Advanced Search
Volume 43 Issue 5
Oct.  2025
Turn off MathJax
Article Contents

HU XiuMian, MA AnLin, WANG JianGang, JIANG JingXin, ZHANG ShiJie, XU YiWei, LAI Wen, DENG Tao, XUE WeiWei, AN Wei, WANG ChengShan. The Odyssey from Marine to Continental Transition in the Tibetan Plateau: A duet of tectonic and sea⁃level change[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1569-1591. doi: 10.14027/j.issn.1000-0550.2025.046
Citation: HU XiuMian, MA AnLin, WANG JianGang, JIANG JingXin, ZHANG ShiJie, XU YiWei, LAI Wen, DENG Tao, XUE WeiWei, AN Wei, WANG ChengShan. The Odyssey from Marine to Continental Transition in the Tibetan Plateau: A duet of tectonic and sea⁃level change[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1569-1591. doi: 10.14027/j.issn.1000-0550.2025.046

The Odyssey from Marine to Continental Transition in the Tibetan Plateau: A duet of tectonic and sea⁃level change

doi: 10.14027/j.issn.1000-0550.2025.046
  • Received Date: 2025-07-18
  • Accepted Date: 2025-10-10
  • Rev Recd Date: 2025-09-11
  • Available Online: 2025-10-10
  • Publish Date: 2025-10-15
  • Significance The timing and processes of ocean disappearance in the Tibetan Plateau region are of great significance for understanding plateau uplift, climate-environmental evolution, and biodiversity development. Progress Through systematically compiling stratigraphic and geochronological data of the youngest marine sequen-ces since the Mesozoic in the Tibetan Plateau, the marine basins fall into two categories based on their basin-forming mechanisms. The remnant sea is a continental-marginal basin that persists after the ocean-crust disappears; its sediments are preserved within suture zones and on adjacent continental margins. The epicontinental seaway formed by marine incursions onto pre-existing land, leaving their deposited sediments overlying continental interiors. Three remnant seas on the Tibetan Plateau vanished in north-to-south order: the Jinsha remnant sea at the end of the Triassic; the Bangong-Nujiang remnant sea in the latest Jurassic to Early Cretaceous; and the Yarlung Zangbo remnant sea in middle Eocene time. Their vanish disappearance closely corresponded to the collision of Qiangtang terrane with Asia, the Lhasa-Qiangtang collision, and the India-Asia collision, respectively. Six epicontinental seaways in the Tibetan Plateau formed and retreated in agreement with global sea-level changes: the Northern Qiangtang and Ganzi seaways in the Middle-Late Jurassic; the Northern Lhasa seaway in the Early Cretaceous; the Aksai Chin seaway in the Late Cretaceous, the Tarim seaways in the Late Cretaceous-Eocene, and Lesser Himalaya in the middle Eocene. These seaway intervals correspond to global sea-level highstands, and the demise of both the Lesser Himalaya and Tarim seaways aligns with sustained global sea-level fall. Conclusions and Prospects We concluded that marine-continental transitions in the Tibetan Plateau were jointly governed by tectonics and global sea-level fluctuations, with important implications for understanding the regional climate and environmental evolution.
  • [1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
    [2] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396.
    [3] Spicer R A, Farnsworth A, Su T, et al. The progressive co-evolutionary development of the Pan-Tibetan Highlands, the Asian monsoon system and Asian biodiversity[J]. Geological Society, London, Special Publications, 2025, 549: 55-112.
    [4] 章炳高,穆西南. 西藏雅鲁藏布江以北海相第三系的发现[J]. 地层学杂志,1979,3(1):65-66.

    Zhang Binggao, Mu Xinan. Discovery of marine Tertiary north of the Yarlung Zangbo River, Tibet[J]. Journal of Stratigraphy, 1979, 3(1): 65-66.
    [5] 郝诒纯,万晓樵. 西藏定日的海相白垩、第三系[J]. 青藏高原地质文集,1985(2):227-232.

    Hao Yichun, Wan Xiaoqiao. The marine Cretaceous and Tertiary strata of Tingri, Xizang (Tibet)[J]. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 1985(2): 227-232.
    [6] 万晓樵. 西藏第三纪有孔虫生物地层及地理环境[J]. 现代地质,1987,1(1):15-47.

    Wan Xiaoqiao. Foraminifera biostratigraphy and paleogeography of the Tertiary in Tibet[J]. Geoscience, 1987, 1(1): 15-47.
    [7] 李祥辉,王成善,胡修棉,等. 朋曲组:西藏南部最高海相层位一个新的地层单元[J]. 地层学杂志,2000,24(3):243-248.

    Li Xianghui, Wang Chengshan, Hu Xiumian, et al. The Pengqu Formation: A new Eocene stratigraphical unit in Tingri area, Tibet[J]. Journal of Stratigraphy, 2000, 24(3): 243-248.
    [8] 李祥辉,吴铬,王成善,等. 西藏措勤盆地古生界—中生界岩相古地理演化[J]. 成都理工学院学报,2001,28(4):331-339.

    Li Xianghui, Wu Ge, Wang Chengshan, et al. Paleozoic to Mesozoic changes of lithofacies and paleogeography of the Coqen Basin, central Tibet[J]. Journal of Chengdu University of Technology, 2001, 28(4): 331-339.
    [9] 万晓樵,丁林,李建国,等. 西藏仲巴地区白垩纪末期—始新世早期海相地层[J]. 地层学杂志,2001,25(4):267-272.

    Wan Xiaoqiao, Ding Lin, Li Jianguo, et al. Latest Cretaceous to Early Eocene marine strata in the Zhongba region, Tibet[J]. Journal of Stratigraphy, 2001, 25(4): 267-272.
    [10] 李国彪,万晓樵,刘文灿,等. 藏南萨迦县赛区“混杂岩”放射虫的发现及其意义[J]. 地质通报,2003,22(11):949-955.

    Li Guobiao, Wan Xiaoqiao, Liu Wencan, et al. Discovery of Cretaceous radiolarians in "mélanges" in Saiqu, Sa'gya, southern Tibet, and its geological significance[J]. Geological Bulletin of China, 2003, 22(11): 949-955.
    [11] 李祥辉,张洁. 海平面及海平面变化综述[J]. 岩相古地理,1999,19(4):61-72,41.

    Li Xianghui, Zhang Jie. A review of sea level and sea level changes[J]. Sedinentary Facica and Palaeogeography, 1999, 19(4): 61-72, 41.
    [12] 王成善,李祥辉,万晓樵,等. 西藏南部江孜地区白垩系的厘定[J]. 地质学报,2000,74(2):97-107.

    Wang Chengshan, Li Xianghui, Wan Xiaoqiao, et al. The Cretaceous in Gyangze, southern Xizang (Tibet): Redefined[J]. Acta Geologica Sinica, 2000, 74(2): 97-107.
    [13] Wang C S, Li X H, Hu X M, et al. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of tethys seaway and collision tectonics[J]. Terra Nova, 2002, 14(2): 114-120.
    [14] 尹集祥,孙晓兴,孙亦因,等. 西藏南部日喀则地区双磨拉石带磨拉石岩系的地层学研究[J]. 国科学院地质研究所集刊,1988,3:159-176.

    Yin Jixiang, Sun Xiaoxing, Sun Yiyin, et al. Stratigraphic study of the Shuangmoluo Formation in the Rikaze area, southern Tibet[J]. Journal of the Institute of Geology, Chinese Academy of Sciences, 1988, 3: 159-176.
    [15] 刘成杰,尹集详,孙晓兴,等. 西藏南部日喀则弧前盆地非复理石型海相上白垩统—下第三系[J]. 中国科学院地质研究所集刊,1988(3):130-157.

    Liu Chengjie, Yin Jixiang, Sun Xiao-xing, et al. The non-turbidite marine Upper Cretaceous-Lower Tertiary in the Rikaze forearc basin, southern Tibet[J]. Journal of the Institute of Geology, Chinese Academy of Sciences, 1988(3): 130-157.
    [16] 万晓樵,丁林. 西藏吉隆白垩纪末期浮游有孔虫的发现及其年代意义[J]. 古生物学报,2002,41(1):89-95.

    Wan Xiaoqiao, Ding Lin. Discovery of the latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostratigraphic significance[J]. Acta Palaeontologica Sinica, 2002, 41(1): 89-95.
    [17] 章炳高. 西藏的圆笠虫(OrbitoLina)动物群[M]. 青藏高原科学考察丛书,西藏古生物(第四分册). 北京:科学出版社,1982.

    Zhang Binggao. The OrbitoLina fauna in Tibet[M]. Scientific expedition to the Qinghai-Tibet Plateau, Tibetan paleobiology (Volume 4). Beijing: Science Press, 1982.
    [18] 章炳高. 申扎、班戈早白垩世圆笠虫[J]. 中国科学院南京地质古生物学研究所丛刊,1986(10):101-122.

    Zhang Binggao. Early Cretaceous OrbitoLina from Shenzha and Bangor[J]. Bulletin of the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 1986(10): 101-122.
    [19] 杨遵仪,聂泽同,吴顺宝,等. 西藏阿里地区白垩纪固着蛤类及其地质意义[J]. 地质学报,1982(4):293-300.

    Yang Zunyi, Nie Zetong, Wu Shunbao, et al. Cretaceous rudists from Ngari, Xizang (Tibet), autonomous region, China and their geologic significance[J]. Acta Geologica Sinica, 1982(4): 293-300.
    [20] 苟宗海. 西藏革吉地区白垩纪的固着蛤类(RUDISTS)化石[J]. 西藏地质,1994(1):128-138.

    Gou Zonghai. The Cretaceous rudist fossils in Geji area of Tibet[J]. Tibet Geology, 1994(1): 128-138.
    [21] Scott R W, Wan X Q, Sha J G, et al. Rudists of Tibet and the Tarim Basin, China: Significance to Requieniidae phylogeny[J]. Journal of Paleontology, 2010, 84(3): 444-465.
    [22] Rao X, Skelton P W, Sha J G, et al. Mid-Cretaceous rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa Block, Tibet[J]. Papers in Palaeontology, 2015, 1(4): 401-424.
    [23] 余光明,王成善. 西藏特提斯沉积地质[M]. 北京:地质出版社,1990.

    Yu Guangming, Wang Chengshan. Sedimentary ge-ology of the tethys in Tibet[M]. Beijing: Geological Publishing House, 1990.
    [24] 陈明,王剑,谭富文,等. 措勤盆地下白垩统郎山组生物礁的平面分布特征及意义探讨[J]. 沉积与特提斯地质,2003,23(4):68-70.

    Chen Ming, Wang Jian, Tan Fuwen, et al. The planar distribution and significance of the organic reefs in the Lower Cretaceous Langshan Formation in the Coqen Basin, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(4): 68-70.
    [25] 李祥辉,曾庆高,吴铬,等. 西藏措勤盆地北部下白垩统层序地层特征[J]. 成都理工大学学报(自然科学版),2005,32(2):111-119.

    Li Xianghui, Zeng Qinggao, Wu Ge, et al. Lower Cretaceous sequence stratigraphy of northern Coqen Basin, central Tibet, China[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2005, 32(2): 111-119.
    [26] 万晓樵,吴雁华,李国彪. 西藏白垩纪中期Orbitolinids(有孔虫)的分布与古地理意义[J]. 地质学报,2003,77(1):1-8.

    Wan Xiaoqiao, Wu Yanhua, Li Guobiao. Distribution of mid-Cretaceous Orbitolinids in Xizang (Tibet) and its paleobiogeographic implications[J]. Acta Geologica Sinica, 2003, 77(1): 1-8.
    [27] Fu X G, Wang J, Qu W J, et al. Re-Os (ICP-MS) dating of marine oil shale in the Qiangtang Basin, northern Tibet, China[J]. Oil Shale, 2008, 25(1): 47-55.
    [28] 戴霜,张明震,彭栋祥,等. 中国西北地区中—新生代构造与气候格局演化[J]. 海洋地质与第四纪地质,2013,33(4):153-168.

    Dai Shuang, Zhang Mingzhen, Peng Dongxiang, et al. The Mesozoic-Cenozoic evolution of the tectonic and climatic patterns, NW China evolution of Meso-Cenozoic tectonic and climatic patterns in Northwest China[J]. Marine Geology and Quaternary Geology, 2013, 33(4): 153-168.
    [29] 潘桂棠,丁俊,姚冬生,等. 1:150万青藏高原及邻区1:150万地质图及说明书[M]. 成都:成都地图出版社,2004.

