高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贵州石笋记录的中晚全新世东亚夏季风变化

张振球 张伟宏 刘树双 翟秀敏 邵庆丰

张振球, 张伟宏, 刘树双, 翟秀敏, 邵庆丰. 贵州石笋记录的中晚全新世东亚夏季风变化[J]. 沉积学报, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
引用本文: 张振球, 张伟宏, 刘树双, 翟秀敏, 邵庆丰. 贵州石笋记录的中晚全新世东亚夏季风变化[J]. 沉积学报, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
ZHANG ZhenQiu, ZHANG WeiHong, LIU ShuShuang, ZHAI XiuMin, SHAO QingFeng. Variation in the East Asian Summer Monsoon During the Middle and Late Holocene Inferred from a Stalagmite Record in Guizhou, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
Citation: ZHANG ZhenQiu, ZHANG WeiHong, LIU ShuShuang, ZHAI XiuMin, SHAO QingFeng. Variation in the East Asian Summer Monsoon During the Middle and Late Holocene Inferred from a Stalagmite Record in Guizhou, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077

贵州石笋记录的中晚全新世东亚夏季风变化

doi: 10.14027/j.issn.1000-0550.2021.077
基金项目: 

浙江省自然科学基金项目 LY20D020001

国家自然科学基金项目 42202213

乐业—凤山世界地质公园开放基金项目 LFD20001

详细信息
    作者简介:

    张振球,男,1988年出生,博士研究生,第四纪环境学,E-mail: zhangzhenqiu@njnu.edu.cn

    通讯作者:

    张伟宏,女,博士研究生,第四纪环境学,E-mail: zhangwh@zjnu.cn

  • 中图分类号: P532

Variation in the East Asian Summer Monsoon During the Middle and Late Holocene Inferred from a Stalagmite Record in Guizhou, China

Funds: 

Natural Science Foundation of China of Zhejiang Province LY20D020001

National Natural Science Foundation of China 42202213

Open Fund of Leye-Fengshan UNESCO Global Geopark LFD20001

  • 摘要: 研究全新世典型气候突变事件的内部结构及区域特征,有助于明晰季风气候突变事件的成因机制。通过对贵州七星洞石笋14个高精度230Th定年和779个氧同位素数据的分析,重建了过去6 380~2 700 yr B.P.时段平均分辨率达4.7年的东亚夏季风演化序列。该石笋δ18O值整体上呈逐渐偏正的特征,指示中晚全新世以来东亚夏季风持续变弱的趋势。叠加在此长期季风减弱变化趋势上,最为显著的百年尺度振荡主要发生在4 548~3 715 yr B.P.时段,对应于4.2 kyr B.P.事件。该记录与同区域董哥洞石笋δ18O记录一致,均显示在此事件内部并非持续干旱,而是具有两次显著的季风强降雨期。相似的季风强降雨期在我国北方气候记录中也有体现。在更大的空间尺度上,这种4.2 kyr B.P.事件的内部结构特征与澳洲—印度尼西亚(澳—印)季风区的石笋记录结构相对应,但呈显著的反相位耦合关系,证实了亚洲与澳—印季风间的动力学联系。此外,该事件结构与ENSO记录的耦合暗示了4.2 kyr B.P.事件的发生可能与热带太平洋密切相关。
  • 图  1  QX3石笋剖面及扫描电镜图

    (a)中灰色和黑色实线标记分别指示文石和方解石层段,灰色和黑色圆点分别为文石和方解石层段内部230Th测年点位置;(b,c)为方解石和文石层段内部△标记位置自然断面的扫描电镜下矿物形态

    Figure  1.  Polished surface of stalagmite QX3 and micrographs of crystals by scanning electron microscopy

    Fig.1

    图  2  QX3石笋年龄模式(a)与氧同位素记录(b)

    (a)中黑点和水平误差棒分别为实测年龄及对应2σ误差;黑线为线性内插模式建立的时标,两侧的灰线为Mod⁃Age模式建立的年龄模式置信区间[27];(b)中深灰色曲线为QX3氧同位素序列,其中叠加在其上的黑色曲线为文石层段对应的氧同位素变化;直线和两条虚线分别为QX3去除文石层段氧同位素后线性拟合趋势线及±1σ趋势线;黑色折线为QX3初始234U/238U比值变化

    Figure  2.  Age model and oxygen isotope record for stalagmite QX3

    Fig.2

    图  3  七星洞石笋δ18O记录的重现性对比

    黑线和灰线分别为QX3和QX1[29]石笋的δ18O记录

    Figure  3.  Replication of two stalagmite δ18O records in Qixing cave

    Fig.3

    图  4  中国南方洞穴记录对比

    (a)七星洞QX3石笋δ18O记录;(b)董哥洞DA石笋δ18O记录[17];(c)湖南莲花洞A1石笋δ18O记录[46];灰色曲线为各记录原始数据,叠于其上的是平滑后结果;灰色阴影部分为石笋记录的5 800~5 560 yr B.P.、4 548~3 715 yr B.P.和3 485~3 230 yr B.P.的弱季风期

    Figure  4.  Comparison between cave records in southern China

    Fig.4

    图  5  中国南北方石笋记录的4.2 kyr B.P.事件对比

    (a)甘肃乌鸦洞Wuya石笋δ18O记录[10];(b)陕西九仙洞C996⁃1石笋δ18O记录[44];(c)陕西祥龙洞XL石笋δ18O记录[51];(d)七星洞QX3石笋δ18O记录;(e)董哥洞DA石笋δ18O记录[17];灰色曲线为各记录原始数据,叠于其上的是平滑后结果;灰色阴影部分为4.2 kyr B.P.事件附近的气候变化;数字1和2为中国石笋记录的4.2 kyr B.P.附近两次季风增强过程

    Figure  5.  The 4.2 kyr B.P. events characterized by northern and southern cave records in China

    Fig.5

    图  6  4.2 kyr B.P.事件东亚夏季风和印澳季风的反相变化

    (a)印度尼西亚弗洛勒斯岛Liang Luar Cave LR06⁃B1[56] (灰色曲线)和LR06⁃B3[54](灰色折线)石笋δ18O记录;(b)董哥洞DA石笋δ18O记录[17];(c)七星洞QX3石笋δ18O记录;灰色曲线为为各记录原始数据,叠于其上的是平滑后结果;浅灰色和深灰色阴影部分为4.2 kyr B.P.事件及内部的第二次季风波动;数字1和2为4.2 kyr B.P.事件内部两次显著的季风波动,东亚季风两次增强过程对应于澳—印季风的两次减弱变化

    Figure  6.  Antiphase variation between EASM and Australian⁃Indonesian monsoon at the 4.2 kyr B.P. event

