-
石炭纪—二叠纪一直以来被认为是地质时期最显著的成冰期之一,即晚古生代冰期(Late Palaeozoic Ice Age),由多个被温暖时期间隔开来的冰川事件组成[1⁃5]。一般认为早二叠世萨克马尔期是晚古生代冰期的消融时期[6⁃10],是从“冰室气候”向“温室气候”过渡的时期,高纬度地区的冰期沉积物逐渐消失,低纬度地区海相地层普遍指示明显的海侵[3,5,7,11⁃14]。生物礁为原地底栖造礁生物建造的具有隆起地貌特征的碳酸盐岩,是特定地史时期海洋环境演化的产物,对古生态、古气候和古海洋环境的变化极其敏感[15⁃19]。目前,全球范围内早二叠世萨克马尔期生物礁研究主要集中在劳亚古陆的浅海陆棚区和古特提斯洋西缘陆棚,主要发育微生物礁、钙质海绵礁、苔藓虫礁、珊瑚礁、叶状藻礁和Tubiphytes礁等[20⁃22]。由于晚古生代冰川作用,海洋表面温度的变化对海洋环流产生了强烈的影响,导致古特提斯洋和泛大洋的海洋生态系统之间产生了区域差异[23]。
华南板块位于古特提斯洋东缘,早二叠世区域内广泛发育的浅水碳酸盐岩台地为浅水海洋生物提供了适宜的生存环境[24⁃25]。本文从古生物学和沉积岩石学等角度出发,对贵州省安顺市紫云县宗地镇高寨地区发育的珊瑚礁开展生物地层、生物组成、建造模式和微相分析方面的研究,并对其生长、发育和消亡的控制因素进行讨论,为早二叠世生物礁的发育和演化补充了后生动物造礁相关的重要信息,进而为研究低纬度地区海洋生态系统应对晚古生代冰期的响应机制提供了重要证据。
-
研究区位于贵州省安顺市紫云县宗地镇(25°39′37″ N,106°17′38″ E)(图1a),大地构造位置位于扬子古陆南缘,黔桂盆地北缘,主要受古特提斯洋构造域的影响,以台地相碳酸盐岩沉积为主(图1b)[26⁃27]。宗地地区二叠系保存完好,出露连续,分区属于扬子地层区[28],自下而上依次发育紫松阶、隆林阶和罗甸阶,紫松阶相当于国际地层年代的阿瑟尔阶—萨克马尔阶,隆林阶相当于国际年代地层的亚丁斯克阶,罗甸阶相当于国际年代地层的空谷阶[29]。岩石地层单位为马平组,沉积物主要为浅灰—深灰色中层—厚层生物碎屑灰岩,常夹白云质灰岩或白云岩,生物化石丰富,主要为浅水底栖生物,如珊瑚、腕足类、有孔虫、䗴、海百合和藻类等,属于陆表海沉积[30]。
-
研究区广泛发育的碳酸盐岩沉积为生物建造(bioconstruction)的生长发育提供了有利条件,高寨地区发现有多处生物礁(reefs)、生物礁丘(reef mounds)和生物层(biostromes)等。高寨珊瑚礁出露于沿宗地镇打饶村—高寨的公路北侧山脚,在高寨珊瑚礁东约200 m的山脚和半山坡,发育珊瑚层。
高寨珊瑚礁礁体高约3.0 m,宽23.6 m,在野外可以清晰识别出珊瑚礁在形态上具有明显的正向隆起(图2a)。珊瑚礁的基底主要由灰色—深灰色生物碎屑泥粒岩—颗粒岩组成,含有大量的生物碎屑,包括有孔虫、藻类、腕足碎片和腹足等(图2b,c、图3a,b)。珊瑚礁内主要由大量的丛状复体四射珊瑚组成,伴有少量的单体四射珊瑚和角柱状复体四射珊瑚,珊瑚的分布具有不均一性,珊瑚体大小不一,保存较为完好。原位保存的珊瑚互相接触搭建格架形成珊瑚格架岩(图2b,c、图3a~c),珊瑚格架内空间大多被珊瑚体障积的灰泥沉积物所充填,原生孔隙不发育。珊瑚礁与沉积盖层的界线可以清晰识别,上覆岩层主要发育一套灰色—深灰色生物碎屑颗粒岩,含有大量的生物碎屑,包括孔虫、藻类、腕足碎片和零星的单体四射珊瑚等(图2b,c、图3a)。
-