    Pan Guitang, Ding Jun, Yao Dongsheng, et al. Geological map of the Qinghai-Tibet Plateau and adjacent areas, 1: 1500000[M]. Chengdu: Chengdu Map Publishing House, 2004.
    [30] 朱迎堂,郭通珍,张雪亭,等. 青海西部可可西里湖地区晚三叠世诺利期地层的厘定及其意义[J]. 地质通报,2003,22(7):474-479.

    Zhu Yingtang, Guo Tongzhen, Zhang Xueting, et al. Discovery of Triassic Norian strata in the Hoh Xil Lake area, western Qinghai, and its geological significance[J]. Geological Bulletin of China, 2003, 22(7): 474-479.
    [31] 贾宝华,孟德保,柏道远,等. 中华人民共和国区域地质调查报告,比例尺:1:250000,银石山幅(J45C004002),比例尺1:250000[R]. 2003.

    Jia Baohua, Meng Debao, Bai Daoyuan, et al. Regional geological survey report of the People's Republic of China, scale: 1:250000, Yingshi Mountain Sheet (J45C004002)[R]. 2003.
    [32] Ma A L, Hu X M, Kapp P, et al. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506: 30-47.
    [33] Ma A L, Hu X M, Garzanti E, et al. Diachronous Cretaceous closure of the Bangong-Nujiang-Shyok Ocean (westernmost central Tibet)[J]. Tectonics, 2024, 43(12): e2024TC008280.
    [34] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.
    [35] Fan J J, Niu Y L, Liu Y M, et al. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141-135 Ma ocean island within the Bangong–Nujiang Suture Zone, Tibetan Plateau[J]. GSA Bulletin, 2021, 133(9/10): 1875-1889.
    [36] Hu X M, Wang J G, BouDagher-Fadel M, et al. New insights into the timing of the India–Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze Forearc Basin, South Tibet[J]. Gondwana Research, 2016, 32: 76-92.
    [37] Jiang J X, Hu X M, Li J, et al. Discovery of the Paleocene-Eocene Thermal Maximum in shallow-marine sediments of the Xigaze Forearc Basin, Tibet: A record of enhanced extreme precipitation and siliciclastic sediment flux[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110095.
    [38] Orme D A, Carrapa B, Kapp P. Sedimentology, provenance and geochronology of the Upper Cretaceous–Lower Eocene western Xigaze Forearc Basin, southern Tibet[J]. Basin Research, 2015, 27(4): 387-411.
    [39] 孙高远,王建刚,胡修棉,等. 西藏札达地区上白垩统—下始新统达机翁组:对冈底斯弧前盆地演化的制约[J]. 岩石学报,2018,34(6):1847-1861.

    Sun Gaoyuan, Wang Jiangang, Hu Xiumian, et al. Upper Cretaceous-Lower Eocene Dajiweng Formation in the Zhada area, southern Tibet: Implications for the Trans-Himalayan forearc baisn evolution[J]. Acta Petrologica Sinica, 2018, 34(6): 1847-1861.
    [40] Wang J G, Hu X M, BouDagher-Fadel M, et al. Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India–Asia collision[J]. Sedimentary Geology, 2015, 315: 1-13.
    [41] 胡修棉,李娟,安慰,等. 藏南白垩纪—古近纪岩石地层厘定与构造地层划分[J]. 地学前缘,2017,24(1):174-194.

    Hu Xiumian, Li Juan, An Wei, et al. The redefinition of Cretaceous-Paleogene lithostratigraphic units and tectonostratigraphic division in southern Tibet[J]. Earth Science Frontiers, 2017, 24(1): 174-194.
    [42] Jiang T, Aitchison J C, Wan X Q. The youngest marine deposits preserved in southern Tibet and disappearance of the Tethyan Ocean[J]. Gondwana Research, 2016, 32: 64-75.
    [43] Zhang Q, Zhang Q H, Ding L, et al. Seawater retreated from the Tethyan Himalaya of south Tibet at ca. 49 Ma, not ca. 34 Ma[J]. Geological Society of America Bulletin, 2025, 137(5/6): 1995-2015.
    [44] 朱迎堂,李建星,伊海生,等. 青藏高原东部玉树隆宝蛇绿混杂岩中早二叠世放射虫的发现及其地质意义[J]. 成都理工大学学报(自然科学版),2006,33(5):485-490.

    Zhu Yingtang, Li Jianxing, Yi Haisheng, et al. Early Permian radiolarians from the Longbao ophiolitic mélange in Yushu area, Qinghai-Tibet Plateau, China[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2006, 33(5): 485-490.
    [45] 张发德,岳天祥,宋令莉. 通天河上游墩日含煤岩系地层时代的新认识[J]. 青海地质,1998(2):6-10.

    Zhang Fade, Yue Tianxiang, Song Lingli. New recognition on the stratigraphic age of Dunri coal-bearing rock series in the upper reaches of Tongtian River[J]. Qinghai Geology, 1998(2): 6-10.
    [46] 辜学达,刘啸虎. 四川省岩石地层[M]. 武汉:中国地质大学出版社,1997.

    Gu Xueda, Liu Xiaohu. Stratigraphy (lithostratic) of Sichuan province[M]. Wuhan: China University of Geo-sciences Press, 1997.
    [47] 邓文诗,张丽霞,成永盛. 青海省下中侏罗统含煤岩系沉积特征及聚煤作用[J]. 中国煤炭地质,2009,21(增刊2):14-18,56.

    Deng Wenshi, Zhang Lixia, Cheng Yongsheng. Coal-bearing strata sedimentary features and coal accumulation process in lower middle series, Jurassic System, Qinghai province[J]. Coal Geology of China, 2009, 21(Suppl.2): 14-18, 56.
    [48] 李聪聪,孙顺新,乔军伟,等. 青藏高原北部煤系特征及煤系矿产研究方向初探[J]. 中国煤炭地质,2015,27(5):1-5,11.

    Li Congcong, Sun Shunxin, Qiao Junwei, et al. Coal measures features and mineral resources research orientation in northern Qinghai-Tibetan Plateau[J]. Coal Geology of China, 2015, 27(5): 1-5, 11.
    [49] 乔军伟. 青藏高原聚煤作用[D]. 徐州:中国矿业大学,2019.

    Qiao Junwei. Coal accumulation in the Qinghai-Tibet Plateau[D]. Xuzhou: China University of Mining and Technology, 2019.
    [50] 严松涛,朱利东,吴青松,等. 四川新龙地区甘孜—理塘蛇绿混杂岩带侏罗系地层沉积学、地球化学和年代学研究及其构造背景分析[J]. 岩石学报,2022,38(4):1149-1168.

    Yan Songtao, Zhu Lidong, Wu Qingsong, et al. Sedimentology, geoche-mistry and chronology of Jurassic in the Ganzi-Litang ophiolite mélange belt of Xinlong area, Sichuan and its tectonic setting[J]. Acta Petrologica Sinica, 2022, 38(4): 1149-1168.
    [51] Jackson Jr W T, Robinson D M, Weislogel A L, et al. Cenozoic development of the nonmarine Mula Basin in the southern Yidun terrane: Deposition and deformation in the eastern Tibetan Plateau associated with the India-Asia collision[J]. Tectonics, 2018, 37(8): 2446-2465.
    [52] Jackson Jr W T, Robinson D M, Weislogel A L, et al. Mesozoic development of nonmarine basins in the northern Yidun terrane: Deposition and deformation in the eastern Tibetan Plateau prior to the India-Asia collision[J]. Tectonics, 2018, 37(8): 2466-2485.
    [53] Ma A L, Hu X M, Garzanti E, et al. Sedimentary and tectonic evolution of the southern Qiangtang Basin: Implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 4790-4813.
    [54] Ma A L, Hu X M, Garzanti E, et al. Paleogeographic and tectonic evolution of Mesozoic Qiangtang basins (Tibet)[J]. Tectonophysics, 2023, 862: 229957.
    [55] Xue W W, Hu X M, Ma A L, et al. Eustatic and tectonic control on the evolution of the Jurassic North Qiangtang Basin, northern Tibet, China: Impact on the petroleum system[J]. Marine and Petroleum Geology, 2020, 120: 104558.
    [56] Meng J, Zhao X X, Wang C S, et al. Palaeomagnetism and detrital zircon U–Pb geochronology of Cretaceous redbeds from central Tibet and tectonic implications[J]. Geological Journal, 2018, 53(5): 2315-2333.
    [57] Ma A L, Hu X M, Garzanti E, et al. Mid-Cretaceous exhumation of the central Qiangtang Mountain range metamorphic rocks as evidenced by the Abushan continental redbeds[J]. Tectonics, 2023, 42(3): e2022TC007520.
    [58] Ma A L, Hu X M, Garzanti E, et al. Discovery of ≥ 105 Ma continental redbeds in the Qiangtang Block: Implications for the early uplift of central Tibet[J]. Mesozoic, 2024, 1(3): 340-348.
    [59] Xu Y W, Hu X M, Garzanti E, et al. Mid-Cretaceous thick carbonate accumulation in northern Lhasa (Tibet): Eustatic vs. tectonic control?[J]. GSA Bulletin, 2022, 134(1/2): 389-404.
    [60] Lai W, Hu X M, Garzanti E, et al. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision[J]. Gondwana Research, 2019, 73: 136-152.
    [61] BouDagher-Fadel M K, Hu X M, Price G D, et al. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the Mid-Cretaceous limestones in the southern Tibetan Plateau[J]. Journal of Foraminiferal Research, 2017, 47(2): 188-207.
    [62] Sun G Y, Hu X M, Sinclair H D. Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 101-118.
    [63] Xu Y W, Hu X M, BouDagher-Fadel M K, et al. The major Late Albian transgressive event recorded in the epeiric platform of the Langshan Formation in central Tibet[J]. Geological Society, London, Special Publications, 2020, 498(1): 211-232.
    [64] 叶加鹏,胡修棉,孙高远,等. 革吉最高海相层约束班怒残留海消亡时间(~94 Ma)[J]. 科学通报,2019,64(15):1620-1636.

    Ye Jiapeng, Hu Xiumian, Sun Gaoyuan, et al. The disappearance of the Late Cretaceous Bangong-Nujiang residual seaway constrained by youngest marine strata in Geji area, Lhasa Terrane[J]. Chinese Science Bulletin, 2019, 64(15): 1620-1636.
    [65] Wang J G, Hu X M, Garzanti E, et al. From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa Block and early topographic growth of Tibet[J]. GSA Bulletin, 2020, 132(11/12): 2432-2454.
    [66] Sun G Y, Hu X M, Sinclair H D, et al. Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau[J]. GSA Bulletin, 2015, 127(7/8): 1001-1020.
    [67] 孙高远,胡修棉. 拉萨地体中部上白垩统达雄组的建立及构造隆升意义[J]. 地质学报,2017,91(12):2623-2637.

    Sun Gaoyuan, Hu Xiumian. The establishment of the Upper Cretaceous Daxiong Formation in the central Lhasa Terrane and its implications for tectonic uplifting[J]. Acta Geologica Sinica, 2017, 91(12): 2623-2637.
    [68] Lai W, Hu X M, Garzanti E, et al. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)[J]. GSA Bulletin, 2019, 131(11/12): 1823-1836.
    [69] Gao B, Chen J T, Qie W, et al. Revisiting the paleogeographic framework of northeastern Gondwana in the Late Paleozoic: Implications from detrital zircon analysis[J]. Sedimentary Geology, 2022, 434: 106144.
    [70] Bosboom R, Dupont-Nivet G, Grothe A, et al. Timing, cause and impact of the Late Eocene stepwise sea retreat from the Tarim Basin (west China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403: 101-118.
    [71] Sun J M, Sha J G, Windley B F, et al. Late Eocene stepwise seawater retreat from the Pamir-Tian Shan convergence zone (Alay Valley) in the western Tarim Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 622: 111603.
    [72] Bosboom R, Dupont-Nivet G, Grothe A, et al. Linking Tarim Basin sea retreat (west China) and Asian aridification in the Late Eocene[J]. Basin Research, 2014, 26(5): 621-640.
    [73] Sun J M, Windley B F, Zhang Z L, et al. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the Late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116: 222-231.
    [74] 周志毅. 塔里木盆地各纪地层[M]. 北京:科学出版社,2001.