    Fig.6

    图  7  东亚夏季风记录与ENSO变化对比

    (a)七星洞QX3石笋δ18O记录;(b)Laguna Pallcacocha湖泊沉积物记录的ENSO变化[64];浅灰色和深灰色阴影部分为4.2 kyr B.P.事件及内部显著的百年尺度波动

    Figure  7.  A comparison between the EASM and ENSO around the 4.2 kyr B.P. event

    Fig.7

    表  1  QX3石笋230Th年龄*

    样品编号238U232Thδ234U230Th/238U230Th/232Th230Th AgeUncorr.[yr B.P.]δ234UinitialAge
    [depth/mm][ng/g][ng/kg][‰]activity ratioactivity ratio[‰]Corr.[yr B.P.]
    13313±199±1569.3±1.90.039 4±0.000 5387±42 767±37574±22 761±37
    125311±1351±10583.0±2.20.047 5±0.000 3129±43 246±24588±23 225±26
    194292±1102±6567.6±1.70.051 7±0.000 2451±243 580±12573±23 574±13
    2299 249±6567±52565.2±1.70.054 0±0.000 22 691±2483 752±12571±23 751±12
    257263±152±7569.8±2.00.055 7±0.000 2863±1103 867±15567±23 864±15
    308282±151±7533.3±1.30.058 8±0.000 21 005±1394 182±15540±14 178±15
    3239 817±71 047±28555.4±2.00.061 1±0.000 11 750±464 289±11562±24 287±11
    35411 953±10267±49571.4±1.60.063 1±0.000 18 648±1 5844 390±11579±24 390±11
    3777 731±6327±44551.4±2.40.063 8±0.000 24 616±6194 501±15558±24 500±15
    403370±1335±10537.4±2.70.065 1±0.000 3220±74 642±26544±34 625±28
    479355±1223±7517.2±1.40.067 6±0.000 2328±104 883±14524±14 871±15
    560325±1120±12525.8±2.40.072 6±0.000 4603±585 231±33534±25 224±34
    691338±1458±10482.5±2.10.077 5±0.000 5175±45 773±39490±25 747±41
    778358±176±1499.6±1.90.085 6±0.000 91 256±126 388±73509±26 383±73
    注:*分析误差为±2σ,衰变常数为λ230=9.170 5×10-6/a,λ234=2.822 06×10-6/a,λ238=1.551 25×10-10/a[25];校正230Th年龄假定初始230Th/232Th原子比为(4.4±2.2)×10-6;yr B.P.相当于公元1950年;黑色粗体为文石对应的年代数据。
    下载: 导出CSV
  • [1] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266.
    [2] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549): 2130-2136.
    [3] Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3): 243-255.
    [4] Wanner H, Solomina O, Grosjean M, et al. Structure and origin of Holocene cold events[J]. Quaternary Science Reviews, 2011, 30(21/22): 3109-3123.
    [5] Weiss H. 4.2 ka BP megadrought and the akkadian collapse[M]//Weiss H. Megadrought and collapse: From early agriculture to Angkor. Oxford: Oxford University Press, 2017: 93-160.
    [6] Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene Series/Epoch: A Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy)[J]. Journal of Quaternary Science, 2012, 27(7): 649-659.
    [7] 王权,刘殿兵,汪永进,等. 湖北神农架年纹层石笋记录的YD与8.2 ka事件转型模式研究[J]. 沉积学报,2015,33(6):1140-1148.

    Wang Quan, Liu Dianbing, Wang Yongjin, et al. Transitional patterns of YD and 8.2 ka event recorded by annually-laminated stalagmites from Qingtian cave, Mt. Shennongjia[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1140-1148.
    [8] 张华生,殷建军,程海,等. 全新世早期弱夏季风事件的精确定位及机制探讨:以湖南莲花洞LHD5石笋为例[J]. 沉积学报,2016,34(2):281-291.

    Zhang Huasheng, Yin Jianjun, Cheng Hai, et al. Discussion about the mechanism of the weak summer monsoon events during the Early Holocence: A case study of precisely dated stalagmite record from Lianhua cave, Hunan province, China[J]. Acta Sedimentologica Sinica, 2016, 34(2): 281-291.
    [9] Zhang H W, Cheng H, Cai Y J, et al. Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records[J]. Climate of the Past, 2018, 14(11): 1805-1817.
    [10] Tan L C, Li Y Z, Wang X Q, et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273.
    [11] 彭子成,张兆峰,蔡演军,等. 贵州七星洞晚更新世晚期石笋的古气候环境记录[J]. 第四纪研究,2002,22(3):273-282.

    Peng Zicheng, Zhang Zhaofeng, Cai Yanjun, et al. The paleoclimatic records from the Late Pleistocene stalagmite in Guizhou Qixing cave[J]. Quaternary Sciences, 2002, 22(3): 273-282.
    [12] 张美良,程海,袁道先,等. 末次冰期贵州七星洞石笋高分辨率气候记录与Heinrich事件[J]. 地球学报,2004,25(3):337-344.

    Zhang Meiliang, Cheng Hai, Yuan Daoxian, et al. The high resolution climate records from two stalagmites in Qixing cave of Guizhou and the Heinrich events of the last glacial period[J]. Acta Geoscientica Sinica, 2004, 25(3): 337-344.
    [13] 覃嘉铭,袁道先,程海,等. 贵州都匀七星洞石笋剖面晚更新世高分辨率的气候地层学[J]. 第四纪研究,2004,24(3):318-324.

    Qin Jiaming, Yuan Daoxian, Cheng Hai, et al. A high resolution Late Pleistocene climato-stratigraphy of 4 stalagmites from Qixing cave, Duyun, Guizhou[J]. Quaternary Sciences, 2004, 24(3): 318-324.
    [14] Cai Yanjun, Zhang Meiliang, Peng Zicheng, et al. The δ 18O Variation of a Stalagmite from Qixing cave, Guizhou province and indicated climate change during the Holocene[J]. Chinese Science Bulletin, 2001, 46(22): 1904-1908.
    [15] 马乐,蔡演军,秦世江. 贵州七星洞石笋记录的最近2300年气候和环境变化[J]. 地球环境学报,2015,6(3):135-144.

    Ma Le, Cai Yanjun, Qin Shijiang. A high resolution paleoclimate record of the last 2300 years in stalagmite QX-3 from the Qixing cave, Guizhou province[J]. Journal of Earth Environment, 2015, 6(3): 135-144.
    [16] 殷建军,林玉石,唐伟,等. 贵州七星洞石笋记录的一次强降水事件的探讨[J]. 地球学报,2016,37(3):326-332.

    Yin Jianjun, Lin Yushi, Tang Wei, et al. A tentative discussion on a heavy precipitation event recorded by stalagmites from Qixing cave, Guizhou province[J]. Acta Geoscientia Sinica, 2016, 37(3): 326-332.
    [17] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
    [18] 张美良,林玉石,覃嘉铭,等. 黔南七星洞石笋古气候变化记录及末次间冰期终止点的确定[J]. 沉积学报,2003,21(3):473-481.

