Advanced Search
Volume 43 Issue 5
Oct.  2025
Turn off MathJax
Article Contents

DONG JunLing, WANG Qian, LI Zhe, OUYANG Hui, SU Tao. Mid-to-Late Holocene Climate Changes in the Chengdu Plain Based on Fluvial-Lacustrine Sedimentary Records[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1780-1795. doi: 10.14027/j.issn.1000-0550.2025.045
Citation: DONG JunLing, WANG Qian, LI Zhe, OUYANG Hui, SU Tao. Mid-to-Late Holocene Climate Changes in the Chengdu Plain Based on Fluvial-Lacustrine Sedimentary Records[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1780-1795. doi: 10.14027/j.issn.1000-0550.2025.045

Mid-to-Late Holocene Climate Changes in the Chengdu Plain Based on Fluvial-Lacustrine Sedimentary Records

doi: 10.14027/j.issn.1000-0550.2025.045
  • Received Date: 2025-06-03
  • Accepted Date: 2025-09-22
  • Rev Recd Date: 2025-08-19
  • Available Online: 2025-09-22
  • Publish Date: 2025-10-15
  • Objective The Chengdu Plain is one of the major birthplaces of Chinese civilization. Reconstructing the environmental evolution of this region during the Mid-to-Late Holocene is crucial to understand the environmental context of prehistoric cultural development in the upper reaches of the Yangtze River and to explore the relationship between global climate change and the sustainable development of human societies. The phased characteristics of Mid-to-Late Holocene climate evolution in the Chengdu Plain and its potential response to the “4.2 ka” climatic event remains controversial. Methods This study established a chronological framework based on the AMS 14C dating of core RS-1. Grain size end-member modeling, combined with magnetic susceptibility and colorimetric parameters, was employed to reconstruct the sedimentary environmental evolution of the Chengdu Plain during the Mid-to-Late Holocene. Results Five end-member components were extracted from the grain-size data, each reflecting sedimentary characteristics under different hydrodynamic conditions. EM1 represents stable sedimentation formed by distal fluvial suspended load under weak hydrodynamic conditions. EM2 and EM3 correspond to components deposited under stronger hydrodynamic forces, with EM3 reflecting higher transport energy. EM4 and EM5 indicate coarse-grained traction deposits associated with flood events. Conclusions The environmental evolution of the Chengdu Plain during the Mid-to-Late Holocene can be divided into four stages: (1) 4.7-4.4 cal ka B.P., characterized by a humid climate with pronounced wet-dry fluctuations; (2) 4.4-4.2 cal ka B.P., marked by a transition to slightly cooler and drier conditions, although remaining humid, overall; (3) 4.2-3.7 cal ka B.P., a period of pronounced climatic instability with frequent flood events; and (4) post-3.7 cal ka B.P., during which the climate gradually became more arid. This “dry-humid-dry” climatic pattern indicates a significant regional response to the “4.2 ka event,” with hydroclimatic changes in the area beginning at approximately 4.4 cal ka B.P. and persisting until approximately 3.7 cal ka B.P..
  • [1] Zeng M X, Ma C M, Zhu C, et al. Influence of climate change on the evolution of ancient culture from 4500 to 3700 cal. yr BP in the Chengdu Plain, upper reaches of the Yangtze River, China[J]. Catena, 2016, 147: 742-754.
    [2] Zeng M X, Zhu C, Song Y G, et al. Significance of fluvial landform evolution and river reorganization in settlement development over the past 50 ka: A case study of Baodun site on Chengdu Plain, SW China[J]. Geomorphology, 2022, 409: 108267.
    [3] Wu J H, Zeng M Z, Zhu C, et al. Human activities flexibility under volatile environment conditions around 4000 a BP: Insights from the Jinsha site in the Chengdu Plain, SW China[J]. Quaternary Science Reviews, 2024, 326: 108501.
    [4] Wu J H, Zeng M X, Liu Y F, et al. Drivers of prehistoric cultural evolution in the Chengdu Plain: Fire events and environmental changes during the Middle and Late Holocene[J]. Ecological Indicators, 2024, 169: 112833.
    [5] Sheng E G, Liu B, Peng H J, et al. Hydroclimatic variations in southwestern China during the Middle to Late Holocene transition and effects on the evolution of Late Neolithic cultures in the Upper Yangtze River Valley[J]. Quaternary Science Reviews, 2025, 352: 109225.
    [6] 黄明,马春梅,朱诚. 成都平原中—晚全新世环境考古研究进展[J]. 古地理学报,2017,19(6):1087-1098.

    Huang Ming, Ma Chunmei, Zhu Cheng. Progress of the Mid-Late Holocene environmental archaeology in Chengdu Plain[J]. Journal of Palaeogeography, 2017, 19(6): 1087-1098.
    [7] 徐佳佳. 成都平原中晚全新世典型遗址环境考古研究[D]. 南京:南京大学,2017.

    Xu Jiajia. Mid-to Late Holocene environmental archaeology in Chengdu Plain, China[D]. Nanjing: Nanjing University, 2017.
    [8] 付顺,李奋生,颜照坤,等. 成都平原全新世气候变迁与古蜀文化演进相关性研究[J]. 四川师范大学学报(自然科学版),2011,34(3):417-421.

    Fu Shun, Li Fensheng, Yan Zhaokun, et al. The study of relativity on Chengdu Plain Holocene climatic change and the evolution of ancient Shu Culture[J]. Journal of Sichuan Normal University (Natural Science), 2011, 34(3): 417-421.
    [9] 黄明,马春梅,何锟宇,等. 成都平原宝墩遗址中晚全新世孢粉记录的环境变迁及人类活动[J]. 第四纪研究,2022,42(4):1078-1093.

    Huang Ming, Ma Chunmei, He Kunyu, et al. Environmental changes and human activities recorded by the pollen in the Middle-Late Holocene at Baodun site, Chengdu Plain[J]. Quaternary Sciences, 2022, 42(4): 1078-1093.
    [10] Huang M, Zhu C, Ma C M, et al. Paleoenvironmental context of the evolution of the Baodun Culture at Chengdu Plain, Sichuan province, China[J]. The Holocene, 2019, 29(11): 1731-1742.
    [11] 罗丽萍,朱利东,向芳,等. 成都平原4 000 a BP以来的孢粉记录与环境变化[J]. 古生物学报,2008,47(2):195-202.