    Zhou Zhiyi. Stratigraphy of the Tarim Basin[M]. Beijing: Science Press, 2001.
    [75] Nicora A, Garzanti E, Fois E. Evolution of the Tethys Himalaya continental shelf during Maastrichtian to Paleocene (Zanskar, India)[J]. Rivista Italiana di Paleontologia e Stratigrafia, 1987, 92(4): 439-496.
    [76] Green O R, Searle M P, Corfield R I, et al. Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (Northwest India)[J]. The Journal of Geology, 2008, 116(4): 331-353.
    [77] DeCelles P G, Gehrels G E, Quade J, et al. Eocene-Early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal[J]. Tectonics, 1998, 17(5): 741-765.
    [78] DeCelles P G, Gehrels G E, Najman Y, et al. Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis[J]. Earth and Planetary Science Letters, 2004, 227(3/4): 313-330.
    [79] Najman Y, Carter A, Oliver G, et al. Provenance of Eocene foreland basin sediments, Nepal: Constraints to the timing and diachroneity of Early Himalayan orogenesis[J]. Geology, 2005, 33(4): 309-312.
    [80] Vermeesch P. Maximum depositional age estimation revisited[J]. Geoscience Frontiers, 2021, 12(2): 843-850.
    [81] Hurtig N C, Georgiev S V, Stein H J, et al. Re-Os systematics in petroleum during water-oil interaction: The effects of oil chemistry[J]. Geochimica et Cosmochimica Acta, 2019, 247: 142-161.
    [82] Sun Y Y, Liang Y, Liu H, et al. Mid-Miocene sea level altitude of the Qaidam Basin, northern Tibetan Plateau[J]. Communications Earth Environment, 2023, 4(1): 3.
    [83] 赵仁夫,朱迎堂,周庆华,等. 青海玉树地区三叠纪地层之下角度不整合面的发现及意义[J]. 地质通报,2004,23(5/6):616-619.

    Zhao Renfu, Zhu Yingtang, Zhou Qinghua, et al. Discovery of angular unconformity below Triassic strata in the Yushu area, Qinghai[J]. Geological Bulletin of China, 2004, 23(5/6): 616-619.
    [84] Cao Y, Xu Q, Tan X C, et al. Regional unconformities dating closure of the Paleo-Tethys Ocean in the Late Anisian (Middle Triassic)[J]. Geological Society of America Bulletin, 2025, 137(7/8): 3495-3511.
    [85] Ma A L, Hu X M, Kapp P, et al. Pre-Oxfordian (163 Ma) ophiolite obduction in central Tibet[J]. Geophysical Research Letters, 2020, 47(10): e2019GL086650.
    [86] Ma A L, Hu X M, Chew D, et al. A latest Jurassic to Early Cretaceous syn-collisional trench sequence in central Tibet recorded the role of microcontinents in Lhasa–Qiangtang collision[J]. Tectonics, 2025, 44(3): e2024TC008535.
    [87] Lai W, Hu X M, Ma A L, et al. From the southern Gangdese Yeba arc to the Bangong-Nujiang Ocean: Provenance of the Upper Jurassic-Lower Cretaceous Lagongtang Formation (northern Lhasa, Tibet)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 588: 110837.
    [88] 朱志才, 翟庆国, 胡培远, 等. 拉萨—羌塘地体碰撞时限: 来自班公湖—怒江缝合带中段多尼组沉积的约束[J]. 沉积学报, 2020, 38(4): 712-726.

    Zhu Zhicai, Zhai Qingguo, Hu Peiyuan, et al. Timing of the Lhasa-Qiangtang collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong-Nujiang suture zone[J]. Acta Sedimentologica Sinica, 2020, 38(4): 712-726
    [89] Hu Y L, Liu Z B, Wang G H, et al. Study of molasse within the middle segment of the Bangong-Nujiang suture zone, central Tibet: Constraints of ocean–continent transform[J]. Geological Journal, 2020, 55(10): 6625-6641.
    [90] 潘桂棠,郑海翔,徐耀荣,等. 初论班公湖—怒江结合带[J]. 青藏高原地质文集,1983(4):229-242.

    Pan Guitang, Zheng Haixiang, Xu Yaorong, et al. Priliminary study on Bangong Co-Nujiang Suture[J]. Collection of Qinghai-Tibet Plateau Geology, 1983(4): 229-242.
    [91] Hu X M, Garzanti E, Wang J G, et al. The timing of India-Asia collision onset–Facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299.
    [92] 闫臻,方爱民,潘裕生,等. 西藏达金砾岩沉积环境、有孔虫时代及其大地构造意义[J]. 自然科学进展,2005,15(5):565-571.

    Yan Zhen, Fang Aimin, Pan Yusheng, et al. Depositional environment of the Dajin conglomerate in Tibet, foraminiferal age, and its tectonic significance[J]. Progress in Natural Science, 2005, 15(5): 565-571.
    [93] 李顺,丁林,付佳俊,等. 西藏达金砾岩的沉积时代、物源及构造背景[J]. 岩石学报,2016,32(11):3537-3546.

    Li Shun, Ding Lin, Fu Jiajun, et al. Age, provenance and tectonic setting of Dajin conglomerate, Tibet[J]. Acta Petrologica Sinica, 2016, 32(11): 3537-3546.
    [94] Henderson A L, Foster G L, Najman Y. Testing the application of in situ Sm–Nd isotopic analysis on detrital apatites: A provenance tool for constraining the timing of India–Eurasia collision[J]. Earth and Planetary Science Letters, 2010, 297(1/2): 42-49.
    [95] Ding L, Kapp P, Wan X Q. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3): TC3001.
    [96] DeCelles P G, Kapp P, Gehrels G E, et al. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision[J]. Tectonics, 2014, 33(5): 824-849.
    [97] Hu X M, Garzanti E, Moore T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian (Middle Paleocene, 59±1 Ma)[J]. Geology, 2015, 43(10): 859-862.
    [98] An W, Hu X M, Garzanti E, et al. New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma[J]. Geophysical Research Letters, 2021, 48(3): e2020GL090641.
    [99] Zhu B, Kidd W S F, Rowley D B, et al. Age of initiation of the India-Asia collision in the east-central Himalaya[J]. The Journal of Geology, 2005, 113(3): 265-285.
    [100] Najman Y, Appel E, Boudagher-Fadel M, et al. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12416.
    [101] Hu X M, Sinclair H D, Wang J G, et al. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India-Asia initial collision[J]. Basin Research, 2012, 24(5): 520-543.
    [102] Zhang Q H, Willems H, Ding L, et al. Initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: Evidence from stratigraphy and paleontology[J]. The Journal of Geology, 2012, 120(2): 175-189.
    [103] Hoshina K, Wang Y S, Jiang S J, et al. Eocene calcareous nannofossils from southern Tibet: Paleoceanographic implications for the closure of the eastern Tethys Ocean[J]. Marine Micro-paleontology, 2021, 167: 102031.
    [104] Garzanti E, Baud A, Mascle G. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India)[J]. Geodinamica Acta, 1987, 1(4/5): 297-312.
    [105] 陶君容. 西藏拉孜县柳区组植物化石组合及古气候意义[J]. 中国科学院地质研究所集刊,1988,3:223-238.

    Tao Junrong. Plant fossil assemblages of the Liuqu Formation in Lazha county, Tibet and their paleoclimatic significance[J]. Journal of the Institute of Geology, Chinese Academy of Sciences, 1988, 3: 223-238.
    [106] 方爱民,闫臻,刘小汉,等. 藏南柳区砾岩中古植物化石群的时代及其在大地构造上的意义[J]. 自然科学进展,2004,14(12):1419-1427.

    Fang Aimin, Yan Zhen, Liu Xiaohan, et al. The age of the paleobotanical fossil group in the Liubu conglomerate of southern Tibet and its tectonic significance[J]. Progress in Natural Science, 2004, 14(12): 1419-1427.
    [107] 韦利杰,刘小汉,严富华,等. 藏南古近系柳区砾岩孢粉化石的发现及初步研究[J]. 微体古生物学报,2009,26(3):249-260.

    Wei Lijie, Liu Xiaohan, Yan Fuhua, et al. Discovery and preliminary study on palynofossils from the Paleogene Liuqu conglomerates in southern Xizang (Tibet)[J]. Acta Micropalaeontologica Sinica, 2009, 26(3): 249-260.
    [108] Li G W, Kohn B, Sandiford M, et al. Constraining the age of Liuqu conglomerate, southern Tibet: Implications for evolution of the India–Asia collision zone[J]. Earth and Planetary Science Letters, 2015, 426: 259-266.
    [109] Leary R J, DeCelles P G, Quade J, et al. The Liuqu conglomerate, southern Tibet: Early Miocene basin development related to deformation within the Great Counter Thrust system[J]. Lithosphere, 2016, 8(5): 427-450.
    [110] Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production[J]. GSA Bulletin, 2010, 122(11/12): 2041-2062.
    [111] 王康明,龙斌,李雁龙,等. 四川木里海相侏罗纪地层的发现及地质意义[J]. 地质通报,2002,21(7):421-427.

    Wang Kangming, Long Bin, Li Yanlong, et al. Discovery of marine Jurassic strata at Muli, Sichuan, and its geological implications[J]. Geological Bulletin of China, 2002, 21(7): 421-427.
    [112] 王全伟,戴宗明,阚泽忠,等. 川西甘孜—理塘构造带侏罗纪海相地层的特征[J]. 地质通报,2009,28(7):907-914.

    Wang Quanwei, Dai Zongming, Kan Zezhong, et al. Marine Jurassic strata of Graze-Litang structural belt in western Sichuan, China[J]. Geological Bulletin of China, 2009, 28(7): 907-914.
    [113] 王全伟,王康明,阚泽忠,等. 川西甘孜—理塘构造带侏罗纪地层特征及其与邻区的对比[J]. 沉积与特提斯地质,2009,29(2):86-92.

    Wang Quanwei, Wang Kangming, Kan Zezhong, et al. Division and correlation of the Jurassic strata in the Garze-Litang structural zone, western Sichuan and its adjacent areas[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(2): 86-92.
    [114] 宁括步,毛世东,梁龙飞,等. 川西甘孜-理塘结合带碳酸盐岩碳氧同位素特征[J]. 沉积与特提斯地质,2018,38(3):106-112.

    Ning Kuobu, Mao Shidong, Liang Longfei, et al. Carbon and oxygen isotopic analysis of the carbonate rocks in the Garze-Litang suture zone, western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(3): 106-112.
    [115] 刘祥,詹琼窑,朱弟成,等. 松潘—甘孜褶皱带南部上三叠统物源及构造抬升:碎屑锆石年代学和Hf同位素证据[J]. 岩石学报,2021,37(11):3513-3538.

    Liu Xiang, Zhan Qiongyao, Zhu Dicheng, et al. Provenance and tectonic uplift of the Upper Triassic strata in the southern Songpan-Ganzi fold belt, SW China: Evidence from detrital zircon geochronology and Hf isotope[J]. Acta Petrologica Sinica, 2021, 37(11): 3513-3538.
    [116] Ding L, Yang D, Cai F L, et al. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean[J]. Tectonics, 2013, 32(1): 34-48.
    [117] 李建国,饶馨,牟林,等. 青藏高原及其周边侏罗纪综合地层、生物群与古地理演化[J]. 中国科学:地球科学,2024,54(4):1211-1243.

    Li Jianguo, Rao Xin, Mou Lin, et al. Jurassic integrative stratigraphy, biotas, and paleogeographical evolution of the Qinghai-Tibetan Plateau and its surrounding areas[J]. Science China Earth Sciences, 2024, 54(4): 1211-1243.
    [118] He S L, Ding L, Xiong Z Y, et al. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet[J]. Science Bulletin, 2022, 67(21): 2245-2258.
    [119] 薛伟伟, 马安林, 胡修棉. 羌塘盆地侏罗系—白垩系岩石地层格架厘定[J]. 地质论评, 2020, 66(5): 1114-1129.