    Zhang Meiliang, Lin Yushi, Qin Jiaming, et al. The record of paleoclimatic change and the termination of the last interglacial period from a stalagmite of Qingxing cave in south Guizhou[J]. Acta Sedimentologica Sinica, 2003, 21(3): 473-481.
    [19] 张美良,程海,林玉石,等. 贵州荔波地区2000年来石笋高分辨率的气候记录[J]. 沉积学报,2006,24(3):339-348.

    Zhang Meiliang, Cheng Hai, Lin Yushi, et al. High-resolution climatic record from a stalagmite in the past 2000 years in Libo, Guizhou province[J]. Acta Sedimentologica Sinica, 2006, 24(3): 339-348.
    [20] 张美良,袁道先,林玉石,等. 贵州荔波董哥洞3号石笋的同位素年龄及古气候信息[J]. 沉积学报,2001,19(3):425-432.

    Zhang Meiliang, Yuan Daoxian, Lin Yushi, et al. Isotopic ages and paleoclimatic implications of No. 1 stalagmite from Dongge cave in Libo[J]. Acta Sedimentologica Sinica, 2001, 19(3): 425-432.
    [21] Zhu X L, Wang S J, Luo W J. Characteristics of strontium isotopes and their implications in the Qixing cave of Guizhou, China[J]. Chinese Science Bulletin, 2011, 56(7): 670-675.
    [22] Luo W J, Wang S J, Xie X N, et al. Temporal and spatial variations in hydro-geochemistry of cave percolation water and their implications for four caves in Guizhou, China[J]. Chinese Journal of Geochemistry, 2013, 32(2): 119-129.
    [23] 张会领,余克服,赵建新,等. 文石方解石化对文石石笋δ 18O记录的影响[J]. 热带地理,2016,36(3):457-467.

    Zhang Huiling, Yu Kefu, Zhao Jianxin, et al. Process of calcitization of aragonite altering δ 18O records of aragonite stalagmites[J]. Tropical Geography, 2016, 36(3): 457-467.
    [24] Shao Q F, Pons-Branchu E, Zhu Q P, et al. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China[J]. Quaternary Research, 2017, 88(1): 1-13.
    [25] Cheng H, Edwards R L, Shen C-C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91.
    [26] Zhang H W, Cai Y J, Tan L C, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309: 1-14.
    [27] Hercman H, Pawlak J. MOD-AGE: An age-depth model construction algorithm[J]. Quaternary Geochronology, 2012, 12: 1-10.
    [28] Hendy C H. The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8): 801-824.
    [29] Zhang Z Q, Wang Y J, Liu D B, et al. Multi-scale variability of the Asian monsoon recorded in an annually-banded stalagmite during the Neoglacial from Qixing cave, southwestern China[J]. Quaternary International, 2018, 487: 78-86.
    [30] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294(5550): 2345-2348.
    [31] 汪永进,刘殿兵. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报,2016,61(9):938-951.

    Wang Yongjin, Liu Dianbing. Speleothem records of Asian paleomonsoon variability and mechanisms[J]. Chinese Science Bulletin, 2016, 61(9): 938-951.
    [32] Cheng H, Sinha A, Wang X F, et al. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062.
    [33] Pausata F S R, Battisti D S, Nisancioglu K H, et al. Chinese stalagmite δ 18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480.
    [34] 谭明. 环流效应:中国季风区石笋氧同位素短尺度变化的气候意义:古气候记录与现代气候研究的一次对话[J]. 第四纪研究,2009,29(5):851-862.

    Tan Ming. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China: Dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862.
    [35] Cheng H, Zhang H W, Zhao J Y, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China (Seri. D): Earth Sciences, 2019, 62(10): 1489-1513.
    [36] Zhang H W, Brahim Y A, Li H Y, et al. The Asian summer monsoon: Teleconnections and forcing mechanisms—a review from Chinese speleothem δ 18O records[J]. Quaternary, 2019, 2(3): 26.
    [37] Cheng H, Zhang H W, Cai Y J, et al. Orbital-scale Asian summer monsoon variations: Paradox and exploration[J]. Science China (Seri. D): Earth Sciences, 2021, 64(4): 529-544.
    [38] Zhang H W, Zhang X, Cai Y J, et al. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian summer monsoon[J]. Quaternary Science Reviews, 2021, 261: 106911.
    [39] Tan L C, Cai Y J, An Z S, et al. A Chinese cave links climate change, social impacts and human adaptation over the last 500 years[J]. Scientific Reports, 2015, 5: 12284.
    [40] Tan L C, Cai Y J, An Z S, et al. Decreasing monsoon precipitation in southwest China during the last 240 years associated with the warming of tropical ocean[J]. Climate Dynamics, 2017, 48(5/6): 1769-1778.
    [41] Zhao K, Wang Y J, Edwards R L, et al. Late Holocene monsoon precipitation changes in southern China and their linkage to northern Hemisphere temperature[J]. Quaternary Science Reviews, 2020, 232: 106191.
    [42] 周运超,王世杰,谢兴能,等. 贵州4个洞穴滴水对大气降雨响应的动力学及其意义[J]. 科学通报,2004,49(21):2220-2227.

    Zhou Yunchao, Wang Shijie, Xie Xingneng, et al. Significance and dynamics of drip water responding to rainfall in four caves of Guizhou, China[J]. Chinese Science Bulletin, 2004, 49(21): 2220-2227.
    [43] 杨琰,袁道先,程海,等. 洞穴石笋初始234U/238U值变化的古气候记录意义[J]. 地质学报,2008,82(5):692-701.