    Luo Liping, Zhu Lidong, Xiang Fang, et al. Spore-pollen assemblage and environmental changes of the Chengdu Plain during the Late Holocene[J]. Acta Palaeontologica Sinica, 2008, 47(2): 195-202.
    [12] Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3): 243-255.
    [13] Giosan L, Clift P D, Macklin M G, et al. Fluvial landscapes of the Harappan civilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): E1688-E1694.
    [14] Walker M, Head M H, Berklehammer M, et al. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries[J]. Episodes, 2018, 41(4): 213-223.
    [15] Sun Q L, Liu Y, Wünnemann B, et al. Climate as a factor for Neolithic cultural collapses approximately 4000 years BP in China[J]. Earth-Science Reviews, 2019, 197: 102915.
    [16] Liu F G, Feng Z D. A dramatic climatic transition at ∼4 000 cal. yr B P and its cultural responses in Chinese cultural domains[J]. The Holocene, 2012, 22(10): 1181-1197.
    [17] Nan Q, Chen S Q, Liu X K, et al. The 4.2 ka event in the Northern Hemisphere: Spatial heterogeneity and driving mechanisms of hydroclimatic change[J]. Earth-Science Reviews, 2025, 265: 105128.
    [18] Tan L C, Cai Y J, Cheng H, et al. Centennial-to decadal-scale monsoon precipitation variations in the Upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482: 580-590.
    [19] Tan L C, Li Y Z, Wang X Q, et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273.
    [20] Huang C C, Pang J L, Zha X, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China[J]. Quaternary Science Reviews, 2011, 30(3/4): 460-468.
    [21] Guo L X, Hsieh M L, Gorodetskaya O, et al. Jianghan Plain, the locale of China’s Great Flood four thousand years ago[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2023, 34(1): 14.
    [22] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Pe-trology, 1957, 27(1): 3-26.
    [23] 鹿化煜,安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学:地球科学,1998,28(3):278-283.

    Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science China Earth Sciences, 1998, 28(3): 278-283.
    [24] 陈敬安,万国江,张峰,等. 不同时间尺度下的湖泊沉积物环境记录:以沉积物粒度为例[J]. 中国科学:地球科学,2003,33(6):563-568.

    Chen Jing’an, Wan Guojiang, Zhang Feng, et al. Environmental records of lacustrine sediments in different time scales: Sediment grain size as an example[J]. Science China Earth Sciences, 2003, 33(6): 563-568.
    [25] 孙东怀,安芷生,苏瑞侠,等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展,2001,11(3):269-276.

    Sun Donghuai, An Zhisheng, Su Ruixia, et al. Mathematicalapproach to sedimentary component partitioning of polymodalsediments and its applications[J]. Progress in Natural Science, 2001, 11(3): 269-276.
    [26] Dietze M, Schulte P, Dietze E. Application of end-member modelling to grain-size data: Constraints and limitations[J]. Sedimentology, 2022, 69(2): 845-863.
    [27] 孙有斌,高抒,李军. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报,2003,48(1):83-86.

    Sun Youbin, Gao Shu, Li Jun. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous components in marginal sea setting[J]. Chinese Science Bulletin, 2003, 48(1): 83-86.
    [28] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180.
    [29] 程良清,宋友桂,李越,等. 粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用[J]. 沉积学报,2018,36(6):1148-1156.

    Cheng Liangqing, Song Yougui, Li Yue, et al. Preliminary application of grain size end member model for dust source tracing of Xinjiang Loess and paleoclimate reconstruction[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1148-1156.
    [30] 朱海,张玉芬,李长安. 端元分析在长江武汉段古洪水识别中的应用[J]. 沉积学报,2020,38(2):297-305.

    Zhu Hai, Zhang Yufen, Li Chang’an. The application of end-member analysis in identification of paleo-floods in Wuhan section of the Yangtze River[J]. Acta Sedimentologica Sinica, 2020, 38(2): 297-305.
    [31] 梁斌,王全伟,朱兵,等. 川西地区成都粘土的光释光年代学[J]. 第四纪研究,2013,33(4):823-828.

    Liang Bin, Wang Quanwei, Zhu Bing, et al. Optically stimulated luminescence dating of the Chengdu clay in the west Sichuan Basin[J]. Quaternary Sciences, 2013, 33(4): 823-828.
    [32] 张露. 成都盆地第四纪古环境与古气候研究[D]. 成都:成都理工大学,2018.

    Zhang Lu. Quaternary paleoenvironment and paleoclimate in Chengdu Basin[D]. Chengdu: Chengdu University of Technology, 2018.
    [33] 孙吉. 成都平原更新世:全新世中期的地理环境与文明进入和选择[J]. 成都大学学报(社会科学版),2006(1):23-27.

    Sun Ji. Geographic environment and civilization entry and selection in Pleistocene-Mid-Holocene of Chengdu Plain[J]. Journal of Chengdu University (Social Sciences), 2006(1): 23-27.
    [34] 付小方,侯立玮,梁斌,等. 成都平原第四纪断裂及其活动性[M]. 北京:科学出版社,2013:10-15.

    Fu Xiaofang, Hou Liwei, Liang Bin, et al. Quaternary faults and their activity in Chengdu Plain[M]. Beijing: Science Press, 2013: 10-15.
    [35] 吕颖,张健平,唐淼,等. 植硅体分析揭示成都平原先秦农业发展及其环境背景分析:以宝墩和三星村遗址为例[J]. 第四纪研究,2021,41(5):1475-1488.

    Ying Lü, Zhang Jianping, Tang Miao, et al. Phytolith analysis reveals the agricultural development and environmental background of the pre-Qin period in Chengdu Plain: A case study of Baodun and Sanxingcun sites[J]. Quaternary Sciences, 2021, 41(5): 1475-1488.
    [36] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887.
    [37] Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474.
    [38] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968.
    [39] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
    [40] Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297.
    [41] 马志颖,王洪松,袁庆政,等. 烟台芝罘区北部海域表层沉积物粒度特征及其对沉积动力环境的指示作用[J]. 海洋环境科学,2025,44(1):59-66.

    Ma Zhiying, Wang Hongsong, Yuan Qingzheng, et al. Grain size characteristics of surface sediments in the northern waters of Zhifu district, Yantai and their indications of the sedimentary dynamical environment[J]. Marine Environmental Science, 2025, 44(1): 59-66.
    [42] 张涛,牛丽霞,何方婷,等. 人类活动影响下伶仃洋沉积格局演变特征[J]. 沉积学报,2022,40(3):753-764.

    Zhang Tao, Niu Lixia, He Fangting, et al. Anthropogenic impact on evolution of Lingding Bay sedimentary framework[J]. Acta Sedimentologica Sinica, 2022, 40(3): 753-764.
    [43] 张妤,杨萍果,赵辉,等. 运城盆地全新世黄土记录的千年尺度气候突变事件[J]. 第四纪研究,2024,44(6):1700-1712.

    Zhang Yu, Yang Pingguo, Zhao Hui, et al. Millennium scale climate abrupt events recorded in the Holocene loess of the Yuncheng Basin[J]. Quaternary Sciences, 2024, 44(6): 1700-1712.
    [44] 胡梦珺,许澳康,孙文丽,等. 青海湖湖东地区近32 ka BP以来风沙沉积的粒度端元特征及环境意义[J]. 现代地质,2024,38(2):487-496.

    Hu Mengjun, Xu aokang, Sun Wenli, et al. Grain size end-member characteristics of the aeolian sediments in the east of Qinghai Lake and its environmental significance since 32 ka BP[J]. Geoscience, 2024, 38(2): 487-496.
    [45] 刘阳,李瑜琴,黄春长,等. 黄河玛曲段晚全新世古洪水事件沉积记录及其气候背景研究[J]. 地理研究,2023,42(12):3147-3164.

    Liu Yang, Li Yuqin, Huang Chunchang, et al. Sedimentary records and climatic background of Late Holocene palaeoflood events in the Maqu reaches of the Yellow River[J]. Geographical Research, 2023, 42(12): 3147-3164.
    [46] 管静岚,战庆,赵小双,等. 基于尼罗河下游钻孔沉积物粒度端元分析的全新世流域水文气候变化[J]. 海洋与湖沼,2025,56(3):600-612.