    Xue Weiwei, Ma Anlin, Hu Xiumian. The redefinition of the Jurassic-Cretaceous lithostratigraphic framework in the Qiangtang Basin, Xizang Plateau[J]. Geological Review, 2020, 66: 1114-1129.
    [120] Fang X M, Song C H, Yan M D, et al. Mesozoic litho-and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites[J]. Gondwana Research, 2016, 37: 110-129.
    [121] Xu Y W, Lai W, Hu X M. Palaeoenvironmental analysis of the Langshan Formation in the Xiongba area[J]. Mesozoic, 2024, 1(3): 379-388.
    [122] Han X, Dai J G, Lin J, et al. The Middle Cretaceous (110-94 Ma) evolution of Tangza Basin in the western Tibetan Plateau and implications for initial topographic growth of northern Lhasa[J]. GSA Bulletin, 2021, 133(5/6): 1283-1300.
    [123] 新疆维吾尔自治区区域地层表编写组. 西北地区区域地层表:新疆维吾尔自治区分册[M]. 北京:地质出版社,1981.

    Compiling Group for Xinjiang Regional Stratigraphic Chart. Regional stratigraphic chart of northwestern China, branch of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Publishing House, 1981.
    [124] Burtman V S, Molnar P. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geological Society of America Special Paper 281, 1993: 1-76.
    [125] 文世宣,孙东立,尹集祥,等. 第二章:地层. 潘裕生,文世宣,孙东立. 喀喇昆仑山—昆仑山地区地质演化[M]. 北京:科学出版社,2000.

    Wen Shixuan, Sun Dongli, Yin Jixiang, et al. Chapter 2: Stratigraphy. Pan Yusheng, Wen Shixuan, Sun Dongli. Geological evolution of the Karakoram-Kunlun region[M]. Beijing: Science Press, 2000.
    [126] Zhang S J, Hu X M, Garzanti E. Paleocene initial indentation and early growth of the Pamir as recorded in the western Tarim Basin[J]. Tectonophysics, 2019, 772: 228207.
    [127] Gao B T, Zhang Q H, Ding L, et al. Age of the latest marine sedimentation in the western Kunlun area constrained by planktic foraminifera[J]. Palaeoworld, 2023, 32(3): 490-508.
    [128] 唐天福,杨恒仁,兰琇,等. 新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性[M]. 北京:科学出版社,1989.

    Tang Tianfu, Yang Hengren, Lan Xiu, et al. Cretaceous to Early Tertiary marine strata and oil-bearing properties in the western Tarim Basin, Xinjiang[M]. Beijing: Science Press, 1989.
    [129] 唐天福,薛耀松,俞从流,等. 新疆塔里木盆地西部晚白垩世至早第三纪海相沉积特征及沉积环境[M]. 北京:科学出版社,1992.

    Tang Tianfu, Xue Yaosong, Yu Congliu, et al. Marine sedimentary characteristics and sedimentary environment from Late Cretaceous to Early Tertiary in the western Tarim Basin, Xinjiang[M]. Beijing: Science Press, 1992.
    [130] Zhang S J, Hu X M, Han Z, et al. Climatic and tectonic controls on Cretaceous-Palaeogene sea-level changes recorded in the Tarim epicontinental sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 501: 92-110.
    [131] Kaya M Y, Dupont-Nivet G, Proust J N, et al. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma[J]. Basin Research, 2019, 31(3): 461-486.
    [132] Jiang L L, Li Y T. Analysis of landscape pattern evolution and impact factors in the Mainstream Basin of the Tarim River from 1980 to 2020[J]. Hydrology, 2024, 11(7): 93.
    [133] Boucot A J, Xu C, Scotese C R, et al. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate[M]. Tulsa: SEPM, 2013.
    [134] Fang X, Deyan Z, Kang C, et al. Early Cretaceous paleoclimate characteristics of China: Clues from continental climate‐indicative sediments[J]. Acta Geologica Sinica‐English Edition, 2015, 89(4): 1307-1318.
    [135] 邓胜徽,卢远征,赵怡,等. 中国侏罗纪古气候分区与演变[J]. 地学前缘,2017,24(1):106-142.

    Deng Shenghui, Lu Yuanzheng, Zhao Yi, et al. The Jurassic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers, 2017, 24(1): 106-142.
    [136] 徐斌,向芳,李树霞. 中国晚白垩世陆相气候敏感性沉积物分布对古气候指示[J]. 煤田地质与勘探,2021,49(5):190-199.

    Xu Bin, Xiang Fang, Li Shuxia. Distribution characteristics and paleo-climatic significance of continental climate-sensitive sediments in the Late Cretaceous in China[J]. Coal Geology Exploration, 2021, 49(5): 190-199.
    [137] Sakai H. Geology of the Tansen Group of the Lesser Himalaya in Nepal[J]. Memoirs of the Faculty of Science, Kyūsyū University. Series D, Geology, 1983, 25(1): 27-74.
    [138] Ravikant V, Wu F Y, Ji W Q. U–Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 356-368.
    [139] Colleps C L, McKenzie N R, Horton B K, et al. Sediment pro-venance of pre- and post-collisional Cretaceous-Paleogene strata from the frontal Himalaya of northwest India[J]. Earth and Planetary Science Letters, 2020, 534: 116079.
    [140] Matsumaru K, Sakai H. Nummulites and Assilina from Tansen area, Palpa district, the Nepal Lesser Himalayas[C]//Transactions and proceedings of the paleontological society of Japan. New Series. Palaeontological Society of Japan, 1989, 1989(154): 68-76.
    [141] Bera M K, Sarkar A, Chakraborty P P, et al. Marine to continental transition in Himalayan foreland[J]. GSA Bulletin, 2008, 120(9/10): 1214-1232.
    [142] Ahmad S, Kroon D, Rigby S, et al. Paleogene Nummulitid biostratigraphy of the Kohat and Potwar basins in north-western Pakistan with implications for the timing of the closure of eastern Tethys and uplift of the western Himalayas[J]. Stratigraphy, 2017, 13(4): 277-301.
    [143] Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level, part 4: global cycles of relative changes of sea level[J]. AAPG Bulletin, 1977, 26: 83-97.
    [144] Haq B U, Hardenbol J A N, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
    [145] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
    [146] 孙镇城,杨革联,乔子真,等. 我国咸化湖泊沉积中钙质超微化石特征及其地质意义[J]. 古地理学报,2002,4(2):56-63.

    Sun Zhencheng, Yang Gelian, Qiao Zizhen, et al. Characteristics and geologic significance of calcareous nanofossils in sediments of terrestrial salinized lakes[J]. Journal of Palaeogeography, 2002, 4(2): 56-63.
    [147] Ma J, Wu C D, Uveges B T, et al. Biomarkers reveal Eocene marine incursions into the Qaidam Basin, north Tibetan Plateau[J]. Organic Geochemistry, 2022, 166: 104380.
    [148] 郝诒纯,曾学鲁,裘松余,等. 新疆塔里木盆地中新世有孔虫及其地质意义[J]. 中国地质科学院院报,1982(4):69-79,81-82.

    Hao Yichun, Zeng Xuelu, Qiu Songyu, et al. Miocene foraminifera of Tarim Basin, Xinjiang and their geological significance[J]. Bulletin of the Chinese Academy of Geological Sciences, 1982(4): 69-79, 81-82.
    [149] 裘松余. 塔里木盆地中中新世有孔虫群及其生态和生油性分析[J]. 石油实验地质,1990,12(1):87-97.

    Qiu Songyu. The analysis on Middle Miocene foraminiferal fauna of the Tarim Basin and their ecology, property of stratigraphic oil- source potential[J]. Experimental Petroleum Geology, 1990, 12(1): 87-97.
    [150] 郭宪璞,丁孝忠,何希贤,等. 塔里木盆地中新生代海侵和海相地层研究的新进展[J]. 地质学报,2002,76(3):299-307.

    Guo Xianpu, Ding Xiaozhong, He Xixian, et al. New pro-gress in the study of marine transgressional events and marine strata of the Meso-Cenozoic in the Tarim Basin[J]. Acta Geologica Sinica, 2002, 76(3): 299-307.
    [151] Ritts B D, Yue Y J, Graham S A, et al. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan[J]. American Journal of Science, 2008, 308(5): 657-678.
    [152] Ji J L, Zhang K X, Clift P D, et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam Basin: Implications for the growth of the northeastern Tibetan Plateau[J]. Gondwana Research, 2017, 46: 141-155.
    [153] Wang W T, Zheng W J, Zhang P Z, et al. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8(1): 15887.
    [154] Ge M J, Wu L, Wu S T, et al. Late Oligocene formation of the Qaidam Basin revealed by calcite U-Pb dating: Insights into the northward growth of Tibetan Plateau[J]. Earth and Planetary Science Letters, 2025, 653: 119208.
    [155] Zeng D, Ding L, Spicer R A, et al. Direct dating of Qaidam Basin stratigraphy, northern Tibet[J]. Earth and Planetary Science Letters, 2025, 664: 119440.
    [156] 范和平,杨金泉,张平. 藏北地区的晚侏罗世地层[J]. 地层学杂志,1988,12(1):66-70.

    Fan Heping, Yang Jinquan, Zhang Ping. The Late Jurassic strata in the northern Tibet region[J]. Journal of Stratigraphy, 1988, 12(1): 66-70.
    [157] 伊海生,林金辉,赵兵,等. 藏北羌塘地区地层新资料[J]. 地质论评,2003,49(1):59-65.

    Yi Haisheng, Lin Jinhui, Zhao Bing, et al. New biostratigraphic data of the Qiangtang area in the northern Tibetan Plateau[J]. Geological Review, 2003, 49(1): 59-65.
    [158] 方德庆,梁定益. 北羌塘盆地中部上侏罗统研究新进展[J]. 地层学杂志,2000,24(2):163-167.

    Fang Deqing, Liang Dingyi. New advances in the research on the Upper Jurassic in the middle of the north Qiangtang Basin[J]. Journal of Stratigraphy, 2000, 24(2): 163-167.
    [159] 王剑,付修根,杜安道,等. 羌塘盆地胜利河海相油页岩地球化学特征及Re-Os定年[J]. 海相油气地质,2007,12(3):21-26.

    Wang Jian, Fu Xiugen, Du Andao, et al. Organic geochemistry and Re-Os dating of marine oil shale in Shenglihe area, northern Tibet, China[J]. Marine Origin Petroleum Geology, 2007, 12(3): 21-26.
    [160] 吴滔,熊兴国,易成兴,等. 北羌塘坳陷胜利河组膏岩沉积环境[J]. 新疆石油地质,2010,31(4):376-378.

    Wu Tao, Xiong Xingguo, Yi Chengxing, et al. Gypsolyte sedimentary environment of Upper Jurassic-Lower Cretaceous in Shenglihe area in northern Qiangtang Basin[J]. Xinjiang Petroleum Geology, 2010, 31(4): 376-378.
    [161] 付修根,王剑,曾玉红,等. 羌塘中生代盆地大洋缺氧事件及全球对比[J]. 地质论评,2020,66(5):1130-1142.

    Fu Xiugen, Wang Jian, Zeng Yuhong, et al. Oceanic anoxic events in the Mesozoic Qiangtang Basin and global comparison[J]. Geological Review, 2020, 66(5): 1130-1142.
    [162] Wang X C, Li J. Re-Os dating of the Shenglihe marine oil shale, north Tibet:A development method for direct dating crude oil[J]. Second Annual Conference for Key Laboratory for Sedimentary Carbon-Isotope Record and Paleoceanographic Changes Prior to the OAE 1a Basin and Oil and Gas Resources, 2013, 6 Abstract.
    [163] Fu X G, Wang J, Wen H G, et al. Carbon-isotope record and paleoceanographic changes prior to the OAE 1a in the eastern Tethys: Implication for the accumulation of organic-rich sediments[J]. Marine and Petroleum Geology, 2020, 113: 104049.
    [164] Yin J R. The age of the Bailongbinghe Formation and the oil shales in northern Qiangtang (North Tibet)[J]. PalZ, 2023, 97(1): 179-207.
    [165] 徐钰林. 西藏南部早第三纪钙质超微化石及东特提斯在西藏境内的封闭时限[J]. 现代地质,2000,14(3):255-262.