    Yang Yan, Yuan Daoxian, Cheng Hai, et al. Initial 234U/238U variation of stalagmites: Implications for paleoclimate reconstruction[J]. Acta Geologica Sinica, 2008, 82(5): 692-701.
    [44] Cai Y J, Tan L C, Cheng H, et al. The variation of summer monsoon precipitation in central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 21-31.
    [45] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
    [46] Cosford J, Qing H R, Eglington B, et al. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China[J]. Earth and Planetary Science Letters, 2008, 275(3/4): 296-307.
    [47] Railsback L B, Brook G A, Chen J, et al. Environmental controls on the petrology of a Late Holocene speleothem from Botswana with annual layers of aragonite and calcite[J]. Journal of Sedimentary Research, 1994, 64(1): 147-155.
    [48] Wassenburg J A, Immenhauser A, Richter D K, et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2012, 92: 23-47.
    [49] Frisia S, Borsato A, Fairchild I J, et al. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): Environment, fabrics, and carbonate geochemistry[J]. Journal of Sedimentary Research, 2002, 72(5): 687-699.
    [50] McMillan E A, Fairchild I J, Frisia S, et al. Annual trace element cycles in calcite-aragonite speleothems: Evidence of drought in the western Mediterranean 1200-1100 yr BP[J]. Journal of Quaternary Science, 2005, 20(5): 423-433.
    [51] Tan L C, Cai Y J, Cheng H, et al. Centennial- to decadal-scale monsoon precipitation variations in the Upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482: 580-590.
    [52] Zhang H W, Cheng H, Spötl C, et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO[J]. Scientific Reports, 2018, 8(1): 12344.
    [53] Ayliffe L K, Gagan M K, Zhao J X, et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications, 2013, 4: 2908.
    [54] Griffiths M L, Kimbrough A K, Gagan M K, et al. Western Pacific hydroclimate linked to global climate variability over the past two millennia[J]. Nature Communications, 2016, 7: 11719.
    [55] Zhang H B, Griffiths M L, Huang J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453: 243-251.
    [56] Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to Early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2(9): 636-639.
    [57] An Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 171-187.
    [58] Yan M, Liu J. Physical processes of cooling and mega-drought during the 4.2 ka BP event: Results from TraCE-21ka simulations[J]. Climate of the Past, 2019, 15(1): 265-277.
    [59] WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661-665.
    [60] Denton G H, Anderson R F, Toggweiler J R, et al. The last glacial termination[J]. Science, 2010, 328(5986): 1652-1656.
    [61] Wang X F, Auler A S, Edwards R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years[J]. Geophysical Research Letters, 2007, 34(23): L23701.
    [62] Wang X F, Edwards R L, Auler A S, et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years[J]. Nature, 2017, 541(7636): 204-207.
    [63] Schneider T, Bischoff T, Haug G H. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513(7516): 45-53.
    [64] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/southern Oscillation activity at millennial timescales during the Holocene Epoch[J]. Nature, 2002, 420(6912): 162-165.
    [65] Tan M. Circulation background of climate patterns in the past millennium: Uncertainty analysis and re-reconstruction of ENSO-like state[J]. Science China (Seri. D): Earth Sciences, 2016, 59(6): 1225-1241.
  • [1] 张晗, 黄伟, 蒋莹, 陈子元, 沈川洲, 董进国.  亚洲夏季风DO12气候事件的响应模式 . 沉积学报, 2022, 40(3): 765-773. doi: 10.14027/j.issn.1000-0550.2021.005
    [2] 刘康, 周锡强, 江茂生.  牙形刺氧同位素古温度计:研究进展与展望 . 沉积学报, 2022, 40(2): 396-409. doi: 10.14027/j.issn.1000-0550.2021.031
    [3] 王兆夺, 黄春长, 庞奖励, 刘安娜, 周亚利, 查小春.  甘肃庄浪全新世黄土土壤物源分析及古气候恢复重建 . 沉积学报, 2020, 38(4): 781-789. doi: 10.14027/j.issn.1000-0550.2019.077
    [4] 陈剑舜, 张伟宏, 陈仕涛, 邵庆丰, 赵侃, 尹敬文, 朱丽东.  小冰期气候的湖北石笋碳同位素记录 . 沉积学报, 2020, 38(3): 497-504. doi: 10.14027/j.issn.1000-0550.2019.058
    [5] 张伟宏, 廖泽波, 陈仕涛, 邵庆丰, 段福才, 朱丽东, 王天阳.  湖北高分辨率石笋记录的DO18事件特征 . 沉积学报, 2018, 36(4): 674-683. doi: 10.14027/j.issn.1000-0550.2018.051
    [6] 刘芮岑, 李祥辉, 胡修棉.  湖南茶陵盆地晚白垩世古降水氧同位素 . 沉积学报, 2018, 36(6): 1169-1176. doi: 10.14027/j.issn.1000-0550.2018.107
    [7] 张华生, 殷建军, 程海, R Lawrence Edwards, 林玉石, 唐伟, 杨会, 涂林玲, 王华, 潘谋成, 吴夏.  全新世早期弱夏季风事件的精确定位及机制探讨——以湖南莲花洞LHD5石笋为例 . 沉积学报, 2016, 34(2): 281-291. doi: 10.14027/j.cnki.cjxb.2016.02.007
    [8] 张银环, 杨琰, 杨勋林, 殷建军, 黄帆, 任小凤, 赵景耀, 刘肖, 聂旭东.  早全新世季风演化的高分辨率石笋δ18O记录研究——以河南老母洞石笋为例 . 沉积学报, 2015, 33(1): 134-141. doi: 10.14027/j.cnki.cjxb.2015.01.014
    [9] 汉江上游尚家河段全新世古洪水事件光释光测年研究 . 沉积学报, 2014, 32(2): 306-313.
    [10] 王恒松, 黄春长, 周亚利, 熊康宁.  汉江上游全新世特大古洪水事件光释光测年研究 . 沉积学报, 2014, 32(6): 1100-1112.
    [11] 陈 梅.  C、O同位素在川东北碳酸盐岩储层研究中的应用 . 沉积学报, 2011, 29(2): 217-225.
    [12] 程红光.  龙门山地区早泥盆世古海洋环境——来自腕足类壳体的地球化学证据 . 沉积学报, 2008, 26(6): 897-903.
    [13] 闫慧.  河蚬壳体不同断面碳、氧同位素研究 . 沉积学报, 2008, 26(3): 513-517.
    [14] 刘殿兵.  神农架天鹅洞石笋76~58 kaB.P.时段DO事件 . 沉积学报, 2007, 25(1): 131-138.
    [15] 张美良, 袁道先, 林玉石, 覃嘉铭.  贵州荔波董哥洞3号石笋的同位素年龄及古气候信息 . 沉积学报, 2001, 19(3): 425-432.
    [16] 李玉成, 黄宝玉, 徐永昌.  利用贝类(Lamprotula)化石碳氧同位素再建山西丁村地区晚更新世气候环境 . 沉积学报, 2001, 19(4): 648-651.
    [17] 张美良, 林玉石, 覃嘉铭.  桂林水南洞石笋的沉积学特征 . 沉积学报, 1999, 17(2): 233-239.
    [18] 王兆荣, 支霞臣, 张汉昌.  杭州地区石笋稳定同位素古气候探索 . 沉积学报, 1997, 15(1): 77-79.
    [19] 李平, 彭子成, 文启彬, 李玉成, 杨辉, 洪阿实, 许志峰, 王明亮, 业渝光, 和杰, 刁少波.  福建宁化天鹅洞石笋年代和古温度 . 沉积学报, 1996, 14(1): 149-155.
    [20] 李兆兴, 陶明信, 徐永昌, 陈发源.  窑街煤田碳酸盐与突出气体的同位素组成特征 . 沉积学报, 1992, 10(1): 93-100.
  • 加载中
图(7) / 表 (1)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  20
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-20
  • 修回日期:  2021-06-15
  • 录用日期:  2021-07-20
  • 网络出版日期:  2021-07-20
  • 刊出日期:  2023-02-10