    Guan Jinglan, Zhan Qing, Zhao Xiaoshuang, et al. Holocene hydroclimatic changes of Nile River Basin highlighted by grain size end-member analysis of core sediments from its lower river basin[J]. Oceanologia et Limnologia Sinica, 2025, 56(3): 600-612.
    [47] Walling D E, Moorehead P W. The particle size characteristics of fluvial suspended sediment: An overview[J]. Hydrobiologia, 1989, 176(1): 125-149.
    [48] 支钰,卞惠瑛,宋飞,等. 陕西洛南盆地黄土剖面色度参数及古气候变化[J]. 地质通报,2025,44(6):1151-1163.

    Zhi Yu, Bian Huiying, Song Fei, et al. The chromaticity parameters and paleoclimate changes of loess profile in Luonan Basin, Shaanxi province[J]. Geological Bulletin of China, 2025, 44(6): 1151-1163.
    [49] 马欢欢,戴霜,马晓军,等. 祁连山西段表土磁化率、色度特征与环境意义[J/OL]. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2024.034. doi:  10.14027/j.issn.1000-0550.2024.034

    Ma Huanhuan, Dai Shuang, Ma Xiaojun, et al. Magnetic susceptibility and chromaticity characteristics of surface soil in the Western Qilian Mountains and their environmental significance[J/OL]. Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2024.034. doi:  10.14027/j.issn.1000-0550.2024.034
    [50] 韩一筱,宋友桂,程良清,等. 西藏林芝黄土记录的末次冰期粉尘活动与西风—季风变化[J]. 第四纪研究,2024,44(6):1688-1699.

    Han Yixiao, Song Yougui, Cheng Liangqing, et al. Dust activity and Westerlies-monsoon variations during the last glacial period recorded in loess sediments in Linzhi area, southern Tibetan Plateau[J]. Quaternary Sciences, 2024, 44(6): 1688-1699.
    [51] Vandenberghe J, Sun Y, Wang X, et al. Grain-size characterization of reworked fine-grained aeolian deposits[J]. Earth-Science Reviews, 2018, 177: 43-52.
    [52] 殷志强,秦小光,吴金水,等. 湖泊沉积物粒度多组分特征及其成因机制研究[J]. 第四纪研究,2008,28(2):345-353.

    Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments[J]. Quaternary Sciences, 2008, 28(2): 345-353.
    [53] Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. CatenaA, 2004, 55(3): 325-340.
    [54] Woodward J, Macklin M, Fielding L, et al. Shifting sediment sources in the world's longest river: A strontium isotope record for the Holocene Nile[J]. Quaternary Science Reviews, 2015, 130: 124-140.
    [55] 聂军胜,李曼. 柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义[J]. 第四纪研究,2017,37(5):1017-1026.

    Nie Junsheng, Li Man. A grain size study on Late Miocene Huaitoutala section, NE Qaidam Basin, and its implications for Asian monsoon evolution[J]. Quaternary Sciences, 2017, 37(5): 1017-1026.
    [56] 罗丽萍. 成都地区4ka以来环境—气候变化与其对古蜀文明的影响[D]. 成都:成都理工大学,2007:3-62.

    Luo Liping. Environmental-climatic changes of Chengdu Plain from 4ka and it’s influence on ancient Shu Civilization[D]. Chengdu: Chengdu University of Technology, 2007: 3-62.
    [57] Wen X Y, Bai S, Zeng N, et al. Interruptions of the ancient Shu Civilization: Triggered by climate change or natural disaster?[J]. International Journal of Earth Sciences, 2013, 102(3): 933-947.
    [58] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 221-232.
    [59] 陈朝军. 2.9~ 8.2 ka BP期间亚洲夏季风的演化规律及对人类活动的影响[D]. 重庆:西南大学,2022.

    Chen Chaojun. The evolution of Asian summer monsoon and its impact on human activities during 2.9~ 8.2 ka BP[D]. Chongqing: Southwest University, 2022.
    [60] 于学峰,周卫健, Franzen L G,等. 青藏高原东部全新世冬夏季风变化的高分辨率泥炭记录[J]. 中国科学:地球科学,2006,36(2):182-187.

    Yu Xuefeng, Zhou Weijian, Franzen L G, et al. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2006, 36(2): 182-187.
    [61] 曾蒙秀. 四川西部晚冰期以来植被和气候变化及其对人类活动的影响[D]. 南京:南京大学,2017.

    Zeng Mengxiu. The variation of vegetation and climate and its impact on human activities from Late Glacial Period in western Sichuan, China[D]. Nanjing: Nanjing University, 2017.
    [62] Hong B, Hong Y T, Uchida M, et al. Abrupt variations of Indian and East Asian summer monsoons during the last deglacial stadial and interstadial[J]. Quaternary Science Reviews, 2014, 97: 58-70.
    [63] Wang Z J, Chen S T, Wang Y J, et al. A high-resolution stalagmite record from Luoshui Cave, Central China over the past 23.5 kyr[J]. Quaternary Science Reviews, 2022, 282: 107443.
    [64] Wang D D, Li M Y, Zhang S R, et al. Spatial and temporal characteristics of the precipitation response to the 4.2 ka event in the Asian summer monsoon region[J]. Global and Planetary Change, 2022, 214: 103854.
    [65] Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275.
    [66] You H F, Li Y C, Zhang S R, et al. Climate and sea-level fluctuations on the western coast of Bohai Bay during the 4.2 ka event: Multi-proxy evidence from the Nandagang area of Cangzhou, China[J]. Quaternary Science Reviews, 2024, 324: 108467.
    [67] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
    [68] Jiang X Y, He Y Q, Shen C C, et al. Replicated stalagmite-inferred centennial-to decadal-scale monsoon precipitation variability in southwest China since the mid Holocene[J]. The Holocene, 2013, 23(6): 841-849.
    [69] Wang T L, Li D, Cheng X, et al. Hydroclimatic changes in south-central China during the 4.2 ka event and their potential impacts on the development of Neolithic culture[J]. Quaternary Research, 2022, 109: 39-52.
    [70] Zhang H W, Cheng H, Cai Y J, et al. Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records[J]. Climate of the Past, 2018, 14(11): 1805-1817.
    [71] Wu J J, Li Y, Liu Y Y, et al. Outburst floods and their impact on Chinese Neolithic cultures during the 4.2 ka BP event: Evidence from Dayeze Lake in the lower reaches of the Yellow River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 655: 112513.
    [72] Chen C J, Wu Y, Li J Y, et al. Hydrological changes in the East Asian monsoon region around 4.2 ka precisely reconstructed from multi-proxy stalagmites[J]. Quaternary Science Reviews, 2025, 357: 109321.
    [73] 胡文斌,乔雪,陈科艺,等. 基于降水特征的华西雨屏地理范围界定[J]. 山地学报,2023,41(5):662-675.

    Hu Wenbin, Qiao Xue, Chen Keyi, et al. Geographic extent of the West China Rain Zone determined by precipitation characteristics[J]. Mountain Research, 2023, 41(5): 662-675.
    [74] 贾天骄. 成都平原新石器时代以来地震与古洪水等事件环境考古研究[D]. 南京:南京大学,2016.