    Xu Yulin. Early Tertiary calcareous nannofossils from southern Tibet and the closing time of East Tethys in Tibet[J]. Geoscience, 2000, 14(3): 255-262.
    [166] Zhang Q H, Willems H, Ding L. Evolution of the Paleocene-Early Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China[J]. International Journal of Earth Sciences, 2013, 102(5): 1427-1445.
    [167] 万晓樵. 西藏白垩纪—早第三纪有孔虫与特提斯—喜马拉雅海的演化[J]. 微体古生物学报,1990,7(2):169-186.

    Wan Xiaoqiao. Cretaceous-Early Tertiary foraminifera of Xizang (Tibet) and evolution of the Tethys-Himalayan sea[J]. Acta Micropalaeontologica Sinica, 1990, 7(2): 169-186.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article Metrics

Article views(10) PDF downloads(0) Cited by()

Proportional views
Related
Publishing history
  • Received:  2025-07-18
  • Revised:  2025-09-11
  • Accepted:  2025-10-10
  • Published:  2025-10-15

The Odyssey from Marine to Continental Transition in the Tibetan Plateau: A duet of tectonic and sea⁃level change

doi: 10.14027/j.issn.1000-0550.2025.046

Abstract: Significance The timing and processes of ocean disappearance in the Tibetan Plateau region are of great significance for understanding plateau uplift, climate-environmental evolution, and biodiversity development. Progress Through systematically compiling stratigraphic and geochronological data of the youngest marine sequen-ces since the Mesozoic in the Tibetan Plateau, the marine basins fall into two categories based on their basin-forming mechanisms. The remnant sea is a continental-marginal basin that persists after the ocean-crust disappears; its sediments are preserved within suture zones and on adjacent continental margins. The epicontinental seaway formed by marine incursions onto pre-existing land, leaving their deposited sediments overlying continental interiors. Three remnant seas on the Tibetan Plateau vanished in north-to-south order: the Jinsha remnant sea at the end of the Triassic; the Bangong-Nujiang remnant sea in the latest Jurassic to Early Cretaceous; and the Yarlung Zangbo remnant sea in middle Eocene time. Their vanish disappearance closely corresponded to the collision of Qiangtang terrane with Asia, the Lhasa-Qiangtang collision, and the India-Asia collision, respectively. Six epicontinental seaways in the Tibetan Plateau formed and retreated in agreement with global sea-level changes: the Northern Qiangtang and Ganzi seaways in the Middle-Late Jurassic; the Northern Lhasa seaway in the Early Cretaceous; the Aksai Chin seaway in the Late Cretaceous, the Tarim seaways in the Late Cretaceous-Eocene, and Lesser Himalaya in the middle Eocene. These seaway intervals correspond to global sea-level highstands, and the demise of both the Lesser Himalaya and Tarim seaways aligns with sustained global sea-level fall. Conclusions and Prospects We concluded that marine-continental transitions in the Tibetan Plateau were jointly governed by tectonics and global sea-level fluctuations, with important implications for understanding the regional climate and environmental evolution.

HU XiuMian, MA AnLin, WANG JianGang, JIANG JingXin, ZHANG ShiJie, XU YiWei, LAI Wen, DENG Tao, XUE WeiWei, AN Wei, WANG ChengShan. The Odyssey from Marine to Continental Transition in the Tibetan Plateau: A duet of tectonic and sea⁃level change[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1569-1591. doi: 10.14027/j.issn.1000-0550.2025.046
Citation: HU XiuMian, MA AnLin, WANG JianGang, JIANG JingXin, ZHANG ShiJie, XU YiWei, LAI Wen, DENG Tao, XUE WeiWei, AN Wei, WANG ChengShan. The Odyssey from Marine to Continental Transition in the Tibetan Plateau: A duet of tectonic and sea⁃level change[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1569-1591. doi: 10.14027/j.issn.1000-0550.2025.046
  • 青藏高原由多块地体拼贴而成[1]。在板块碰撞拼合过程中,大洋随之消失、海水逐渐退出,随后出现地貌隆升,这些过程共同构成了青藏高原早期的演化历史。海洋的消亡不仅是区域地貌隆升的起点,还对区域气候—环境、生物多样性以及全球洋流系统等造成重要影响[23]

    长期以来,地质学家特别是中国学者围绕青藏高原海洋消亡的时间和过程开展了大量卓有成效的研究工作。喜马拉雅珠穆朗玛峰地区早新生代海相地层自第一次青藏高原科学考察以来受到了高度关注,在地层学和古生物学方面获得了大量研究成果[410];在海相灰岩之上发现海陆过渡相碎屑岩地层,确定其为喜马拉雅地区最高海相地层[1113]。萨嘎和仲巴地区的加拉孜组被确定为新特提斯活动大陆边缘的最高海相层[9,1416]。前人针对北拉萨最年轻海相层郎山组的时代[1722]、沉积环境[2324]和古地理[8,2526]开展了诸多探索性研究。从目前积累的资料看,西藏南部最年轻海相地层及最终海退时间的研究较深入,而青藏高原北部相关的资料较少[2728]

    本文以近年来国内外学者针对青藏高原海陆变迁研究的最新成果为基础,系统总结了青藏高原各地体和缝合带中生代以来最年轻海相层的分布和时代(图1),尝试重建青藏高原地区最终海退的时间和空间变化,探讨其控制因素。

    Figure 1.  Tectonic map of the Tibetan Plateau and surrounding areas (modified from reference [29])

  • 青藏高原主体位于北部塔里木—华北地块和南部印度次大陆之间,由一系列东西走向的地体组成,从北向南依次为东昆仑地块、羌塘地块、拉萨地块和喜马拉雅地块。它们之间有三条主要的缝合带,依次为金沙江缝合带、班公湖—怒江缝合带和雅鲁藏布缝合带(图1)。另外,东昆仑—塔里木地块和羌塘地块之间广布的沉积岩系常被称为松潘—甘孜地体。

    根据形成机制的不同,青藏高原的最年轻海相盆地可划分为两类。第一类是大洋俯冲至大陆碰撞后,残留的大陆边缘海,称之为残留海。残留海位于板块缝合带位置,覆盖两侧大陆边缘,主要包括金沙江残留海、班公湖—怒江残留海、雅鲁藏布残留海。第二类是因为海侵导致先前的陆地被淹没而形成的海,称之为陆表海,位于大陆基底之上。这类海包括北羌塘陆表海、松潘—甘孜陆表海、北拉萨陆表海、阿克赛钦—塔里木陆表海、低喜马拉雅陆表海(图1)。

  • 确定海洋消亡的时间,本质上是一项基础的沉积地层学研究工作,需通过厘清地层的沉积序列、沉积环境和沉积时代,并识别海相与陆相地层的转换点(图2)。首先,需要对研究区开展详细的野外调查和地层剖面实测,建立精细的岩石地层序列,明确地层单元的顶底与新老关系、岩石组成(如灰岩、砂岩、砾岩、煤层等)及其接触关系(整合、假整合、角度不整合等)。其次,依据岩石组合、沉积结构、构造和古生物化石组合等特征,判断地层的沉积环境,并揭示其垂向演变规律。再次,需要查清地层的沉积时间,主要方法包括:(1)对地层中的古生物标准化石或化石带(有孔虫、钙质超微、放射虫、菊石、固着蛤、孢粉等)鉴定来约束地层时代。(2)对含火山灰或者火山岩夹层的地层进行锆石U-Pb定年确定准确沉积时间。(3)对缺乏化石和火山灰的地层常采用碎屑单矿物(如碎屑锆石)U-Pb、裂变径迹、U-Th-He等测年来约束地层的最大沉积年龄。需要注意的是,碎屑锆石U-Pb最小年龄有多种不同的算法[80],但都只能约束最大沉积年龄,只有在源区存在同时期火山活动的时候,最大沉积年龄才有可能指示沉积时代。盆地中碎屑锆石和磷灰石的U-Th-He年龄只有在体系未部分重置的情况下才能约束最大沉积时代。(4)对于油页岩,Re-Os同位素年龄也可以用于约束其沉积时代,但是体系可能受到后期高温改造、油气运移等因素的影响,导致重置[81]。(5)磁性地层学用于获取高精度的年龄框架时,结合古生物和(或)火山灰年龄作为锚点,效果尤佳,可以兼顾约束连续沉积的最高海相层之上的陆相地层时代[7273,82]

    Figure 2.  A research approach to constraining the timing and processes of ocean disappearance in geological history through sedimentary records

    对于某一特定研究地区,若存在连续的地层序列,清晰记录了最年轻的海相地层及其上覆最早的陆相地层,则可直接确定最终海退(海洋消亡)在地层序列中的位置,从而精确限定海洋消亡的时间。若缺乏连续地层,则可用该地区现存的最年轻海相地层和最老陆相地层进行约束。据此,海洋消亡的时间应晚于最年轻海相地层的沉积时间,但早于最老陆相地层的沉积时间。此外,进积型三角洲是反映区域海陆变迁的关键沉积体系,其由海变陆的转换界线通常界定在三角洲前缘相与三角洲平原相之间。区域上,可以开展多剖面的地层对比,进一步确定海退的方向和穿时性,开展整个构造带的海陆变迁古地理重建。在上述基础上,还可进一步探讨导致海相地层消失的控制因素,例如区域构造、全球海平面变化及其二者的耦合作用等。

    基于上述研究海洋消亡的研究方法,通过系统汇总青藏高原各个地体共计40个不同剖面的数据,可以重建青藏高原海消亡的过程(表1)。

    消失的海类型*地体或缝合带地层名称剖面编号剖面名称地理位置GPS岩性沉积环境沉积时代时代依据参考文献
    郎山组28阿章改则县N 31°52'48.5"E 84°55'16.5"灰岩、泥灰岩浅海—开阔海白垩纪中期晚Aptian—早Cenomanian圆笠虫[59,61]
    郎山组29足隆革吉县N 32°36'38.64"E 81°19'47.95"灰岩、泥灰岩浅海—开阔海白垩纪中期晚Aptian—早Cenomanian圆笠虫[59,63]
    唐杂组30唐杂—姜龙剖面革吉县N 32°40'32.95"E 81°23'41.40"砂岩、砾岩、灰岩、泥灰岩冲积扇—三角洲晚白垩世Cenomanian圆粒虫[64]
    设兴组38P林周县N 29°53'E 91°19'砂岩、砾岩、灰岩、泥岩河流晚Aptian—早Cenomanian碎屑锆石、火山岩[65]
    塔克拉组39P-M林周县N 29°55'E 90°43'砂岩、砾岩、灰岩、泥岩潟湖—洪泛平原早Aptian圆笠虫,碎屑锆石[65]
    达雄组40SE措勤县N 31°10'E 84°50'砂岩、砾岩冲积扇Cenomanian-Turonian 98~91 Ma火山岩[6667]
    竟柱山组31SE-N尼玛N 31°02'E 86°37'砂岩、砾岩冲积扇Cenomanian-Turonian 98~91 Ma火山岩[68]
    陆表海阿克赛钦铁隆滩群32泉水湖剖面温宿县N 34°48'12"E 80°15'0"灰岩浅海晚Cenomanian—Maastrichtian浮游有孔虫[69]
    陆表海塔里木巴什布拉克组33巴什布拉克剖面乌恰县N 39°50.860'E 74°30.124'灰岩、泥岩、砂岩浅海~37 Ma钙质超微、沟鞭藻、双壳、介形虫[7071]
    乌拉根组34齐木根剖面阿克陶县N 38°26'E 76°24'灰岩、泥岩浅海41 Ma古地磁、钙质超微、沟鞭藻、双壳[72]
    乌拉根组35阿尔塔什剖面莎车县N 37°58'E 76°33'灰岩浅海41 Ma古地磁、钙质超微、沟鞭藻、双壳[72]
    乌拉根组36克里阳剖面皮山县N 37°16'27"E 77°51'36"灰岩浅海40 Ma古地磁、钙质超微、沟鞭藻、双壳[7273]
    塔拉克组—小库孜拜组下段37小库孜拜剖面温宿县N 41°45'49"E 80°41'6"泥岩、砂岩、石膏岩、泥灰岩冲积平原、膏盐湖古新世晚期—始新世早期?沟鞭藻、双壳、腹足、孢粉[74]
    陆表海低喜马拉雅Kesi组—Kong Slates组15KESI剖面Ladakh-ZanskarN 33°00′E 76°00′灰岩、钙质泥岩浅海早始新世Ypresian底栖大有孔虫、浮游有孔虫[7576]
    Bhainskati组16Bhainskati Khola剖面尼泊尔TansenN 27°47′E 83°32′黑色页岩和灰岩局限浅海中始新世Lutetian碎屑锆石U-Pb年代学;底栖大有孔虫[7779]
    续表 续表 注:青藏高原的最年轻海相盆地可划分为两类。第一类是大洋俯冲至大陆碰撞后,残留的大陆边缘海,称之为残留海。残留海其位于板块缝合带位置,覆盖两侧大陆边缘,主要包括金沙江残留海、班公湖—怒江残留海、雅鲁藏布残留海。第二类是因为海侵导致先前的陆地被淹没而形成的海,称之为陆表海,位于大陆基底之上。