目录

    贵州石笋记录的中晚全新世东亚夏季风变化

    doi: 10.14027/j.issn.1000-0550.2021.077
      基金项目:

      浙江省自然科学基金项目 LY20D020001

      国家自然科学基金项目 42202213

      乐业—凤山世界地质公园开放基金项目 LFD20001

      作者简介:

      张振球,男,1988年出生,博士研究生,第四纪环境学,E-mail: zhangzhenqiu@njnu.edu.cn

      通讯作者: 张伟宏,女,博士研究生,第四纪环境学,E-mail: zhangwh@zjnu.cn
    • 中图分类号: P532

    摘要: 研究全新世典型气候突变事件的内部结构及区域特征,有助于明晰季风气候突变事件的成因机制。通过对贵州七星洞石笋14个高精度230Th定年和779个氧同位素数据的分析,重建了过去6 380~2 700 yr B.P.时段平均分辨率达4.7年的东亚夏季风演化序列。该石笋δ18O值整体上呈逐渐偏正的特征,指示中晚全新世以来东亚夏季风持续变弱的趋势。叠加在此长期季风减弱变化趋势上,最为显著的百年尺度振荡主要发生在4 548~3 715 yr B.P.时段,对应于4.2 kyr B.P.事件。该记录与同区域董哥洞石笋δ18O记录一致,均显示在此事件内部并非持续干旱,而是具有两次显著的季风强降雨期。相似的季风强降雨期在我国北方气候记录中也有体现。在更大的空间尺度上,这种4.2 kyr B.P.事件的内部结构特征与澳洲—印度尼西亚(澳—印)季风区的石笋记录结构相对应,但呈显著的反相位耦合关系,证实了亚洲与澳—印季风间的动力学联系。此外,该事件结构与ENSO记录的耦合暗示了4.2 kyr B.P.事件的发生可能与热带太平洋密切相关。

    English Abstract

    张振球, 张伟宏, 刘树双, 翟秀敏, 邵庆丰. 贵州石笋记录的中晚全新世东亚夏季风变化[J]. 沉积学报, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
    引用本文: 张振球, 张伟宏, 刘树双, 翟秀敏, 邵庆丰. 贵州石笋记录的中晚全新世东亚夏季风变化[J]. 沉积学报, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
    ZHANG ZhenQiu, ZHANG WeiHong, LIU ShuShuang, ZHAI XiuMin, SHAO QingFeng. Variation in the East Asian Summer Monsoon During the Middle and Late Holocene Inferred from a Stalagmite Record in Guizhou, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
    Citation: ZHANG ZhenQiu, ZHANG WeiHong, LIU ShuShuang, ZHAI XiuMin, SHAO QingFeng. Variation in the East Asian Summer Monsoon During the Middle and Late Holocene Inferred from a Stalagmite Record in Guizhou, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
      • 全新世发生了一系列百年尺度的气候突变事件[14],表明全新世间冰期的气候并不稳定。其中,发生在4.2 kyr B.P.时期的气候突变过程被认为具有广泛的区域影响,被称为4.2 kyr B.P.事件[5]。近来,该事件也被作为中晚全新世的分界线[6]。因此,研究此事件的结构特征、区域气候响应不仅有助于理解季风突变事件的成因,而且对进一步完善气候地层学有着重要意义。

        在东亚季风区,高分辨率的气候记录呈现了季风对百年尺度突变事件的响应[78]。Zhang et al.[9]通过综合分析我国季风区高精度定年和高分辨率记录,指出4.2 kyr B.P.事件具有时空差异性。在空间分布方面,我国季风区的北部和西南部区域在该时段整体表现为干旱状态,而在东南部区域则表现为湿润状态。在持续时间方面,北部和西南部记录的干旱4.2 kyr B.P.事件持续约500年(4.4~3.9 kyr B.P.),而东南部的湿润4.2 kyr B.P.事件持续约300年(4.2~3.9 kyr B.P.)[9]。近年来,位于黄土高原高分辨率的石笋记录表明,4.2 kyr B.P.事件的内部结构不同于其他发生在全新世的百年尺度干旱事件[10]。4.2 kyr B.P.事件期间,季风降水整体偏低,并呈现逐渐减少的趋势,内部发生有两次明显的强降水过程[10]。虽然重建记录表明我国的西南与北方地区在4.2 kyr B.P.事件都表现为干旱气候特征[9],但是4.2 kyr B.P.事件的内部结构是否与北方一致,目前尚不明确。研究4.2 kyr B.P.事件内部结构的区域特征以及区域之间的异同,有助于明确4.2 kyr B.P.事件在不同区域是否存在持续时间方面的差异。此外,还有助于进一步理解4.2 kyr B.P.事件的发生原因。

        贵州七星洞已经提供了晚更新世以来的气候环境变化历史记录[1116]。这些成果展现了七星洞记录对不同时间尺度事件的敏感性,不仅标定了冰期Dansgaard-Oeschger和Heinrich事件的发生和持续时间[1113],还重现了全新世以来季风水循环的过程[1416]。为了更详细地研究中晚全新世季风变化过程,本文提供了过去6 380~2 700 yr B.P.间高分辨率的七星洞石笋δ18O记录,此记录与同区域董哥洞记录[17]在4.2 kyr B.P.事件上呈相同的振荡特征,并与北方石笋记录相似。此七星洞记录显示,在4.2 kyr B.P.事件内部,也有两次强降水过程,分别发生在4.15 kyr B.P.和3.93 kyr B.P.,但前者更为显著。4.2 kyr B.P.事件内部的这两次强季风过程成为对比不同区域4.2 kyr B.P.事件内部振荡的有效媒介。

      • 编号为QX3的石笋(下文简称为QX3)发育于贵州省都匀市凯口镇凯酉村的七星洞(25°59' N,107°16' E,海拔1 020 m),距离董哥洞约100 km[1720]。该洞长383 m,宽10~15 m,高约10~15 m。洞内年均温为16.1 ℃,相对湿度为95%。此洞穴发育于下石炭统摆佐组(C1b)灰色中厚层白云岩、白云质灰岩中,上覆基岩最大厚度约90 m。上覆土壤层相对较薄,普遍小于10 cm,局部基岩裸露。洞顶植被以灌木为主,草本植物茂盛,总体覆盖度较好。该地为亚热带季风气候,年均降水量约1 176 mm,77.5%的降水分布在4—9月[21]。现代洞穴监测结果表明,该洞洞穴滴水对外界降水响应敏感,洞穴滴水同位素具有明显的季节变化信号[22]