珊瑚礁内含有较为丰富的䗴类生物,为珊瑚礁时代的确定创造了良好条件,经鉴定共识别出䗴类化石8属10种,包括Eoparafusulina parashengi,E. pararegularis,Mccloudiacontracta,Pseudofusulina cf. wulungensis,Rugosofusulinaparagregariformis,Triticites daaoziensis,Zellia ex. gr. crassialveola,Sphaeroschwa⁃gerinaborealis,S. sp. indet., Boultoniawills(图4)。其中Sphaeroschwagerinaborealis,S. sp. indet.通常被视作阿瑟尔期的典型分子,部分延限至萨克马尔期,Rugosofusulinaparagregariformis最早报道于广西的Triticites simplex带中并延限至早二叠世[32],最高层位可见于贵州的Eoparafusulina ovata带[33],Mccloudia最早被归为Eoparafusulina的一个亚属[34],大量见于北美狼营组的中下部层位[35],与Eoparafusulina均为萨克马尔期的常见分子。在所发现的标本中,以Eoparafusulina与Mccloudia两个属为主,Sphaeros⁃ chwagerina,Zellia与Triticites丰度相对较低,其余属更低,仅有数个保存完好的标本。综上,高寨珊瑚礁内发现的䗴类化石表现出很强的萨克马尔期䗴类生物的组合特征,且缺乏Chalaroschwagerina等相对高级的䗴类属种,推测高寨珊瑚礁的时代大致为萨克马尔早—中期。
-
高寨珊瑚礁的造礁生物以丛状复体四射珊瑚Fomichevella为主(图5a~c),另可见单体四射珊瑚Timania(图5d)、单体四射珊瑚Bothrophyllum(图5e)和角柱状复体珊瑚Kepingophyllum(图5f),珊瑚含量超过80%,并以原位形式保存。
在珊瑚礁内,珊瑚的分布具有不均一性,这是骨架生物建造的典型特征[36]。在珊瑚礁的底部,珊瑚总含量在60%左右,主要由Fomichevella和Kepingophyllum组成,分别占总含量的75%和25%(图6a)。Fomichevella个体相对较小,个体直径1~3 cm不等,以直径1~2 cm为主。在珊瑚礁内部,珊瑚含量最高(85%左右),主要由Fomichevella,Timania和Bothro⁃ phyllum组成,它们占珊瑚含量的比例分别是65%,17%和18%(图6b)。珊瑚个体直径较大,个体直径1.0~4.5 cm不等(主要介于2.5~3.5 cm)。在珊瑚礁顶部,珊瑚个体变小,含量在15%左右(图6c)。复体珊瑚Fomichevella含量显著降低,零星发育单体四射珊瑚Timania和Bothrophyllum,珊瑚礁停止发育。
-
高寨珊瑚礁中含有丰富的附礁生物,包括䗴、非䗴有孔虫、钙质藻类、微生物鲕粒、海百合、苔藓虫和腕足碎片等(图7)。䗴类生物和非䗴有孔虫普遍发育在珊瑚礁内的各个位置(图7a,b)。钙质藻类的分布更为广泛,发育在珊瑚礁的各个位置,丰富的钙质藻类的出现反映浅水透光带环境[37](图7a,d)。微生物鲕粒则集中发育在珊瑚礁的基底,以有核—同心纹层鲕粒最为发育,鲕粒的核心以泥晶方解石为主(图7c)。鲕粒常被作为动荡浅水环境的指示标志,但其分布范围广泛,可形成于多种环境,如潮间带环境、台地边缘、湖泊、洞穴和热泉等[38],而低纬度地区的同心纹层鲕粒多发育于温暖高能的浅水环境[39]。海百合、苔藓虫和腕足生物以碎片为主,丰度较低,仅在薄片中识别出。各类附礁生物在高寨珊瑚礁的不同位置以及发育的不同阶段均表现出明显的差异,反映出珊瑚礁的生物组成在时空上具有不均一性。