    Jia Tianjiao. Environmental archaeological of the impacts of earthquake and paleofloods of the Neolithic Age in the Chengdu Plain, China[D]. Nanjing: Nanjing University, 2016.
    [75] Jia T J, Ma C M, Zhu C, et al. Depositional evidence of palaeofloods during 4.0-3.6 ka BP at the Jinsha site, Chengdu Plain, China[J]. Quaternary International, 2017, 440: 78-89.
    [76] 黄明. 考古遗址所见成都平原史前洪水与治水[J]. 地球环境学报,2024,15(2):193-206.

    Huang Ming. Prehistoric floods and water control documented at the archaeological sites in the Chengdu Plain[J]. Journal of Earth Environment, 2024, 15(2): 193-206.
  • 附加数据.xlsx
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(1)

Article Metrics

Article views(22) PDF downloads(5) Cited by()

Proportional views
Related
Publishing history
  • Received:  2025-06-03
  • Revised:  2025-08-19
  • Accepted:  2025-09-22
  • Published:  2025-10-15

Mid-to-Late Holocene Climate Changes in the Chengdu Plain Based on Fluvial-Lacustrine Sedimentary Records

doi: 10.14027/j.issn.1000-0550.2025.045

Abstract: Objective The Chengdu Plain is one of the major birthplaces of Chinese civilization. Reconstructing the environmental evolution of this region during the Mid-to-Late Holocene is crucial to understand the environmental context of prehistoric cultural development in the upper reaches of the Yangtze River and to explore the relationship between global climate change and the sustainable development of human societies. The phased characteristics of Mid-to-Late Holocene climate evolution in the Chengdu Plain and its potential response to the “4.2 ka” climatic event remains controversial. Methods This study established a chronological framework based on the AMS 14C dating of core RS-1. Grain size end-member modeling, combined with magnetic susceptibility and colorimetric parameters, was employed to reconstruct the sedimentary environmental evolution of the Chengdu Plain during the Mid-to-Late Holocene. Results Five end-member components were extracted from the grain-size data, each reflecting sedimentary characteristics under different hydrodynamic conditions. EM1 represents stable sedimentation formed by distal fluvial suspended load under weak hydrodynamic conditions. EM2 and EM3 correspond to components deposited under stronger hydrodynamic forces, with EM3 reflecting higher transport energy. EM4 and EM5 indicate coarse-grained traction deposits associated with flood events. Conclusions The environmental evolution of the Chengdu Plain during the Mid-to-Late Holocene can be divided into four stages: (1) 4.7-4.4 cal ka B.P., characterized by a humid climate with pronounced wet-dry fluctuations; (2) 4.4-4.2 cal ka B.P., marked by a transition to slightly cooler and drier conditions, although remaining humid, overall; (3) 4.2-3.7 cal ka B.P., a period of pronounced climatic instability with frequent flood events; and (4) post-3.7 cal ka B.P., during which the climate gradually became more arid. This “dry-humid-dry” climatic pattern indicates a significant regional response to the “4.2 ka event,” with hydroclimatic changes in the area beginning at approximately 4.4 cal ka B.P. and persisting until approximately 3.7 cal ka B.P..

DONG JunLing, WANG Qian, LI Zhe, OUYANG Hui, SU Tao. Mid-to-Late Holocene Climate Changes in the Chengdu Plain Based on Fluvial-Lacustrine Sedimentary Records[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1780-1795. doi: 10.14027/j.issn.1000-0550.2025.045
Citation: DONG JunLing, WANG Qian, LI Zhe, OUYANG Hui, SU Tao. Mid-to-Late Holocene Climate Changes in the Chengdu Plain Based on Fluvial-Lacustrine Sedimentary Records[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1780-1795. doi: 10.14027/j.issn.1000-0550.2025.045
  • 成都平原是中华文明重要的发源地之一,也是长江上游地区最具代表的古文化分布区域[1]。考古研究已建立了从桂圆桥文化(5.1~4.6 cal ka B.P.)、宝墩文化(4.5~3.7 cal ka B.P.)、三星堆文化(3.7~3.2 cal ka B.P.)到十二桥文化(3.2~2.6 cal ka B.P.)等一系列连续的文化发展序列,展现出显著的社会演进特征,这些文化的演替与区域环境的互动为中—晚全新世的人地关系研究提供了重要视角,备受学术界关注[14]。成都平原的气候主要受到东亚季风的影响,具有年际至年代际多尺度的波动特征[5]。因此,重建成都平原中—晚全新世环境演变历史,不仅有助于深化对长江上游史前文明更替过程的理解,也为认识全球气候变化与人类社会发展的关系提供重要参考。

    前人利用孢粉、植硅体、木炭、粒度以及地球化学等代用指标,重建了成都平原中—晚全新世的气候与环境变化过程,主要包括温度、湿度变化和植被演替[34,69]。研究表明,成都平原全新世气候变化与全球气候变化趋势具有较强的同步性[1,7,10],整体呈现由中全新世向晚全新世的“暖湿转冷干”过程,但气候波动性较大,伴随多次百年尺度的突发性气候事件[9]。然而,目前关于具体气候的变化过程仍存在分歧。一些研究认为该时期整体呈温暖湿润的气候特征,但经历了温湿和冷干的波动变化[8]。其中在约4.0 ka B.P.期间气候波动加剧,洪水和火灾事件频发,随后向冷干方向转变[78]。但也有研究提出,6.0~4.3 ka B.P.期间成都平原的气候温暖干燥,并且这一趋势持续增强[9],4.0 ka B.P.后则表现出冷干与暖湿交替的气候特征[11]。这些差异可能与测年精度、时间分辨率、代用指标敏感性以及区域响应差异等因素有关[6]。与长江中下游地区相比,成都平原的气候演变研究仍较为薄弱,尤其是以往研究多基于考古遗址材料,受人类活动干扰较大。相较之下,具有连续沉积特征的河湖相地层记录了更为客观、完整的气候变化信息。

    “4.2 ka事件”被认为是中全新世以来最显著的全球百年尺度气候突变事件,以突发性降温和干旱为典型特征,对亚洲和非洲的农业发展及古代文明的更替产生了深刻影响[1215]。在长江与黄河流域,多个新石器时代晚期文化在距今约4.2~4.0 ka B.P.期间出现衰落或崩溃现象[1516],如甘肃—青海地区的齐家文化、内蒙古的老虎山文化、长江中下游的良渚文化等。已有研究普遍认为,这些文化的衰退与“4.2 ka事件”引发的水文气候异常变化有关。然而,在东亚季风区,尤其是中国大陆,该事件所引发的湿度变化具有明显的区域性差异[17]。尽管研究指出该时期中国东亚季风区存在“南涝北旱”的气候格局[1719],但实际记录显示这一格局在“4.2 ka事件”期间并不普遍适用。此外,虽然“4.2 ka事件”常被视为是一次典型的干旱事件,但越来越多的研究表明该时期中国南北方均记录到极端洪水事件[2021],提示该事件可能表现为气候系统的剧烈震荡过程。目前,关于“4.2 ka事件”在成都平原的环境响应仍缺乏统一认识,尤其该事件对宝墩文化发展演变的具体影响认识较为有限。