        QX3捡拾于洞穴中部,被发现时已碎裂为多段。可拼接起来的部分呈柱状,高780 mm,直径60~90 mm。QX3被切开抛光后,在剖面上未发现明显的沉积间断,但存在矿物相的差异(图1)。在225~255 mm和318~387 mm段,石笋沿生长轴方向呈疏松放射状,为白色不透明矿物,扫描电子显微镜下观察发现晶体呈纤维状(图1c),X射线衍射测试显示其为文石,具有高238U特征[23]。其余部分为白色透明致密矿物,对应的238U含量则相对较低且稳定,扫描电子显微镜下观察晶体均呈块状菱面体,未发现球粒状或纤维状结构,推测为纯方解石且未发生重结晶过程(图1b)。

        图  1  QX3石笋剖面及扫描电镜图

        Figure 1.  Polished surface of stalagmite QX3 and micrographs of crystals by scanning electron microscopy

        为重建过去气候环境变化,对石笋进行稳定同位素和年龄测试。为获取稳定氧同位素数据,采用头部直径为0.3 mm的钻头沿着生长轴钻取50~100 μg的粉末,取样间隔为1 mm,测试仪器为带有碳酸盐自动进样装置的MAT253同位素质谱仪,共测有779组氧同位素,分析误差优于0.05‰(±1σ),结果以Vienna Pee Dee Belemnite(VPDB)标准给出。对于年龄样品,采用头部直径为0.9 mm的钻头沿着石笋生长层钻取100~200 mg的粉末,共测得14件230Th年龄,测试仪器为Neptune多接收电感耦合等离子质谱仪(MC-ICP-MS)。U和Th元素的分离纯化过程以及Neptune测试分析方法分别见文献Shao et al.[24]和Cheng et al.[25]。以上相关测试工作均在南京师范大学同位素质谱实验室完成。

      • 表1呈现了QX3的14个230Th年龄结果,显示从石笋底部到顶部无倒序现象,符合地层层序规律。样品年代误差在10~75 yr之间,但在225~255 mm和318~387 mm段的疏松放射状层段,误差为11~15 yr,相对较小。在这两个层段的238U含量较高,达7.7~11.9 μg/g,约是其余层段238U含量(0.3~0.4 μg/g)的20倍。在同一支石笋中238U含量突变,可能与组成石笋的矿物有关。一般来说,由于文石与方解石的结构不同,文石具有更强的离子位来捕获更大的阳离子,如易溶于水的铀酰根离子(UO22+)[23,26],因此U含量更高。在整个石笋沉积序列中,从底到顶230Th/238U的值逐渐增大,意味着铀元素衰变体系的封闭性。疏松的文石若发生U元素的流失,230Th/238U在此层段的值要较随后沉积的方解石值大。基于以上初步分析,QX3沉积时未发生U元素流失,U/Th年龄可靠。依据线性内插方法建立QX3氧同位素的时间标尺(图2a黑线),该时标序列得到MOD-AGE[27]模型模拟结果的证实(即内插时标序列均处于MOD-AGE所模拟的置信区域内)。采用内插方法所建时标显示石笋QX3记录的持续时间为6 380~2 700 yr B.P.。

        表 1  QX3石笋230Th年龄*

        样品编号238U232Thδ234U230Th/238U230Th/232Th230Th AgeUncorr.[yr B.P.]δ234UinitialAge
        [depth/mm][ng/g][ng/kg][‰]activity ratioactivity ratio[‰]Corr.[yr B.P.]
        13313±199±1569.3±1.90.039 4±0.000 5387±42 767±37574±22 761±37
        125311±1351±10583.0±2.20.047 5±0.000 3129±43 246±24588±23 225±26
        194292±1102±6567.6±1.70.051 7±0.000 2451±243 580±12573±23 574±13
        2299 249±6567±52565.2±1.70.054 0±0.000 22 691±2483 752±12571±23 751±12
        257263±152±7569.8±2.00.055 7±0.000 2863±1103 867±15567±23 864±15
        308282±151±7533.3±1.30.058 8±0.000 21 005±1394 182±15540±14 178±15
        3239 817±71 047±28555.4±2.00.061 1±0.000 11 750±464 289±11562±24 287±11
        35411 953±10267±49571.4±1.60.063 1±0.000 18 648±1 5844 390±11579±24 390±11
        3777 731±6327±44551.4±2.40.063 8±0.000 24 616±6194 501±15558±24 500±15
        403370±1335±10537.4±2.70.065 1±0.000 3220±74 642±26544±34 625±28
        479355±1223±7517.2±1.40.067 6±0.000 2328±104 883±14524±14 871±15
        560325±1120±12525.8±2.40.072 6±0.000 4603±585 231±33534±25 224±34
        691338±1458±10482.5±2.10.077 5±0.000 5175±45 773±39490±25 747±41
        778358±176±1499.6±1.90.085 6±0.000 91 256±126 388±73509±26 383±73
        注:*分析误差为±2σ,衰变常数为λ230=9.170 5×10-6/a,λ234=2.822 06×10-6/a,λ238=1.551 25×10-10/a[25];校正230Th年龄假定初始230Th/232Th原子比为(4.4±2.2)×10-6;yr B.P.相当于公元1950年;黑色粗体为文石对应的年代数据。

        图  2  QX3石笋年龄模式(a)与氧同位素记录(b)

        Figure 2.  Age model and oxygen isotope record for stalagmite QX3

        QX3 δ18O记录的变化范围为-8.55‰~-5.48‰,平均值为-7.02‰,变化幅度为3.06‰,平均分辨率为4.7 yr。QX3 δ18O记录在6 380~2 700 yr B.P.时段呈逐步增加的趋势(图2b),并在长期趋势上叠加了一系列十年—百年尺度的次一级振荡,其中超出整个记录一倍标准偏差(1σ)的振荡主要发生在4 548~3 715 yr B.P.时段(图2b)。此时段对应于4.2 kyr B.P.事件。因此,QX3 δ18O记录对解析4.2 kyr B.P.事件的结构特征具有重要意义。