    Table 1.  The youngest marine strata and oldest terrestrial strata since the Mesozoic in the major tectonic units and suture zones of the Tibetan Plateau

  • 羌塘地块北缘发育上二叠统至上三叠统的海相地层,包括上二叠统—中三叠统那益雄组局限海湾—潟湖相微晶云岩、细碎屑岩,中—上三叠统甲丕拉组潮坪相碳酸盐岩,以及上三叠统波里拉组开阔台地相灰岩[8384]。金沙江缝合带内的巴颜喀拉群可能记录了海陆转变。青海玉树治多县马兰山—饮马湖剖面的巴颜喀拉群沉积于陆棚环境,根据双壳化石Halobia yandongensis限定沉积时代为晚三叠世Norian[30,44]。中—上侏罗统叶尔羌群和鹿角沟组为陆相地层。比如,新疆且末县天浒河地区叶尔羌群主要由砾岩、砂岩和泥岩构成,沉积于冲积扇—湖泊环境,其中的植物化石指示沉积时代大致为早—中侏罗世[31]。从目前的资料看,金沙江残留海可能延续到三叠纪末期。

  • 在安多地区,南羌塘最年轻海相地层为索瓦组灰岩(图3a),根据其中的菊石、有孔虫、双壳等化石,其时代被约束为中侏罗世Callovian(166~163 Ma)(毕洛错东剖面[5354])。在羌塘南缘,最年轻海相地层以浅海环境的沙木罗组和东巧组为代表,主要由砂岩、灰岩、砾岩、泥岩等组成,根据珊瑚和有孔虫化石限定其时代为晚侏罗世Oxfordian-Kimmeridgian(163~152 Ma[32,85]图3b)。在班怒带南侧,接奴群为海沟环境下的海底扇砾岩和砂岩组合,其火山岩砾石获得年龄为147 Ma,说明深海环境至少延续到侏罗纪末期,加之接奴群中缺少拉萨地体上广泛出现的早白垩世碎屑锆石,推测其时代为侏罗纪末至早白垩世(~147~122 Ma的某个时间段[86])。而更南侧晚侏罗世Oxfordian(~159 Ma)至早白垩世Valanginian (~136 Ma)的拉贡塘组属于半深海到大陆架细碎屑沉积序列,其物源来自南侧拉萨大陆表明拉贡塘组可能是班公湖—怒江残留海的南侧海陆边界[87]。总体来看,这一地区的最年轻海相地层有从北向南变年轻的趋势。

    Figure 3.  The youngest marine strata in different regions of the Tibetan Plateau and its surroundings

    在尼玛地区,缝合带南侧的深海碎屑岩(砂岩和泥质岩为主)可以延续到125 Ma,而最早的陆相地层出现在~118 Ma[34]。另外,北拉、赞宗错等地区的地层记录表明,该地区在Aptian时期已经完成海陆转变[8889]

    在班公湖—怒江带西端热邦错地区,羌塘南缘最年轻海相层沙木罗组(砂岩、泥岩和灰岩)沉积于三角洲环境(图3c),其中的圆笠虫和固着蛤化石指示其时代为早白垩世Aptian晚期至Albian时期[33]。而在缝合带中,木嘎岗日群、多仁组、日松组、拉贡塘组深海碎屑岩中含有大量110 Ma左右的碎屑锆石峰,指示其时代不早于Albian[33]

    从空间上看,班公湖—怒江缝合带的残留海消亡于晚侏罗世—早白垩世,最年轻海相地层有从东向西变年轻的趋势,指示自东向西的海退[33,90]。在班怒带东段,地层资料少,尚无确切地质年代能指示由海变陆过程的地层报道。

  • 在雅鲁藏布缝合带北侧的亚洲活动陆缘,仲巴—萨嘎地区最年轻海相地层为加拉孜组[15],其下部发育一套含底栖大有孔虫的砂质灰岩[9,38]。有孔虫化石带为SBZ4-5[91],与地层中火山灰夹层的锆石U-Pb年龄一致,指示地层时代为古新世—始新世界线附近(56~55 Ma[37])。有孔虫灰岩向上转变为河流相碎屑岩[38],代表着由海变陆的过渡。往西,在冈仁波齐地区,始新世底栖大有孔虫(SBZ6,55~54 Ma)见于达金组粗碎屑岩中[40,92]。尽管对于这些化石是否为再旋回有不同的认识[93],但这些化石的出现以及近源堆积等特征,无疑指示该地区曾经存在早始新世浅海环境。在札达县北部,孙高远等[39]在达机翁组扇三角洲沉积中发现SBZ10(53~51 Ma)底栖大有孔虫化石。在更西部印度拉达克地区,与浅海环境错江顶群相当的地层为Tar群,其顶部货币虫灰岩中的底栖大有孔虫化石带可延续至SBZ11(51~49 Ma)[94]

    在缝合带南侧印度被动大陆边缘,海相沉积可以划分为特提斯喜马拉雅北亚带(深海沉积)和特提斯喜马拉雅南亚带(浅水沉积)。目前,北亚带保存的最年轻海相地层为同碰撞盆地深水浊积砂岩和硅质页岩、硅质岩。根据地层中的放射虫、钙质超微化石以及火山灰锆石年龄、最年轻碎屑锆石年龄,约束地层时代为古新世—早始新世[9598]

    特提斯喜马拉雅南亚带发育连续的浅海相地层记录,以我国西藏定日—岗巴—堆纳一带出露最为典型。李祥辉等[7]、Wang et al.[13]在定日曲密巴剖面,于古近纪宗浦组货币虫灰岩之上,发现一套灰绿色钙质页岩夹砂岩(恩巴组),向上过渡为紫红色砂—页岩地层(扎果组)(图3d)。沉积学研究表明,恩巴组沉积于三角洲前缘—前三角洲环境,扎果组沉积于三角洲平原环境,二者之间为整合接触[99101]。相似的地层序列在岗巴地区、堆纳地区也先后被发现[4243,102]。根据地层中的钙质超微和浮游有孔虫化石,早期认为这套地层的时代延续至始新世末期(~35~34 Ma[13,42])。但是,经过对化石的重新鉴定,目前将地层时代约束为钙质超微NP11-NP12或浮游有孔虫带P7-P9,为早始新世晚期至中始新世最早期(~53~49 Ma,可能至45 Ma)[41,43,99100,103]。在特提斯喜马拉雅西段Zanskar地区,最年轻海相地层序列与定日—岗巴一致,包括Kesi组货币虫灰岩、Kong组灰绿色泥板岩—细砂岩和Chulung La组紫红色砂岩—泥岩[104]。最年轻海相地层可延续至中始新世早期(~46 Ma[76])。

    另外,沿雅鲁藏布缝合带断续分布着一套陆相粗碎屑岩——“柳区砾岩”。柳区砾岩的物源包括雅鲁藏布蛇绿岩、增生楔以及特提斯喜马拉雅沉积岩,代表了喜马拉雅隆升阶段的快速堆积。由于地层中化石稀少,柳区砾岩的时代尚未得到很好的约束。根据地层中的植物化石,柳区砾岩的时代被认为是中晚始新世[105106];孢粉化石指示其时代可能为渐新世[107];低温热年代学约束其时代为渐新世末期至早中新世[108]。此外,Leary et al.[109]发现柳区砾岩位于大反向断裂下盘,而物源位于断层上盘,认为柳区砾岩的沉积与大反向逆冲断裂的活动有关,推测其沉积时代为早中新世。

  • 松潘—甘孜地体主要为一套深海环境下沉积的碎屑岩[110]。在东南部靠近甘孜—理塘缝合带,海相碎屑岩之上还发育一套灰岩,称之为瑞环山组[50,111115]。瑞环山组创建于木里藏族自治县四合林场[111],分布于木里、新龙、石渠等地区,主要为大理岩化泥晶灰岩夹砂砾屑灰岩、生物屑灰岩及少量白云岩。地层中含大量的海相化石,如珊瑚、层孔虫、水螅、腹足、苔藓虫、藻类等。其中,六射珊瑚和水螅属种多出现在晚侏罗世,由此认为地层的时代为中—晚侏罗世[111113]

    Ding et al.[116]在可可西里地区发现一套厚度大于2 000 m的陆相碎屑岩,不整合于三叠系海相碎屑岩之上,称为鲸鱼湖组。碎屑锆石U-Pb测年具有显著的160 Ma年龄峰值,结合地层中丰富的似木贼属、新芦木属、假铰蚌、楔蚌属等动植物化石,认为地层时代为中—早侏罗纪。在青海省玛多县桑日麻、哇赛、年宝等地区,发育年宝组火山—沉积岩层系,其中的沉积岩形成于河流—三角洲环境,间或有湖泊—沼泽相。植物化石和火山岩全岩K-Ar方法粗略限定地层时代为早—中侏罗世(199~169 Ma)[4549,117]。在四川省甘孜县西部出露有白垩系冲积扇—辫状河沉积[5152,118]

  • 羌塘地体浅海侏罗系指示广泛分布的陆表海[119]。以羌塘中部的中央隆起带为界,将羌塘盆地分为南北两个次级盆地。由于南羌塘毗邻班怒洋,其海变陆历史与班怒残留海的消亡密切相关,发生在中侏罗世末至晚侏罗世[5354]。北羌塘海在中侏罗世末期之前和班怒洋连通,之后中羌塘隆起,二者分开。北羌塘最年轻海相地层以雪山组为代表(图3e)。根据雁石坪剖面的工作,雪山组主要为海陆过渡相碎屑岩沉积,其最年轻的碎屑锆石U-Pb年龄为150 Ma左右,表明海相沉积至少可以持续到侏罗纪末期[55]。这一结果与磁性地层学结果一致,前人虽未获得雪山组的磁性地层数据,但是下伏索瓦组的时代被约束为160.0~157.5 Ma,指示雪山组晚于157 Ma[120]。北羌塘中西部最年轻海相地层为白龙冰河组,黑色页岩Re-Os同位素定年和孢粉化石指示其沉积时代可能延续到早白垩世[27]。尽管Re-Os年龄可能受到后期加热以及构造作用的扰动,但是孢粉时代以及最年轻碎屑锆石年龄指示北羌塘陆表海的消亡具有东早西晚的特点。

    羌塘地区海相沉积结束后缺失地层,直到白垩纪中期阿布山组陆相沉积出现。阿布山组以砂岩和砾岩为主,沉积于河流至湖泊环境。磁性地层、孢粉、碎屑锆石U-Pb年龄、火山岩锆石U-Pb年代等多种方法约束阿布山组的时代为111~83 Ma[5758]

  • 早白垩世时期,北拉萨广泛发育由海侵形成的陆表海,陆表海以多尼组和多巴组(123~110 Ma)分别为海陆南北边界,共同经历了浅海陆棚或前三角洲—三角洲前缘—三角洲平原至河流的第一阶段的消亡收缩演化序列[60,62]。随后在全球海平面上升的大背景下,以郎山组为代表的海相灰岩广泛分布于多尼组与多巴组碎屑沉积之间[121]。郎山组沉积于下伏三角洲—河流碎屑岩(多尼组、多巴组)之上(图3f)。地层中的圆笠虫等底栖大有孔虫约束其时代为Aptian晚期—Cenomanian早期(~120~99 Ma)[61,121]

    郎山组之上不整合沉积河流相—辫状河相碎屑岩(达雄组和竟柱山组),其中出现大量再旋回的郎山组灰岩砾石。碎屑锆石U-Pb年龄和火山灰夹层锆石定年约束陆相地层时代为98~91 Ma[6668]