    自Folk et al.[22]提出了基于百分位数计算的粒度参数统计体系以来,沉积物粒度分析逐渐发展为沉积学研究的重要方法。通过对粒度参数的定量分析,如平均粒径、分选系数、偏态和峰态等,不仅能够揭示物质来源特征,还记录了沉积动力条件和沉积环境的演化过程,是理解区域地质与环境变化的重要指标[2324]。近年来,随着数学统计方法和计算技术的发展,粒度端元模型分析(End-Member Modeling Analysis,EMMA)在沉积物粒度研究中得到了广泛应用[2526]。与传统基于单样本描述性统计的方法相比,EMMA能够从复杂的多峰粒度分布中分离出具有动力学意义的端元组分,并定量分析各端元在不同沉积单元中的贡献,从而更准确地解释沉积物的物源特征及搬运机制[2628]。这一方法已被成功应用于湖泊、河流、黄土及风成沉积体系,揭示了不同沉积动力过程及其在时间和空间上的变化规律[2830]

    本文基于来自成都平原仁寿县中—晚全新世天然河湖相岩心(编号RS-1)的沉积记录,结合放射性AMS 14C测年数据,采用粒度分析、磁化率、色度等沉积学指标,并运用端元模型对粒度数据进行分解,系统解析了该区沉积环境的演化过程,涵盖物源变化与沉积动力学等因素,同时重建了成都平原区域气候演变过程及其对“4.2 ka事件”的响应。该研究不仅为阐释古蜀文明演进的环境背景提供了关键证据,对于全面理解长江上游及东亚地区中—晚全新世人类活动与气候变化之间的关系也具有重要意义。

  • 成都平原位于四川盆地与青藏高原的交汇处,其地理范围东至龙泉山西麓,西至龙门山前山,南界总岗山西北坡,北东临川中红层丘陵区,总面积约8 400 km²,东西宽度约80 km[31]。该地区海拔介于460~730 m,是我国一级阶梯向二级阶梯过渡的地带,呈现西北向东南缓倾的地貌特征,形成南北对峙、东西夹持的菱形盆地格局[32]。自中更新世以来,成都平原逐渐形成了大量的湖泊和沼泽[33]

    成都平原是由岷江、沱江等多条河流经过长期作用形成的宽广冲积扇叠加而成,是我国河网密度最高的区域之一[34],并形成了众多的河流阶地[2]。地形上,平原主要包括冲积扇平原和周边台地两部分,其中平原主体由岷江、湔江、石亭江、绵远河等河流共同发育的冲洪积扇叠加构成,呈现出典型的辐射状地貌结构。其气候属于典型的亚热带湿润季风气候,四季分明,年平均总降水量为1 000 mm左右,年平均气温约为16 ℃~17 ℃(图1b)。这种独特的自然环境为稻作农业的发展和人类聚居提供了优越条件[35],使成都平原成为长江上游的文明发源地之一。然而,频繁的河道迁移和洪水泛滥使该地区成为洪水灾害的高发区[33]。洪水的周期性泛滥不仅影响了当地居民的生产和生活,也对该地区文化的形成和演变产生了深远影响[1]

    Figure 1.  Geospatial site of core RS⁃1 and modern climatic context

  • RS-1岩心位于新津宝墩遗址东侧约45 km,地处岷江下游区域,属于岷江流域东侧丘陵过渡地带(图1a)。该地区水文过程主要受岷江水系及其支流控制,同时也受区域降水的影响,是一个开放的河湖相沉积系统,其沉积过程也能代表区域环境响应。因此,在精确的年代学框架下,采用粒度、磁化率和色度等分析手段,并引入端元模型分析,重建了该剖面的沉积环境演变过程,进一步探讨区域气候变化特征。

  • RS-1岩心采样点位于仁寿县郊区农田地表,为避免近地表人类活动对沉积记录的干扰,采样时便已经剔除了岩心最顶端的10 cm部分,实际研究岩心的总厚度为320 cm。其中,0~190 cm层段,为棕黄色粉砂质黏土层;190~280 cm层段:为青灰色粉砂质黏土层,植物碎屑丰富,其中200~250 cm处夹含细砾石;280~320 cm层段:为青灰色砂质粉砂层,富含植物残体。本研究以2.5 cm等间距进行连续采样,共采集沉积物样品129个,用于粒度、磁化率以及色度测试分析,所有分析工作均在中国科学院地球环境研究所完成。在综合考虑岩性特征、沉积序列的连续性和有机质含量等因素后,选取了5个样品进行测年

  • 本研究采用AMS 14C方法对RS-1岩心进行年代测试,以建立其年代序列。测年材料包括2个含碳屑的沉积物样品和3个植物残体样品。AMS 14C年代测试由美国Beta实验室完成。测定完成后,使用IntCal13[36]对各深度样品的年代进行校正,结果以校正年代(cal a B.P.)表示。采用rbacon生成贝叶斯的年龄深度模式[37],从而构建RS-1岩心的高精度年代序列。

  • 本研究的粒度测试采用英国马尔文仪器有限公司生产的Mastersizer 3000激光粒度仪进行,测试样品的粒径介于0.02~2 000 μm,分析误差控制在2%以内。每个样品均测试3次,并取其平均值作为最终结果。样品测试过程如下:称取自然风干样品0.3~1.0 g,置于容量为150 mL的烧杯中,加入10 mL浓度为30%的H2O2后,放置在电热板上加热以充分去除样品中的有机质;再加入10 mL浓度为10%的HCl,充分去除样品中的碳酸盐钙质胶结物;经反复清洗至中性后,加入10 mL的浓度为0.05 mol/L的六偏磷酸钠[(NaPO3)6],并将烧杯置于超声波振荡器中震荡10 min,使沉积物颗粒完全分散后上机测试。

    本研究依据Udden-Wentworth粒级划分标准(结合仪器量程适当调整),将RS-1岩心沉积物粒径分成三个粒级等级:黏土组分(4 μm)、粉砂(4~64 μm)和砂(64 μm),其中粉砂组分进一步细分为细粉砂(4~16 μm),中粉砂(16~32 μm),粗粉砂(32~63 μm)。采用Folk et al.[38]提出的粒度参数计算方法,计算了RS-1岩心沉积物粒度数据的中值粒径(Md),均值粒径(Mz),分选系数(σ),偏度(Sk)以及峰度(Kg)等参数。

  • 磁化率测试采用Bartington公司生产的MS-2磁化率仪进行,分别对样品进行低频(0.47 kHz)和高频(4.7 kHz)磁化率的测量。每个样品均测试3次,并求其平均值作为最终结果。测试步骤如下:将自然风干的样品称重后装入磁学专用的样品塑料小盒密封、压实,分别称取装样前后各自的重量;将仪器调至低频测试状态,先对各样品进行背景值的测量,然后对其进行低频磁化率值的测定;仪器调成高频状态,重复上述操作,测量样品的高频磁化率值。最后,通过样品的低频磁化率(χlf)和高频磁化率(χhf)计算频率磁化率(χfd%),计算公式为:χfd%=χlf-χhf/χlf×100%