      • 洞穴石笋同位素分馏平衡是其进行古气候环境重建的基本前提。除了Hendy检验[28],同一或不同洞穴记录的重复性检验也是常用的验证方法。本文QX3 δ18O记录与此洞另一支已发表QX1石笋[29]在重叠时段有着良好的对应关系(图3)。尽管两记录在局部有微小差异,但在百年—数十年尺度上呈现相似的振荡特征。两记录良好的重现性一方面说明QX3沉积时未发生显著的动力分馏,处于同位素平衡分馏状态;另一方面也暗示QX3在沉积过程中受岩溶渗流系统、蒸发作用等因素影响较小,QX3 δ18O记录可以用作过去气候环境变化的代用指标。中国石笋δ18O指标在大气水循环和全球对比领域有突出优势,但有些研究认为其指示的气候意义仍不明确,存在较大争议[3034]。Cheng et al.[35]和Zhang et al.[36]通过综合分析我国石笋记录,认为石笋δ18O记录在轨道和千年尺度指示了季风强度的平均变化状态。最近,石笋δ18O记录与其他反映降水量指标记录(如黄土、湖泊等)之间的“矛盾”逐渐得到澄清,即它们可能分别响应于东亚季风系统的不同方面,石笋δ18O主要响应于大尺度季风环流和季风雨带的移动,可指示东亚夏季风总体强度变化[3738]。但百年尺度各地的δ18O记录则存在差异[15],甚至呈反向的变化[39]。有些洞穴附近的器测降水与降水δ18O记录有很好的对应关系,明确了石笋δ18O记录可指示季风降水变化[3940]。在我国西南区域,石笋δ18O记录在百年—数十年尺度上被认为主要反映了季风降水的变化,δ18O越小,指示降水量较大,反之亦然[41]。已有的研究表明贵州七星洞洞穴滴水对大气降水响应迅速[42],δ18O的振荡主要反映了与降雨量变化相联系的不同季风降水云团对该地区降雨贡献的剧烈变化[14]。为进一步验证这一解释,我们对比了QX3 234U/238U初始值(234U/238U)0δ18O记录的异同(图2)。对比结果显示,(234U/238U)0δ18O记录在数百年尺度上的变化基本一致。他们的对应关系可解释为:当季风整体加强时(δ18O值减小),增加的降水导致土壤中234U优先淋滤作用减弱,土壤水中234U减少,从而导致石笋234U/238U值减小[43]。七星洞石笋δ18O与234U/238U初始值有着很好的对应关系,说明当地降水量的重要贡献。但是上游降水对石笋δ18O的影响程度,还需更深入的研究。

        图  3  七星洞石笋δ18O记录的重现性对比

        Figure 3.  Replication of two stalagmite δ18O records in Qixing cave

        QX3 δ18O记录显示亚洲季风平均强度在6 380~2 700 yr B.P.逐渐减弱。该减弱过程与北半球夏季太阳辐射逐渐降低相对应,支持了太阳辐射变化在轨道尺度对季风变化的控制作用。然而,有研究发现季风在中晚全新世减弱的开始时间(即适宜期结束时间)随着纬度的增加而延迟[44]。附近的董哥洞记录的全新世季风开始减弱的时间为7.0 kyr B.P.[17],QX3在生长期内δ18O持续偏正的变化支持了董哥洞记录的季风演化过程。太阳辐射变化调控着亚洲夏季风的整体变化,这些亚轨道及千年尺度的振荡表现为其他气候系统如北大西洋[45]、太平洋[44]扰动了太阳辐射对季风环流的控制。

        叠加在季风逐渐减弱长期趋势上最显著的百年尺度振荡主要发生在4 548~3 715 yr B.P.时段。此外,较为显著的季风振荡还发生在3 485~3 230 yr B.P.和5 800~5 560 yr B.P.时段,持续时间约250 yr的季风减弱事件结构简单,均表现为季风先逐渐减弱后又增强的特征(图4灰色阴影部分①④)。其中,5 800~5 560 yr B.P.时段的弱季风事件内部存在一次数十年尺度的次级季风增强过程,4 548~3 715 yr B.P.时段的季风振荡对应于具有广泛区域影响的4.2 kyr B.P.事件。QX3 δ18O记录显示,在4.2 kyr B.P.干旱事件内部约4.15 kyr B.P.时段有一次显著的季风强降雨事件,奠定了该弱季风事件两(干)谷夹一(湿)峰的整体结构。同时,在3.93 kyr B.P.也出现一次降水增强的过程,但其幅度和持续时间较之于4.15 kyr B.P.强降水事件则相对较弱。

        图  4  中国南方洞穴记录对比

        Figure 4.  Comparison between cave records in southern China

        前文所述的发生在225~255 mm和318~387 mm层段的文石矿物分别对应于3 856~3 731 yr B.P.和4 548~4 250 yr B.P.时段,分别位于4.2 kyr B.P.事件的双谷结构中(图4灰色阴影部分②③)。此双谷所夹的位于4.15 kyr B.P.的强降水信号(δ18O负偏)为方解石记录。此方解石为原生方解石,并非由文石转变而成的转化方解石,真实地记录了当时的季风变化信号。证据如下:1)4.2 kyr B.P.事件内部的方解石与其余层段的方解石铀含量相当,说明石笋中的文石和方解石都在石笋沉积时形成,不存在文石向方解石转化的现象。2)4.2 kyr B.P.事件内部方解石与其他部分(包括文石)的230Th年龄线性相关,未发生年龄倒转现象,符合地层层序规律。在整个石笋样品中,从底到顶,230Th/238U值逐渐增加,无乱序现象。文石一般发育在高温或者干旱的环境中[4748],相对来说洞内温度较为稳定,文石的发育可能与大气降水减少有关。以方解石为主体的QX3样品,在生长过程中多处于滴水长期淋滤状态,即降水较多引起持续滴水的湿润环境。而4.2 kyr B.P.事件发生时,可能因降水较少造成持续性滴水减少,滴水速率变慢,渗流水在上覆岩层中滞留时间变长,造成七星洞上覆围岩(如白云岩、白云质灰岩)中较多Mg元素被淋滤,滴水中Mg/Ca比值增加。当滴水中Mg/Ca浓度增加到一定值时,高浓度的Mg2+可能抑制方解石的形成,促成文石产生[26,4750]。因而,4.2 kyr B.P.事件内部的两个文石层发育,表明此时期气候较为干旱。相反,4.2 kyr B.P.事件内部方解石层的发育,则主要由于降水增多造成持续滴水的湿润环境,再次形成方解石矿物[47]。此方解石层的发育,印证了4.2 kyr B.P.事件内部存在季风增强的过程。

        QX3记录的三次百年尺度季风干旱事件均得到附近董哥洞和莲花洞记录的支持[17,46]。有区别的是湖南莲花洞石笋在约3.32 kyr B.P.附近显示季风在约70 yr时间内快速减弱,并在弱季风状态下持续了约300 yr,并不同于董哥洞与七星洞记录,此差异可能源于局地气候的分异。但三者在4.2 kyr B.P.事件内部结构的一致性,再次验证了QX3揭示的4.2 kyr B.P.弱季风事件结构的可靠性。