    郎山组主体沉积后,北拉萨西部革吉—狮泉河一带还发育少量三角洲—浅海相砂岩、砾岩、灰岩、泥灰岩沉积,称为唐杂组[64](~96 Ma)。其中的火山岩锆石年龄和圆笠虫化石表明海相沉积可延续到Cenomanian中期(~96 Ma[64,122])。从海相地层的空间分布看,北拉萨陆表海是从东向西退出。

    在北拉萨最初海侵的大致同时期,南拉萨林周盆地也记录了海侵过程,沉积了塔克那组灰岩,其中的圆笠虫化石限定其时代为123~119 Ma[65]。塔克拉组之上整合沉积设兴组河流相碎屑岩(图3g),其时代一直延续到晚白垩世。

  • 自帕米尔的巴塘,经乌孜别里山口,向东至阿克赛钦地区,呈带状出露一套晚白垩世浅海相灰岩,位于我国境内的地层称为铁隆滩群[123126]。铁隆滩群的浮游有孔虫、固着蛤、圆笠虫指示其沉积时代为晚白垩世Cenomanian末期到Maastrichtian[125,127]。浅海相沉积之上普遍缺乏沉积,仅在洛克宗山地区零星分布陆相砂岩和砾岩,时代可能为古近纪[125]

  • 塔里木盆地西部晚白垩世—始新世沉积了一套数百米厚的海陆交互相地层。其中富含海相生物化石的灰岩最早出现于Cenomanian早期(~100 Ma),至始新世末期(~37 Ma)完全消失[71,128131]。在此期间,塔里木陆表海经历了五次明显的海侵与海退旋回,海退期间沉积环境以冲积平原为主,而海侵期间则以滨浅海相为主,整体古水深较浅,生物繁盛[129131]

    塔里木陆表海的第三次海侵(阿尔塔什组—齐木根组下段)影响范围最广[130],最深可达30~50 m[132],第四次和第五次逐渐向西减少,因此在塔里木盆地不同区域海相消失的时间存在明显差别。库车坳陷最年轻海相地层位于小库孜拜组下段,其中的腹足Euspira achatensis⁃Sigmesalia sulcata组合和沟鞭藻Apectodinium指示海相沉积延续到始新世早期[74]。西南坳陷喀什以东区域,最年轻海相地层位于乌拉根组的顶部,古生物化石(钙质超微、沟鞭藻、双壳、介形虫)约束其时代为始新世中晚期的Bartonian早期[74,128],磁性地层学研究则更进一步将最年轻海相地层时代约束为~41~40 Ma(表1[7273]图3h)。西南坳陷喀什以西区域最年轻海相地层位于巴什布拉克组中段,基于钙质超微、沟鞭藻、双壳、介形虫等古生物,约束其时代为始新世晚期的Bartonian晚期—Priabonian[74,128],随后的磁性地层学研究进一步约束其时代为~38~37 Ma[7071]。自此之后,塔里木盆地进入紫红色泥岩与砂岩互层主导的陆相河流—湖泊沉积环境(图4)。

    Figure 4.  Evolutionary patterns of sea⁃land distribution on the Tibetan Plateau during the Early Jurassic⁃Eocene

  • 在喜马拉雅山南侧的低喜马拉雅地区,东西向断续保存着一套古近系海相地层,主要地层记录包括尼泊尔Tansen盆地的Bhainskati组、印度Subathu盆地的Subathu组以及巴基斯坦Kohat盆地的Kohat组[79]。这套地层记录了一次短暂的海侵,最底部为滨岸石英砂岩,然后转变为半局限—局限环境生屑灰岩,生物主要为腹足和双壳,含少量底栖大有孔虫化石,顶部被源自喜马拉雅的西瓦里克群碎屑物质不整合覆盖,由浅海相环境转为陆相环境[7879,137139]。根据地层中有孔虫化石的时代,这些海相地层被约束为始新世中期(44~41 Ma[140142])。

  • 青藏高原由海变陆的演变历史与特提斯域大洋消亡历史密不可分。由北至南,三个主要的大洋分别是以金沙江缝合带为代表的古特提斯洋,以班怒带为代表的中特提斯洋和以雅江带为代表的新特提斯洋。古、中、新特提斯洋先后关闭的过程控制了青藏高原从北向南依次发生由海变陆的转变。早—中侏罗世古特提斯洋已经关闭,中特提斯洋正处于大洋俯冲阶段,此时,区域性的海侵影响到了北羌塘以及甘孜地区,导致该地区出现陆表海(图4a、图56)。在晚侏罗世时期,班怒洋内东卡错微陆块、拉萨先后和羌塘碰撞,导致南羌塘自北向南隆升,浅海环境局限在南羌塘的南缘,而此时北羌塘东部亦发生隆升,浅海呈现向西的开口(图4b、图56)。在早白垩世,在班怒洋自东向西、自北向南穿时关闭过程中[58,60],半深海—深海环境局限在班怒带西侧,北拉萨为陆表海环境,北羌塘浅海环境进一步向西萎缩(图4c、图56)。在晚白垩世,由于早期高原与山脉的构造抬升[68],青藏高原内部海洋环境基本完全消失,仅在北缘的塔里木和阿克赛钦地区仍存在陆表海(图4d、图56)。在古新世时期,阿克赛钦海消失,塔里木陆表海依然持续发育,此时新特提斯洋壳俯冲殆尽,开始进入初始碰撞阶段(图4e、图56)。在始新世时期,塔里木陆表海和特提斯喜马拉雅地区浅海环境演化到了最后阶段,在低喜马拉雅出现短暂的陆表海(图4f、图56)。

    Figure 5.  Changes in space and time from the sea to the land on the Tibetan Plateau: the Jinsha remnant sea, the Bangong⁃Nujiang remnant sea and the Yarlung⁃Tsangpo remnant sea

    Figure 6.  Changes in space and time from the epicontinental sea to the land on the Tibetan Plateau

    青藏高原由海变陆的过程同时受到构造作用和海平面变化两个因素的控制。总体上,缝合带残留海的消亡更多受到构造作用的控制,各个缝合带的残留海展现从北至南依次消亡特征,与青藏高原各主要地体从北向南依次拼贴的过程一致(图5)。与之不同,大陆地体上陆表海的出现和消亡主要受全球海平面的影响。北羌塘和松潘—甘孜中晚侏罗世陆表海的出现可能和此时全球海平面的快速上升有关(图6)。北拉萨早白垩世陆表海的出现尤其是郎山组碳酸盐的出现,对应着全球海平面开始上升,表明全球海平面变化强烈地影响这一阶段转变以及随后的碳酸盐沉积的扩张[59]图6)。而北拉萨陆表海在晚白垩世早期(93~91 Ma)突然全部消亡则是北拉萨古高原的开始形成导致的[68]。白垩纪中期是全球海平面快速上升的时期,晚白垩世阿克赛钦以及塔里木地区陆表海的出现正好与此对应,始新世低喜马拉雅海的出现对应该时期的一次海侵(图6)。喜马拉雅和塔里木陆表海的最终消失也和新生代以来全球海平面的持续降低吻合(图6)。值得注意的是,相比青藏高原拉萨地体和喜马拉雅地区,青藏高原中北部的基础地质资料还较少。虽然本研究提出北羌塘侏罗纪—白垩纪受到海侵的影响,但是相关的最高海相层的时代还存在一些争论[27]。与之类似,松潘—甘孜的瑞环山组中的古生物化石(珊瑚、层孔虫、水螅、苔藓虫等)延续时间较长,还需要更多资料来准确约束其时代。

  • 依据含海相生物化石灰岩约束的塔里木陆表海主要存在于晚白垩世—始新世晚期的盆地西部,盆地东部不受海侵的影响[128131]。然而,孙镇城等[146]在更遥远东部的柴达木盆地七个泉地区始新世中晚期下干柴沟组上段发现了钙质超微化石Reticulofenestra bisecta,Ma et al.[147]在邻近区域相同层位报道了源自海洋藻类的生物标志物24-正丙基胆甾烷(24-npc),据此认为塔里木海侵向东最远可达柴达木盆地西部。

    在塔里木盆地西南坳陷,郝诒纯等[148]报道了克孜洛依组和安居安组中存在大量有孔虫Ammonia、Cibicidoides、Pararotabid、Eponides等,据此推测中新世早—中期本区仍与西部古海相通。裘松余[149]指出,西南坳陷和库车坳陷的有孔虫、介形类Ammonia beccarii⁃Cyprideis littoralis组合与古近纪古生物面貌截然不同,并非前期海侵的残留,而是中中新世海侵的产物。郭宪璞等[150]更进一步勾勒出中新世海侵范围西自喀什,经阿克苏、库车,向东延伸至库尔勒一带。Ritts et al.[151]在塔东南坳陷米兰河剖面棕红色泥岩层中,除了发现前面提到的Ammonia有孔虫群,还发现了浮游有孔虫Catapsydrax spp.Globigerina quinquelobaGlobigerina venezuelanaGloborotaliamayeriHanzawaia boueana,表明中新世塔东南区域也曾一度为极浅的海洋环境。在更东部的柴达木盆地中部,Sun et al.[71]在中中新世地层中发现了长链烯酮,它由少数几种特定海洋藻类产生,未见于现代内陆湖泊,据此推测海水经塔里木盆地,向东入侵最远到达了柴达木盆地腹地。值得注意的是,柴达木盆地的年代地层格架争议较大,采用不同的磁性地层学对比方案显示盆地的沉积时限为52~7 Ma[152]或26~5 Ma[153]。最近柴达木盆地碳酸盐U-Pb的结果同样难以解决这个难题,不同团队根据碳酸盐U-Pb年龄的锚点重新解释地层学数据,发现盆地开始于27.4 Ma[154]或早始新世[155]。如果采用Ji et al.[152]的时间框架,Sun et al.[71]认为的海侵发生在15~11 Ma,而采用Wang et al.[153]的方案,海侵则发生在9.0~7.5 Ma。

    在中新世紫红色泥岩与砂岩互层的陆相地层中,出现延伸至柴达木盆地中部的海侵,挑战了长期以来基于含海相生物化石灰岩所约束的海域时空范围[33],争议的解决有赖于未来更多可靠证据的获得。

  • 白龙冰河组分布于北羌塘白龙冰河地区,代表着该地区最高海相层。白龙冰河组由西藏自治区区调队于1986年建组,原义指索瓦组灰岩之上的一套以细砂岩、粉砂岩和生屑灰岩为主的浅海相沉积[156]。白龙冰河组的时代是否延续到早白垩世存在较大争议。根据菊石化石Virgatosphinctes sp.,V. cf. subfrequensV. minusculusV. cf. pompeckjiV.cf. krafftiV. cf. frequensAulacosphinctes sp.,Subplanites sp.,Spiticeras sp.,Paraboliceras sp.,Properisphincies sp.,Perisphinctes sp.,PerisphinctinaeProgeronia sp.,Alligaticeras sp.,建组剖面白龙冰河组的时代被限定为晚侏罗世[156]。伊海生等[157]发现类似白龙冰河组的地层在羌塘分布广泛,在长龙梁等地可见,鉴定出15属29种菊石,被划分为Progeronia⁃Alligaticeras、Kossmatia⁃Euprionoceras、Aulacosphinctoides⁃Streblites、Aulacosphi nctes⁃Virgatosphinctes、Berriasella⁃Blanfordi ceras等五个组合,时代指示晚侏罗世Oxfordian—Tithonian。虽然并未发现Barriasian标准菊石带的重要分子,但是根据菊石产出层位之上还有海相灰岩,推测海相环境持续到了早白垩世[157]。在半岛湖地区,白龙冰河组发现的双壳Radulopecten scarburgensis、R.moondanensis以及珊瑚Cladophyllia qeibulaensis、Stylosmilia chaputi指示时代为晚侏罗世Kimmeridgian至Tithonian,同时也暗示地层顶部甚至可能延续至早白垩世早期[158]