  • 色度实验使用日本柯尼卡美能达公司生产的CM-700d分光光度计进行测试,每一样品测试3次并求其平均值。测试前首先将自然风干的样品剔除植物根系等杂质,使用玛瑙研钵研磨至200目的粉末状态。对色度仪进行标准测试板的校正后将粉末样品置于载玻片之上进行测试。

  • 本研究基于MATLAB中的AnalySize-masters插件[39],采用Gen.Weibull函数,在假设端元数为1~10的范围内对粒度数据进行参数化分解[40],分解得到的非参数端元对应于特定的沉积过程。为验证模型的可靠性,分别采用线性相关性(R2,端元与原数据集总体相关程度,数值越高表示拟合程度越好)、角度偏差(Angular Deviation,曲线形状的拟合偏差程度,其值越大说明存在的拟合误差越大)和端元相关度(EM Correlations,端元之间的相关程度,数值越高表示独立性越差)等指标进行评估。一般来说,当R20.95,角度偏差5时,端元分离结果才算可靠。在满足各参数标准的基础上,遵循“选取最少端元数”的原则,综合分析确定最终的端元数量。

  • RS-1岩心的测年结果显示部分层位存在年代倒置现象(表1),可能受到“老碳效应”的影响。通过综合分析沉积序列的完整性、岩性特征及物源属性,判断142 cm和321 cm两个层位的测年结果不具备可靠性,故在后续分析中予以剔除。基于有效的测年数据,采用R语言平台中的rbacon程序包构建了岩心RS-1的“年代—深度模型”。模型结果显示,RS-1岩心沉积于4 725~2 140 cal a B.P.,属于中—晚全新世时期(图2)。

    样品编号深度/cm测年材料14C年龄/a B.P.校正年龄/cal a B.P.;2σ中值年龄/cal a B.P.δ13C/‰
    RS01465有机质沉积物2 9403 178~2 9953 086-20.42
    RS030142有机质沉积物5 3606 084~6 0036 040-23.27
    RS040194植物残体3 4303 726~3 5753 650-28.49
    HLT300植物残体4 1004 655~4 5194 587-26.60
    RS062321植物残体43 500-30.38

    Table 1.  AMS 14C dating results from core RS⁃1

    Figure 2.  Age⁃depth model of core RS⁃1

  • 粒度测试结果显示,RS-1岩心沉积物的粒度参数呈显著的垂向分异特征,沉积物组分主要由粉砂和黏土组成(图3)。粉砂含量介于32.12%~74.75%,平均占比为62.28%。其中,细粉砂占主导,平均含量为29.97%,中粉砂和粗粉砂含量相对较低,平均分别为19.09%和13.15%;黏土含量介于10.31%~38.54%,平均含量为23.13%;砂的含量最低,范围为0.26%~57.57%,平均为14.67%(见附加数据)。整体来看,RS-1沉积物的粒度组成呈现“细粉砂黏土中粉砂砂粗粉砂”的分布特征。粉砂与砂在垂向变化趋势上相反,而与黏土的变化趋势基本一致,即粉砂与黏土含量随深度变浅而增加,而砂则随深度变浅随之减少(图3)。从单元变化来看,B3单元沉积环境变化波动频繁,A和B2单元则相对平稳,而B1单元中砂和粗粉砂含量突然升高,黏土含量明显下降,反映出水动力条件显著增强,可能与洪水冲击事件有关。

    Figure 3.  Vertical variations in grain⁃size distribution and parameters of core RS⁃1

    RS-1岩心沉积物粒度分析结果显示(见附加数据,图3),Md范围介于2.27~7.23 Φ,平均值为5.87 Φ,标准差为12.04,表明样品间的Md存在较大的变异性,尤其在B1单元其波动显著,出现最低值。相比之下,Mz的范围为3.73~7.43 Φ,平均值为6.24 Φ,变化幅度较小。σ的范围介于1.76~2.92,平均值为2.19,与Md呈中等正相关(r=0.62)(图4a),这表明粗颗粒输入导致分选性变差,且高值可能指示高能事件的发生。Sk的范围介于-0.18~0.80,平均值为0.39,标准差为0.19,整体正偏,表明沉积环境具有一定强度的水动力条件,能够搬运和沉积较粗的颗粒[41]Kg的范围介于2.00~3.30,平均值为2.65,标准差为0.26(图3),较高的Kg表明粒度分布较集中,可能与单一物源或快速沉积过程有关,而较低的Kg表明粒度分布曲线较平坦,可能受到多种物源或缓慢沉积过程的影响[42]

    Figure 4.  Correlation results between grain⁃size parameter, grain⁃size composition, and redness (a*) of core RS⁃1 and grain⁃size frequency curves of each sedimentary unit

    各粒度参数在垂向上的变化表现为:MdMz呈同步变化趋势,二者与粉砂和黏土含量的变化趋势一致,而与σ呈反向关系。SkKg的垂向变化规律性较弱(图3)。具体来看,B3-B1单元中砂质含量较高,MdMz的Ф值处于低值波动区间,对应较高的σ和较低的Kg。B3-B1单元的粒度频率分布曲线呈多峰特征,且各峰形态差异显著,尤其是B1单元(图4b),这一特征反映出该时期水动力较强且波动频繁,物源复杂,沉积环境不稳定。相较之下,A单元中的粉砂与黏土含量明显增加,MdMz的Ф值显著增大,σ明显下降,Kg则在较高值区间内波动,且粒度频率分布曲线主要呈单峰形态(图4b),峰值集中在中粉砂粒径范围,整体曲线尖锐且对称,指示该阶段水动力条件减弱并逐渐稳定。总体而言,RS-1岩心沉积物的粒度特征及其频率分布曲线的垂向演变揭示了沉积动力由强变弱的阶段性变化,尤其是在B1单元,粒度参数波动剧烈,暗示该时期沉积环境处于极端不稳定状态,可能经历了频繁的水动力扰动或突发性事件的影响。

  • RS-1岩心沉积物的低频磁化率(χlf)的变化范围为(1.25~58.21)×10-8 m3/kg,平均值约为14.04×10-8 m3/kg,高频磁化率(χhf)的范围为(-1~56.72)×10-8 m3/kg,平均值约为13.46×10-8 m3/kg(见附加数据)。总体而言,χlf略高于χhf,且频率磁化率在垂向上波动较为频繁,但变化幅度较小,其数值范围介于-1.09~5.57,平均值为0.07。在B1单元,频率磁化率呈现极端高值,表明该时期可能存在异常的磁性矿物输入[43],而其他地层单元磁化率曲线变化波动不显著(图5)。

    Figure 5.  Vertical variations of grain⁃size end⁃member contents, magnetic susceptibility, and color parameters in core RS⁃1

    色度分析结果显示,亮度(L*)值的变化范围介于51.81~71.27,平均值为65.41;红度(a*)值介于0.08~7.36,平均值为3.69;黄度(b*)值的分布范围介于5.86~29.29,平均值为17.74。三个色度参数在垂向上具有相似的变化趋势(图5)。在B3-B1单元,色度参数整体处于低值区间,B3与B2单元变化相对稳定,呈略上升趋势,但是到B1单元逐渐降到剖面最低值,而向上过渡至A单元时,三项色度参数同步升高。