-
高寨珊瑚礁中的珊瑚以原地保存为主,大部分珊瑚保存完好(图3)。在珊瑚礁中,单体四射珊瑚有三种生长方向,分别是平行层面、倾斜层面和垂直层面,以倾斜层面和垂直层面生长方向居多。复体四射珊瑚通常倾斜层面或垂直层面生长,在垂直于层面的方向,可以观察到发育完整的珊瑚体以直立或近直立的方式向上生长(图3c~e),岩石光面的横切面显示珊瑚个体向相同方向生长(图8a,b)。主要的造礁珊瑚为丛状复体四射珊瑚Fomichevella,伴有出芽生殖结构(图3e),具有一定的抗浪性[40]。在Fomichevella珊瑚体之间分布着单体四射珊瑚和角柱状复体四射珊瑚,其中角柱状复体四射珊瑚Kepingophyllum主要发育在珊瑚礁下部位置(图8c)。角柱状复体珊瑚Kepingophyllum隔壁较粗,壁部由隔壁始端或泡沫板聚集而成,壁部构造厚而致密,具有较强的抵抗风浪的能力,反映了珊瑚礁建造初期水动力较强[41⁃42]。
-
通过对高寨珊瑚礁及其上下岩层的微相研究发现,微相类型包括:生物碎屑颗粒岩、生物碎屑泥粒岩、珊瑚格架岩、生物碎屑粒泥岩(图9)。珊瑚礁的基底以生物碎屑颗粒岩和生物碎屑泥粒岩为主,含有丰富的生物碎屑颗粒。珊瑚礁内的微相类型主要为珊瑚格架岩,造礁珊瑚互相接触搭建格架,其间含有丰富的生物碎屑粒泥岩。珊瑚礁的顶部以生物碎屑泥粒岩为主要的微相类型。
-
生物碎屑颗粒灰岩主要发育高寨珊瑚礁的基底,主要的生物碎屑颗粒为有孔虫、䗴、钙质藻类、海百合、微生物鲕粒和少量的腕足碎片等,含量约占岩石总体积的50%~60%(图9a,b)。生物碎屑颗粒大小混杂,个体为0.1~5 mm不等,分选性差,磨圆性较差。生物碎屑颗粒泥晶化严重,多数具有泥晶包壳,部分被完全泥晶化。生物颗粒之间的空隙被亮晶方解石充填。
生物碎屑泥粒岩中的生物颗粒均为浅水生物类型,且多数来源于碳酸盐岩台地边缘环境。大量钙质藻类的出现指示了透光带内的相对浅水环境。有核—同心纹层鲕粒最为发育,通常指示温暖高能的浅水环境[38]。有孔虫、䗴和腕足碎片的出现代表含氧量较好的浅水环境[15,43]。泥晶包壳的大量发育,证明当时微生物活动显著。根据Flügel[39]微相标准,高寨珊瑚礁中的生物碎屑颗粒岩主要形成于碳酸盐岩台地边缘礁相环境—砂质浅滩环境,具有较高能水动力条件的浅水环境。
-
生物碎屑泥粒岩主要发育在高寨珊瑚礁的基底和顶部,主要的颗粒类型为似球粒和生物碎屑颗粒。生物碎屑包括:䗴、有孔虫、钙质藻类、腕足碎片和海百合等(图9c),含量约占岩石总体积的45%~55%。生物碎屑大小混杂,分选性差,较为破碎,并且没有明显的磨圆。大部分生物碎屑受到泥晶化作用,具有泥晶包壳。生物颗粒之间的空隙被泥晶和亮晶方解石充填。
生物碎屑泥粒岩中的生物颗粒均为浅水生物类型,且多数来源于碳酸盐岩台地边缘环境。部分颗粒相对破碎,且分选性差,说明生物化石被海水打碎后搬运于此,而较差的磨圆性又指示了搬运距离较短,应为原地或近原地沉积。泥晶包壳的较为发育,说明微生物活动显著。根据Flügel[39]微相标准,高寨珊瑚礁中的生物碎屑泥粒岩主要形成于碳酸盐岩台地边缘礁相环境—砂质浅滩环境,具有中—高能水动力条件的浅水环境。
-
高寨珊瑚礁主要的造礁生物是丛状复体四射珊瑚Fomichevella,由Fomichevella搭建珊瑚格架岩(图8a,b、图9e)。大部分Fomichevella珊瑚体相互接触紧密排列,伴有出芽生殖结构(图3e),并保持直立向上生长,相互搭建格架。珊瑚个体直径较大,个体直径为1.0~4.5 cm(主要介于2.5~3.5 cm)。在珊瑚格架主要充填生物碎屑粒泥岩,颗粒以泥粒、泥晶和生物碎屑(如䗴、有孔虫和钙质藻类等)为主。