        已有研究显示,我国西南季风区与北方石笋都记录了4.2 kyr B.P.事件发生时的干旱过程[10,17,46]。QX3 δ18O记录的4.2 kyr B.P.干旱事件内部两次季风降水增强过程,得到了同区域董哥洞记录的支持[17]。这两次季风增强事件在甘肃乌鸦洞、陕西九仙洞和祥龙洞记录中均有表现(图5[10,44,51],说明南北方在4.2 kyr B.P.干旱事件的背景下,都发生有两次季风降水增强波动。除QX3记录外,其他记录均显示,发生在4.15 kyr B.P.的强季风过程比3.93 kyr B.P.事件持续时间长且强度大。QX3 δ18O记录的发生在4.15 kyr B.P.的强降水事件在整个记录中也较为突出(图5)。季风雨带的南北移动和停留时间的不同导致了南北方地区在4.2 kyr B.P.事件内的降水差异[52]。我国北方和西南地区记录的4.2 kyr B.P.事件内部结构一致的两次强降水过程说明两地在该事件发生时季风雨带的西侧可能停留于七星洞之南。或者4.2 kyr B.P.事件发生时,受北高纬反气旋影响,季风雨带整体向东退缩。

        图  5  中国南北方石笋记录的4.2 kyr B.P.事件对比

        Figure 5.  The 4.2 kyr B.P. events characterized by northern and southern cave records in China

      • 亚洲—澳大利亚季风系统是全球季风的组成部分。冰消期及近1 000年的时段内,千年—百年尺度的气候事件(如Heinrich 1, Bolling-Allerod, Younger Drays, Little Ice Age等)在亚洲和澳—印季风中呈反相关系[5355]。对比两区域石笋记录发现,这种反相关系可能也存在于4.2 kyr B.P.事件及其内部更短的时间尺度上。重现性良好的印度尼西亚石笋LR06-B1[56]和LR06-B3[53]δ18O记录显示4.2 kyr B.P.事件发生时,澳—印季风整体增强(图6a)。七星洞和董哥洞石笋记录的4.2 kyr B.P.事件内部的两次强降雨过程在澳—印季风记录中也有表现,但为季风降水减弱事件。甚至,在事件幅度上也与亚洲季风系统记录相对应并呈反相位关系。其中发生在早期的干旱事件(图6中标号为1)的幅度与亚洲季风记录一致,都强于晚期季风波动(图6中标号为2)。这种对应关系说明亚洲与澳—印季风在4.2 kyr B.P.事件时的紧密耦合关系,证实了这种反相位的耦合关系可能不受气候边界条件影响。也进一步证明亚洲与澳—印季风变化的动力联系[57]。4.2 kyr B.P.事件与其他全新世如8.2 kyr B.P.事件类似,一般都认为是发生于北大西洋地区或者由北大西洋温盐环流将此事件的信号传向全球[2,9,17,58]。近期,南北两极冰芯研究发现北大西洋温盐环流将北高纬信号传向南极将需约200年[59]。4.2 kyr B.P.事件时,亚洲和澳—印季风在百年尺度的良好对应关系说明大气环流在传输南北半球信号中的重要作用。Denton et al.[60]指出冰消期发生时大气系统将北高纬冰消信号传向南半球,促使环南极流增强,导致冰期储存于南大洋的CO2释放到大气中,最终完成全球冰消过程。按照此理论,4.2 kyr B.P.事件发生时,北半球西风带南移,亚洲季风减弱,热带辐合带南移,此时南半球的澳—印季风增强[53]。通常,热带辐合带的南北移动可解释南北半球季风系统的反相位关系[6162],但其变化的根本原因是否与北大西洋温盐环流直接相关,还需要进一步研究[63]

        图  6  4.2 kyr B.P.事件东亚夏季风和印澳季风的反相变化

        Figure 6.  Antiphase variation between EASM and Australian⁃Indonesian monsoon at the 4.2 kyr B.P. event

        亚洲季风水汽主要来源于热带海洋,明确亚洲季风在4.2 kyr B.P.时的变化是否受ENSO影响,对完整理解4.2 kyr B.P.事件的发生原因具有重要意义。厄瓜多尔湖泊沉积物记录[64]显示在4.2 kyr B.P.事件时ENSO与QX3 δ18O记录在百年尺度上有很好的对应关系(图7)。当亚洲季风水循环增强时,La Nina事件的发生频率增强,反之亦然。如在4.15 kyr B.P.处的季风增强事件对应于La Nina的多发期(图7阴影部分),此时,沃克环流上升支的气流活动增强,输送到东亚的水汽也增多。Tan[65]指出ENSO可通过西太平洋副热带高压来影响季风降水在百年尺度的变化。如在La Nina态时,西太平洋副热带高压减弱东缩。这样的变化有利于热带海洋水汽向大陆输送,导致季风降水增多。但是,石笋δ18O在4.2 kyr B.P.事件的内部振荡是否源于ENSO控制下的印度洋与太平洋不同水汽比例的变化,目前还不清楚。若我国东部地区在4.2 kyr B.P.事件内部也明确存在两次百年尺度季风增强事件,则不能排除ENSO对大尺度季风环流的影响。ENSO变化与QX3 δ18O记录在4.2 kyr B.P.事件内部百年尺度的对应性,说明热带太平洋对东亚季风4.2 kyr B.P.事件的发生具有重要调控作用。需要指出的是,QX3 δ18O记录与ENSO变化记录仅在4.2 kyr B.P.事件时有明显的对应关系。而其他时段两者关系并不明显,这可能与不同气候系统的振荡频率及驱动因素有关。

        图  7  东亚夏季风记录与ENSO变化对比

        Figure 7.  A comparison between the EASM and ENSO around the 4.2 kyr B.P. event

      • 基于高精度230Th定年和高分辨率的贵州七星洞石笋氧同位素数据,重建了6 380~2 700 yr B.P.时段的东亚夏季风演化序列。与我国其他洞穴石笋记录一致,该石笋δ18O记录呈现逐渐偏正的长期变化趋势,表明中全新世以来东亚夏季风持续减弱,这可能响应于北半球夏季太阳辐射逐渐降低的变化。QX3 δ18O记录的4 548~3 715 yr B.P.时段季风快速突变过程,对应于4.2 kyr B.P.事件。高分辨率石笋δ18O记录捕捉到4.2 kyr B.P.时期季风整体干旱的背景下发生两次显著的季风强降雨期。此两次强降雨期得到我国北方记录的进一步支持。此外,还发现亚洲季风区4.2 kyr B.P.事件的结构特征与澳—印季风区的石笋记录呈反相位的耦合关系。在东亚和澳—印季风系统中,4.2 kyr B.P事件内部结构在持续时间和振荡幅度方面的一致性,证实了在数十年—百年的更短尺度上季风系统间的成因联系。同时,4.2 kyr B.P.事件的结构特征与ENSO变化相对应,在La Nina事件发生频率升高期,东亚夏季风增强,暗示了低纬热带太平洋可能在一定程度上对东亚夏季风4.2 kyr B.P.事件的发生具有重要控制作用。

    参考文献 (65)

    目录

      /

      返回文章
      返回