  • 为选择最具代表性的端元模型,本研究综合考虑了较大R2、较小角度偏差和较小端元相关度[37],发现当端元数量为5时,模型的R2大于0.95,角度偏差小于5,拟合效果最佳(图6a,b)。因此,最终确定最优模型包括5个端元,即EM1、EM2、EM3、EM4和EM5,其频率分布曲线均为单峰特征(图6c),表明各端元的物质来源较为单一或水动力条件相对稳定。

    Figure 6.  End⁃member modeling results of grain⁃size data from core RS⁃1

    各端元的粒度特征如下(图5):EM1的众数粒径为3.99 μm,属于黏土范畴,粒度分布曲线较宽平,接近正态分布,分选系数为2.07,表明其分选性较差。EM1的粉砂含量为51.54%,黏土含量为42.72%,砂质含量最低为5.74%。EM2的众数粒径为22.44 μm,属于中粉砂范畴,粒度分布较EM1窄,分选系数为1.02,表明其分选性中等偏差。EM2的粉砂成分占95.25%,黏土含量为2.74%,砂质含量为2.02%。EM3的众数粒径为89.34 μm,属于细砂,粒度分布形态适中,分选系数为0.85,分选性较好。EM3的砂质含量最高,为62.54%,粉砂含量为37.46%,不含黏土成分。EM4的众数粒径为282.51 μm,主要由中砂组成,粒度分布极窄且尖锐,分选系数为0.51,分选性最好,完全由砂质组分组成。EM5的众数粒径为447.74 μm,为剖面中最粗的组分,分选系数为0.66,几乎完全由砂质成分组成(含量达99.79%)(见附加数据)。一般来说,粒度越细,峰区越宽,峰值越低,物源越远[44]。根据粒度特征的分布,推断EM1和EM2代表低能、远源沉积,而EM3至EM5则代表高能、近源沉积,可能是短程运输形成的局地堆积产物。垂向序列变化显示,EM1与EM2在整个剖面上呈镜像对称分布,EM2与EM3自B1单元以下呈镜像对称,EM4和EM5在垂向上呈现相似的波动趋势(图5)。

  • 粒度端元模型所分离的各端元组分及其变化,能够揭示沉积过程中的物源类型及沉积动力机制,并为环境变化推断提供重要依据[45]。尽管端元模型分析在揭示沉积物粒度组成结构及搬运动力机制方面具有明显优势,但其结果在一定程度上受到模型参数设定(如端元数)、数据分辨率以及沉积后混合过程等因素的影响,具有一定不确定性[26]。因此,本研究通过高分辨率样品测试,遵循“选取最少端元数”原则,分离出5个具有环境指示意义的粒度端元组分。同时,结合磁化率、色度(L*、a*、b*)、粒度参数(中值粒径、分选系数等)等进行交叉验证,以增强对各端元环境意义判断的准确性。相关性分析结果显示,EM1与EM2、EM3呈弱负相关,而与EM4、EM5呈显著负相关(图7),表明沉积过程至少受到三种不同的搬运动力机制的影响。

    Figure 7.  Correlation between grain⁃size end⁃member, grain⁃size composition, and redness (a*) for core RS⁃1

    EM1是粒级最细的端元组分,与黏土含量呈显著正相关(图7),众数粒径为3.99 μm,频率分布曲线呈较宽的单峰状,分选性差,垂向变化较为稳定,总体呈先下降后上升的变化趋势(图6c),具有典型的远源河流悬浮载荷沉积特征,与尼罗河下游钻孔沉积物粒径相似[46],指示其形成于弱水动力条件下相对稳定的沉积环境,如河漫滩或湖泊边缘地带[47]。此外EM1与Mz以及红度值a*也呈正相关关系(图7),色度高表明沉积物颜色较深,碳酸盐含量较低,赤铁矿和磁铁矿含量高,代表了干旱的氧化环境[4849]。因此,EM1是在较干旱环境的弱水动力条件下沉积形成。

    EM2属于中粉砂粒级,与粉砂含量呈显著正相关,而与砂含量呈显著负相关(图7)。EM3属于细砂粒级,与砂含量呈显著正相关,与黏土含量呈负相关。二者分选性均为中等偏差,且彼此之间呈显著负相关关系(图7)。这种既同时存在但又具有差异性的互补关联,说明它们是在相同沉积动力背景下共同搬运形成的[50]。尽管EM3与EM2的频率分布曲线形态相似,但EM3的粒径分布区间更粗、峰值更高,表明其搬运距离相对更短。由于粒径大于63 μm的组分难以通过风力作用搬运,且主要来源于地表径流侵蚀作用[51],因此推断EM2和EM3代表了较强水动力条件下沉积的组分,其中EM3对应更强的搬运动力。

    EM4和EM5均属中砂粒级,众数粒径均大于200 μm,二者峰态极窄、分选性较好,与砂含量呈显著正相关,其粒度分布与河流沉积物的跃移组分高度一致[52]。已有研究表明,粒径介于250~600 μm的中—粗砂端元常见于河流、分选较好的湖泊沉积以及冲积扇沉积,可视为典型的河流冲积砂[28]。此外,EM4和EM5含量与粉砂、黏土含量以及红度值a*呈显著负相关,说明其主要来源于地表径流搬运[5354],反映洪水过程中的粗颗粒跃移沉积,代表了极端水动力条件,可能指示区域特大暴雨事件发生频率的增加[55]

    从各端元含量在岩心深度上的变化看出,端元与地层之间也具有较好的对应关系(图5)。在B3-B2单元中,各组分变化相对平缓,EM1和EM3含量较高,其余组分相对较低。在B1单元中,EM4和EM5含量最大,EM1含量呈波动下降趋势,且该层位中可见磨圆较差的砾石,可能是洪水过程中的粗颗粒跃移组分沉积,代表了极端水动力条件,河流的径流量较大。EM1和EM2组分含量在A单元逐渐增加,EM3、EM4、EM5含量呈逐渐降低的趋势(图5)。

  • 近年来,随着成都平原考古遗址的不断发现及环境考古研究的深入,对于中—晚全新世成都平原气候演变的认识也逐渐加深。研究表明,该时期气候总体上经历了由温暖湿润向偏凉偏干的转变,并伴随明显的干湿交替变化(图8)。但不同代用指标在相同时段所反映的气候干湿变化并不完全一致[34,7-9,11,56-57],尤其是在4.6 ka B.P.之后。这种差异可能与各类代用指标的记录分辨率、测年误差有关,也可能是人类活动的干扰导致[6]。本研究基于仁寿RS-1岩心的年代框架,综合粒度、磁化率、色度等多项沉积指标,并结合粒度端元模型分析结果,将该时期的沉积环境演变过程划分以下四个阶段(图9)。

    Figure 8.  Climatic evolution of the Middle⁃to⁃Late Holocene in the Chengdu Plain reconstructed from multiple proxy indicators

    Figure 9.  Comparison between grain⁃size end⁃members results for core RS⁃1 and other records

