联结早于位移变化[22],那么该盆地往往具有连通的、宽浅的地堑或者半地堑结构;断裂的交互作用不仅形成大型转换带富砂体系,还形成快速建设的缓坡带供给沉积体系(图13b)。该类源—汇系统下发育规模优质油气储集体的概率大,可作为勘探地质学家重要关注对象。

    类型5:若断裂体系为晚期联结型,即孤立断层侧向呈放射性拓展并发生交互联结,边界断层位移量和长度同时协调增大[22],最后形成的盆地结构分割型较强[37],难以形成大型汇水体系或水系难以通畅输送至盆地中心区域,则常常以短程断崖或小型转换带水系为特征,盆地整体具有“近源”快速充填特征。

    在地表环境,相比陡坡或者陡崖带,低角度或者平缓的地貌背景水系的侵蚀供源能力增强,更容易捕获大型的水系及丰富的碎屑风化产物[38]。断层早期联结并迅速伸展改变盆地边缘及内部构造地貌,这些地貌特征有利于捕获大型的水系或作为砂体有效传送通道。本实例研究表明,断裂早期联结型盆地以大型汇水体系及多套大面积展布的粗粒三角洲砂体,盆地整体具有“富砂”特征(图12b)。这些富砂的沉积特征可能是边界断层快速伸展但位移量缓慢增大的特性,类似的沉积特征还在其他裂陷盆地可见[3940]

    根据实例分析及调研成果,笔者分阶段建立了可供参考的初始裂陷构造—沉积构架,以及基于是否与先存水系沟通总结了五种源—汇系统类型。诚然,源—汇系统发育控制因素众多,例如气候变化、物源母岩类型及组合差异[41],使得相同湖盆结构的沉积充填样式出现明显差异。温暖潮湿气候背景下裂陷盆地初始阶段主要发育河流—滨浅湖沉积体系建造(图2a),而在干早和半干早气候下则易记录盐湖或风成沉积物。盆地边缘新生水系流域面积受构造斜坡长度所控制,亦与汇水区基岩的岩性和抗风化能力有关[23]。例如,碳酸盐岩母岩主要供给形成溶解质颗粒,而花岗质母岩风化进入水体形成固态颗粒质碎屑[42]。初始裂陷阶段,多断裂体系活动形成各具特色的裂陷盆地结构导致水系类型及沉积响应的多样性。

  • 经过几十年的勘探开发,许多裂陷盆地已经进入勘探后期或开发阶段,深层地层—岩性油气藏已经成为该类盆地商业勘探的重要领域。塔南凹陷初始裂陷层油气勘探实例显示,深层铜钵庙组下段发育短程源—汇系统形成富砾含凝灰岩的冲积扇—扇三角洲沉积物,该套沉积物分选磨圆极差,储层物性条件差,钻井揭示均为干层(图6)。相比而言,铜钵庙组上段发现多套断块或地层—岩性油气藏,是塔南凹陷主力产油层。该时期,由于断裂相互作用联结形成宽缓连通复合半地堑结构及缓坡带快速拓展形成中—大型水系网络,在整体沉降弱的构造背景下发育推进距离远的转换带及缓坡带供源型扇三角洲砂体储层,为油气规模成藏提供良好物质基础。铜钵庙组之上为南屯组裂陷高峰期厚层深湖泥岩,因此铜钵庙组上段优质扇三角洲前缘储层侧向接触或上覆厚层烃源岩,形成“旁生侧储”和“上生下储”两类典型生储盖组合。

    勘探开发实践已经证实,塔南凹陷在初始裂陷第二阶段发育厚层扇三角洲前缘砂体,该段具有满盆含油、高部位富集及断裂控藏特点,其探明石油地质储量占整个凹陷储量的87%[43]。初始裂陷第二阶段发育的大型转换带及缓坡带三角洲砂体具有毗邻优质烃源岩、砂体规模大、储层物性好及盖层封闭性强等有利成藏条件,特别是后期遭受断裂活化或者断块掀斜地区,极易沟通上覆或侧向沟通充足的油源并为油气聚集提供良好场所,可作为裂陷盆地深层油气勘探优先关注目标。

  • (1) 盆内同沉积断层活动演化及其横向差异性决定盆地的结构与地貌特征,深刻影响新生水系网络建造及沉积充填演化过程。实例解析结合调研结果表明,先存水系和盆地地貌结构联合控制初始裂陷盆地的充填样式及源—汇系统,初始裂陷期构造—沉积协同机制及源—汇动态演化过程是当前国际地学盆地分析的难点议题。

    (2) 塔南凹陷下白垩统铜钵庙组主要发育冲积扇、扇三角洲和浅湖三种沉积相类型。初始裂陷第一阶段以新生的分割型小洼陷群为特征,与前裂陷层“高山深谷”地貌背景联控下形成年轻的短程水系并发育数量众多的小规模冲积扇—扇三角洲沉积体系。

    (3) 塔南凹陷初始裂陷第二阶段伴随控洼断层长度迅速增大发生软联结,形成连通及宽而浅的盆地结构,发育三套低坡降构造转换带以及西北侧缓坡水系供给型大规模扇三角洲富砂体系,轴向物源体系及陡坡带水系延伸距离相对短。

    (4) 初始裂陷第一阶段盆地广泛富砂(沟通先存水系)或者饥饿沉积(不沟通先存水系),年轻短程水系主导的孤立小湖盆群则主要发育小规模近源碎屑沉积物。初始裂陷第二阶段发育以短程断崖水系(晚期断裂联结型盆地)或大型构造转换带及缓坡带三角洲砂体(早期断裂联结型盆地)。断裂早期联结型盆地发育大型富砂型源—汇系统,是石油工业界关注的重点目标。

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return