    北羌塘胜利河一带的白龙冰河组分布有大量的油页岩[159161]。油页岩Re-Os同位素定年结果为101±24 Ma[27]和124. 5±4.3 Ma[162]。这一年龄大幅晚于其他地区菊石、双壳等大化石所给出的时代,但是和孢粉化石给出的时代较为一致。典型孢粉分子Classopollis、Dicheiropollis、Steevesipollenites sp.、Senega losporites sp.、Lygodiumsporites subsimplex等指示时代为早白垩世[163]。然而,Re-Os体系是否在油气形成、运移过程中扰动或者重置还需要进一步评估。此外,孢粉化石给出的时限较为宽松。

    Yin[164]系统总结了目前白龙冰河组的时代争议,并修订了前人在白龙冰河组中发现的菊石和双壳化石,如伊海生等[157]Aulacosphinctes修订为Lobosphinctes sp.。在此基础上,认为白龙冰河组整体沉积于中侏罗世Bathonian。可见,目前白龙冰河组的时代还有巨大争议,未来还需要更多确切的多方面的证据。

  • 喜马拉雅地区最高海相层在我国境内分布在定日、岗巴和亚东一带,包括宗浦组(遮普热山组)、恩巴组(油下组)和扎果组(申克扎组),其中宗浦组形成于以货币虫灰岩为主的浅海环境,化石丰富,恩巴组为以绿色调为主的三角洲前缘环境,扎果组为以红色调为主的三角洲平原环境[13,4143,99100,103,165166]

    徐钰林[165]基于钙质超微化石将定日地区恩巴组—扎果组时代限定在~38 Ma(NP15-17),Wang et al.[13]在此基础上进行了修订,将恩巴组限定为46~37 Ma(NP15-17),扎果组归于37-34 Ma(NP18-20)。但是之后Zhu et al.[99]基于浮游有孔虫认为油下组的时代为~50 Ma(P8),Najman et al.[100]同时研究了钙质超微(NP11-12)和浮游有孔虫(P7-8),得到类似的结果(52.8~50.6 Ma)。胡修棉等[41]对恩巴组中浮游有孔虫进行重新鉴定,认为其可延续至45 Ma(P11-12a)。Hoshina et al.[103]对钙质超微化石进行了鉴定,并采用核密度统计方法限定钙质超微组合的年龄,以最小化再旋回物种的影响,认为恩巴—扎果组的沉积年龄为53~52 Ma(CNE3或NP11)。Jiang et al.[42]对定日—岗巴地区数据进行重新评估,认为海相沉积可以延续至Bartonian-Priabonian(41~34 Ma),但Zhang et al.[43]进行了反驳,其同时利用底栖大有孔虫(SBZ7)、浮游有孔虫(E7)以及碎屑锆石最大沉积年龄将恩巴组时代约束为~49 Ma。

    上述结果主要来自对定日曲密巴剖面的研究,之后相关学者在亚东地区开展了更为深入的研究。Jiang et al.[42]对亚东堆纳地区恩巴组和扎果组浮游有孔虫进行了研究,认为时代为41.3~38 Ma(E10-E13)。Wang et al.[65]对堆纳地区油下组中的介形虫进行了研究,认为其时代为晚始新世Bartonian-Priabonian阶,进一步支持Jiang et al.[42]的结果。Zhang et al.[43]提出,Jiang et al.[42]识别的关键年代化石Chiloguembelina cubensis可能为白垩纪再旋回的Pseudoguembelina costulata,这种“错误”的鉴定可能引起结果的差异。

    上述对新特提斯洋最高海相层的时代限定存在较大差异,而导致该结果的一个关键因素在于恩巴组和扎果组中存在大量白垩纪至古近纪再旋回的生物化石,其再旋回比例可到50%甚至更高,此外不同学者采用不同方法和参照获得的生物地层结果难以进行对比[100,103]

    关于新特提斯海最高海相层的争议仍悬而未决,这直接限制了进一步讨论新特提斯洋消亡的时间和方式。从区域上来看,新特提斯洋北侧即亚洲一侧海退出的时间在55~49 Ma[3740,91,94];而在西侧Zanskar地区,海退出的时间约束在~46 Ma[76,104]。那么,如果印度一侧的海退时间为早始新世~52~49 Ma,那么,雅鲁藏布海为南北一致、自东向西的海退模式;若印度一侧海退延续至晚始新世~35 Ma,那么雅鲁藏布海为自北向南、自中部向两侧的海退模式。其中后者与万晓樵[167]基于底栖大有孔虫恢复的海消亡模式一致,其认为在Lutetian期雅鲁藏布海仍然相通,印度与冈底斯在仲巴一带相碰导致中部海率先消失,随后两板块沿东西两侧相继靠拢,边缘海逐步向两侧退去。不过需要注意的是,大部分最高海相沉积记录均遭受了不同程度的侵蚀过程,因此基于现存的最高海相沉积获得的海退时间差异也可能是不同程度侵蚀的结果。

  • (1) 金沙江、班怒带、雅江带残留海的消亡由构造作用主导,展现从北至南依次消亡特征,其中金沙江残留海消亡于三叠纪末期、班公—怒江残留海消亡于侏罗纪末期—早白垩世、雅鲁藏布残留海消亡于始新世,与青藏高原由各个地体从北向南依次拼贴形成的过程相一致。

    (2) 与残留海不同,大陆地体上陆表海的出现和消亡主要受海平面的影响。北羌塘和松潘—甘孜中—晚侏罗世陆表海、北拉萨早白垩世陆表海、晚白垩世阿克赛钦—塔里木陆表海以及始新世低喜马拉雅海的出现对应这些时期的海侵,而低喜马拉雅和塔里木陆表海的最终消亡和新生代以来全球海平面的持续降低吻合。

    青藏高原由海变陆的历史将为认识区域上的深部动力学过程、古地理和古环境变迁、古气候效应、生物演化提供重要的边界条件。未来需要对关键争论问题进一步深化研究,对关键地层开展多学科地质年代学的研究,也有赖于新方法、新技术的运用。同时,青藏高原由海变陆过程对气候变化的影响也需要开展数值模拟的工作,以便进一步探讨与亚洲季风、中亚干旱化等因素的相互作用。

    消失的海类型*地体或缝合带地层名称剖面编号剖面名称地理位置GPS岩性沉积环境沉积时代时代依据参考文献
    残留海金沙江带巴颜喀拉山群1马兰山—饮马湖剖面青海玉树治多县N 35°50'05.81"E 90°44'46.37"砂岩浅海陆棚晚三叠世Norian双壳化石[30]
    叶尔羌群2天浒河剖面新疆且末县N 36°30'33.48"E 86°06'25.96"砾岩、砂岩和泥岩冲积扇—湖泊早—中侏罗世植物化石[31]
    残留海班怒带沙木罗组3纳江错—尕阿错剖面色林错北N 32°12′4.86″E 88°51′3.18″灰岩浅海晚侏罗世Oxfordian-Kimmeridgian底栖有孔虫和150 Ma侵入岩脉[32]
    沙木罗组4热邦错剖面日土东N 33°08'22.38"E 80°42'53.68"灰岩、砂岩、泥岩三角洲—浅海早白垩世晚Aptian-Albian圆笠虫和最年轻碎屑锆石[33]
    Kvc54 MK尼玛县N 32.07°E87.44°砾岩、砂岩、火山碎屑岩冲积扇—河流早白垩世118 Ma火山灰锆石U-Pb[34]
    J-K6/尼玛县N 31.76°E87.52°砂岩、泥质岩海相早白垩世125 Ma碎屑锆石U-Pb[34]
    仲岗洋岛7/改则县洞错北N 32°19′E84°45′玄武岩、灰岩浅海早白垩世141-135 Ma粗安岩锆石U-Pb定年[35]
    残留海雅江带加拉孜组8错江顶曲下B剖面仲巴N 29°56′19″E 84°19′32″灰岩、泥岩、砂岩扇三角洲—浅海早始新世Ypresian底栖大有孔虫和凝灰岩锆石U-Pb年龄[3637]
    加拉孜组9罗布岗日剖面F-H萨嘎N 29°48′E 84°54′灰岩、泥岩、砂岩扇三角洲—浅海早始新世Ypresian底栖大有孔虫、碎屑锆石U-Pb[38]
    达机翁组10达机翁剖面札达N 31°48′21″E 80°04′49″灰岩、泥岩、砂岩、砾岩扇三角洲早始新世Ypresian底栖大有孔虫;最年轻碎屑锆石[39]
    达金组11达金剖面冈仁波齐山附近N 31°00′E 81°15′泥岩、砂岩、砾岩扇三角洲早始新世Ypresian底栖大有孔虫[40]
    扎果组12古鲁浦剖面亚东N28°03′E89°11′页岩、砂岩海陆过渡晚始新世Bartonian浮游有孔虫;钙质超微[4143]
    宗浦组—恩巴组13曲密巴剖面定日N 28°41′E 86°43′灰岩、钙质泥岩夹灰岩和砂岩浅海—陆棚晚Ypresian—早Lutetian底栖大有孔虫;钙质超微[7,4142]
    宗浦组—恩巴组14增布东剖面岗巴N 28°16′E 88°31′灰岩、钙质泥岩夹灰岩和砂岩浅海—陆棚晚Ypresian—早Lutetian底栖大有孔虫;钙质超微[4143]
    消失的海类型*地体或缝合带地层名称剖面编号剖面名称地理位置GPS岩性沉积环境沉积时代时代依据参考文献
    陆表海松潘—甘孜巴颜喀拉山群上部17饮马湖剖面青海治多饮马湖、巴颜喀拉扎朵N 35°33'38.78"E 90°38'46.54"泥岩、砂岩浅海陆棚—海陆交互相,最高海相层晚三叠世Nornian滨海相双壳类动物群[44]
    年宝组18墩日剖面青海玉树治多县索加乡N 34°10'12.32"E 93°26'21.67"粉砂质泥岩与中至粗粒岩屑长石砂岩互层,含煤线及薄煤层河流—河流三角洲早侏罗世孢粉和植物化石[45]
    年宝组19桑日麻—年宝剖面青海省玛多县桑麻、哇赛、年宝N 33°32'14.86"E 98°53'36.27"由安山岩、流纹岩、晶屑凝灰岩夹含煤碎屑岩,底部流纹质火山角砾岩组成河流—三角洲,间有短暂的湖泊—沼泽相早侏罗世;169.1~199.08 Ma植物化石;安山质熔岩的全岩K-Ar年龄[4649]
    瑞环山组38皮擦沟剖面四川新龙县N 30°00'40.19"E 100°13'31.39"碳酸盐岩夹碎屑岩浅海晚侏罗世—早白垩世珊瑚化石[50]
    未建名20甘孜剖面四川省甘孜县西部N 31°32′33.612″ E 99°41′17.952″砾岩和砂岩冲积扇—辫状河宽泛的白垩纪孢粉化石[5152]
    陆表海羌塘索瓦组21毕洛错东剖面毕洛错东N 32°54′41″E 88°55′55″灰岩浅海中侏罗世末Bathonian—Callovian底栖有孔虫、双壳[5354]
    雪山组22雁石坪剖面雁石坪N 33°35′E91°35′砂岩潮坪—三角洲最晚侏罗世—早白垩世碎屑锆石U-Pb[55]
    阿布山组23阿布山剖面双湖县南N 33°09'01.61"E 88°43'40.32"砾岩、砂岩、泥岩河流—湖泊白垩纪中期111~83 Ma磁性地层、孢粉、碎屑锆石U-Pb[5657]
    阿布山组24马登剖面兹格塘错北N 32°13'09.92"E 91°03'55.43"砂岩、砾岩河流白垩纪中期105 Ma火山岩锆石U-Pb[58]
    陆表海北拉萨多尼组、郎山组25保吉剖面班戈县N 30°57'54.85"E 90°19'33.83"灰岩、泥灰岩、砂岩浅海—潮坪白垩纪中期晚Aptian—早Cenomanian圆笠虫[59]
    多巴组、郎山组26雄梅剖面申扎县N 31°19'9.09"E 88°51'22.38"灰岩、泥灰岩、砂岩浅海—潮坪多巴组为早白垩世122~110 Ma,郎山组为白垩纪中期晚Aptian—早Cenomanian火山灰锆石、碎屑锆石U-Pb,圆笠虫[5960]
    多尼组、郎山组27郭龙剖面措勤县N 31°26'23.6"E 85°24'46.6"灰岩、砂岩浅海—三角洲白垩纪中期Aptian—Cenomanian火山岩锆石U-Pb、圆笠虫[59,6162]
Reference (167)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return