    阶段1:在4.7~4.4 cal ka B.P.期间(B3单元,320~285 cm),气候总体上呈湿润状态,但干湿波动频繁。此阶段,表征强水动力的EM3端元维持高值水平,为强水动力条件下的洪泛沉积。而代表极端洪水事件的EM4和EM5端元则出现明显波动,同时砂质组分占比较高,多个粒度参数波动幅度较大,表明环境变化的不稳定性。尽管红度值a*整体处于低值区间,但其波动幅度显著增大,反映沉积过程的不稳定性。同期的多个区域性代用指标亦支持该阶段气候的波动变化(图9[5862],如红原泥炭孢粉PCA1值呈现出波动下降趋势[61],宝墩遗址的火灾活动频繁、乔木与灌木的花粉浓度显著降低[4],长江中游和尚洞及西南地区羊口洞石笋δ18O同步出现负偏、局地降水显著增强[5859]。此外,青藏高原东缘的若尔盖泥炭中的腐殖化度升高[60],表明有机质分解加剧,亦与高降水量环境一致。

    阶段2:在4.4~4.2 cal ka B.P.期间(B2单元,285~250 cm),成都平原进入一个气候微弱冷干化阶段,代表弱水动力条件的EM1端元含量开始上升,而代表强水动力条件的EM3端元虽仍维持次高位,但呈明显下降趋势,代表高能洪水事件的EM4和EM5端元含量波动幅度明显减弱。同期,砂质含量同步下降,Mz的Ф值开始增大,多个粒度参数的波动幅度减弱(图3),红度a*则显著升高(图5)。此时,宝墩遗址和马街村遗址的孢粉PCA1值和AP/NAP值也呈下降趋势[89],红原泥炭的孢粉PCA1值呈波动性递减趋势[61],越西泥炭的δ13C值则持续保持正偏[62],均反映该时期正值东亚夏季风整体减弱阶段(图9)。

    阶段3:在4.2~3.7 cal ka B.P.期间(B1单元,250~190 cm),气候表现出极端的不稳定性。该阶段代表弱水动力的EM1含量降至剖面最低值,而代表高能洪水事件的EM4和EM5端元含量则上升至剖面最高值,所有粒度参数均出现剧烈波动。此时,红度a*下降至剖面最低水平,频率磁化率波动加剧且出现了异常高值(图5)。上述变化均指示该时期成都平原强降雨事件频繁发生,洪泛活动显著增强,可能与全球性的“4.2 ka”气候事件相关。

    阶段4:自约3.7 cal ka B.P.以来(A单元,190~0 cm),气候由湿润向干旱转型。EM1端元含量持续上升,EM3含量则逐渐下降,而代表高能洪水事件的EM4和EM5端元含量始终维持在低值,红度a*整体表现为高位波动(图5),表明该阶段沉积动力持续减弱,沉积物粒度趋于细化,区域气候可能正在由湿润向干旱方向演变。这一变化趋势与越西泥炭的有机碳积累速率显著降低[51]、落水洞与和尚洞石笋的δ18O值持续正偏[58,63],以及若尔盖泥炭的腐殖化度同步呈下降趋势[60]相一致(图9)。

    研究表明,“4.2 ka事件”期间亚洲季风区的水文气候演变呈现“干—湿—干”的三阶段变化特征[63-64]。东亚夏季风(EASM)减弱以及厄尔尼诺事件发生频率显著增强,导致明显的跨区域协同洪水频发现象[6566]。成都平原RS-1岩心沉积记录显示,在4.4~4.2 cal ka B.P.期间,区域气候呈现轻微的冷干化趋势,在4.2~3.7 cal ka B.P.期间,区域水动力增强、洪水事件频发,表现为湿润但不稳定的气候状态,而在3.7 cal ka B.P.之后,区域气候则逐步向干旱化演变。这一演化过程与亚洲季风区“4.2 ka事件”所表现出的典型气候模式基本一致[64]。其中,始于约4.4 cal ka B.P.的冷干化趋势,与亚洲季风区多个高分辨率石笋记录[1718,5859,6768]以及在季风区北部多个湖泊沉积物[66,69] 中反映的“4.2 ka事件”初始干旱阶段(4.5~4.3 cal ka B.P.)在时间尺度上也高度吻合。此外,成都平原在“4.2 ka事件”期间经历的洪水频发期,也与长江中下游与黄河流域发生的广泛洪水事件的时段相一致[1718,6566,7071]。因此,本研究认为“4.2 ka事件”对成都平原的气候与水文影响大约始于4.4 cal ka B.P.,并持续至约3.7 cal ka B.P.。成都平原对该事件的响应在时间和空间尺度上与亚洲季风区的整体演化趋势保持一致。

    在东亚季风区,“4.2 ka事件”期间的湿度变化呈现显著的区域分异特征[7172]。尽管该事件在成都平原亦表现出“干—湿—干”的双峰态特征,且事件初始干旱阶段的起始时间与亚洲季风区众多记录基本一致,但其湿度变化幅度明显弱于长江中下游及黄河流域。这种差异可能源于成都平原西侧龙门山地形对季风的强迫抬升作用,使得衰减后的夏季风仍能在该地区形成地形雨。成都平原是现代“华西雨屏带”的核心区域,年降水量高达1 200~2 000 mm,是我国降水最丰沛、日照时数最少的地区之一,被视为东亚季风区的“高降水中心”[73]。因此,地形效应在一定程度上削弱了“4.2 ka事件”初期在成都平原的干旱程度,却可能加剧了其后期洪水事件的强度。

    考古证据也表明,在约4.2~3.7 cal ka B.P.期间,该地区经历了洪水频发的极端水文阶段[6,7475],被认为是宝墩文化转型的关键驱动因素之一[1]。然而,与同期多地新石器文化的中断不同,宝墩文化并未终止,其延续性可能归因于古蜀先民长期应对洪水所积累的丰富治水经验及适应策略[57,76]。在文化发展的早期,宝墩聚落已构建夯土城墙抵御洪水侵袭,至晚期,在红桥村遗址中出现卵石护坡、竹笼络石等技术革新,进一步发展出集防洪、蓄水与护岸功能于一体的综合水利工程体系[1,7576]。因此,宝墩文化在“4.2 ka事件”期间展现出显著的文化韧性与环境适应能力,从而实现了文化的延续与发展。

  • RS-1岩心沉积物粒度可分解出5个端元,EM1代表在弱水动力条件下由河流远源悬浮物沉积形成的稳定沉积组分;EM2和EM3反映了较强水动力条件下的搬运与沉积过程,而EM3对应更强的水动力作用;EM4与EM5则反映洪水过程中粗颗粒物质的跃移沉积,代表极端水动力条件下的沉积事件。

    成都平原中—晚全新世的环境演化经历了以下四个阶段:(1)4.7~4.4 cal ka B.P.期间,降水量显著增加,气候整体湿润,但伴随明显的干、湿波动;(2)4.4~4.2 cal ka B.P.期间,气候趋于微弱冷干化;(3)4.2~3.7 cal ka B.P.期间,气候极端不稳定,洪水事件频繁发生,可能受到“4.2 ka事件”影响,其气候水文特征与亚洲夏季风区气候变化及区域考古证据一致;(4)3.7 cal ka B.P.之后,沉积动力持续减弱,气候干旱化趋势增强,该转型过程在时间与空间上与宝墩文化的衰退表现出显著耦合关系。“4.2 ka事件”对成都平原的区域气候演变产生了深远影响,其气候水文特征与长江、黄河流域在同期记录基本一致,体现出显著的区域协同性。

Reference (76)
Supplements:
附加数据.xlsx

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return