Fomichevella是一类丛状复体四射珊瑚,以无性出芽生殖的方式保持直立生长,互相接触搭建的格架具有一定的抗浪性,多生长在温暖清澈的透光带[44]。具有光依赖性的钙质绿藻的出现也指示了温暖浅水透光带环境。格架之间的生物碎屑粒泥岩反映了珊瑚礁内部具有较低能的水动力条件。根据Flügel[39]微相标准,高寨珊瑚礁中的珊瑚格架岩发育在碳酸盐岩台地边缘浪基面以下的浅水透光带内,具有中低能的水动力条件。
-
生物碎屑粒泥岩主要发育在高寨珊瑚礁的珊瑚格架之内,零星可见有孔虫等生物碎屑,颗粒含量极低。在单偏光显微镜下,颗粒包括细小生物碎屑(如有孔虫、䗴、和钙质藻类等)和似球粒,颗粒含量介于10%~15%,多小于1 mm,生物碎屑颗粒之间的空隙被泥晶和泥粒充填,没有明显的亮晶方解石胶结作用(图9d)。
在生物碎屑粒泥岩中,灰泥含量高,礁体的格架空间大部分被灰泥等沉积物所充填,原生孔隙保留得较少,生物碎屑保存相对完好,说明其可能形成于浪基面以下相对安静的水体环境,体现了珊瑚礁内部的相对静水环境。
-
生物礁是由多类生物组成的高级生态系统,对环境变化十分敏感。地质历史时期,古生物和古环境因素深刻影响着生物礁的发展和演化[45⁃46]。
-
从古生物学角度来说,控制生物礁发育的主要因素是造礁生物的繁盛和衰减,其常常伴随生物复苏和灭绝事件[47⁃48]。例如,晚泥盆世F—F生物灭绝事件导致层孔虫和珊瑚多样性大量衰减,进而导致层孔虫—珊瑚礁生态系统的崩溃[49⁃50];泥盆纪末期Hangenberg生物灭绝事件之后,珊瑚和苔藓虫开始逐渐繁盛,直至早石炭世维宪期,以珊瑚—苔藓虫为造礁生物的生物礁大量发育[51]。
中国南方地区早二叠世阿瑟尔期—萨克马尔期是石炭纪类型和二叠纪类型的珊瑚混生的时期,一些石炭纪常见的科延续到本期,并再度繁盛,随后消亡[25]。其中,Cyathopsidae杯盾珊瑚科的Fomichevella、Bothrophyllidae沟珊瑚科的Bothrophy llum和Timania等,在该时期发育达到顶峰[25]。直到萨克马尔期末,发生四射珊瑚更替事件,石炭纪类型的珊瑚全部灭绝,此次生物灭绝事件与全球性海退事件密切相关[52]。另外,一些在二叠纪起源的重要属种开始发育,如Kepingophyllidae柯坪珊瑚科的Kepingophyllum[25]。
高寨珊瑚礁发育于早二叠世萨克马尔期,造礁生物以丛状复体四射珊瑚Fomichevella为主,另可见单体四射珊瑚Bothrophyllum、单体四射珊瑚Timania和角柱状复体珊瑚Kepingophyllum,与该时期四射珊瑚的发育和演化吻合。对比丛状复体四射珊瑚、单体珊瑚和角柱状复体四射珊瑚,其中丛状复体四射珊瑚的生长速率远大于另外两种类型的珊瑚[53]。丛状复体四射珊瑚Fomichevella作为珊瑚礁发育最主要的造礁生物,在礁体生长发育过程中更能适应当时的生长环境,并搭建坚固的珊瑚骨架。
-
一般认为早二叠世萨克马尔期是晚古生代冰期主要冰盖的消融期,是从“冰室气候”向“温室气候”过渡的时期,冰川的消长控制了低纬度地区相对海平面的升降[6⁃10,53⁃54]。从古环境因素角度来说,相对海平面变化是控制生物礁生长发育的主要因素,相对海平面的升降影响水动力的强弱和生物礁的生长空间,制约了生物礁的生长[55⁃57]。
通过对高寨珊瑚礁及其上下岩层微相类型和造礁珊瑚生长机制的分析,可以发现珊瑚礁的生长发育与相对海平面变化密切相关。在高寨珊瑚礁建造初期,主要岩相为生物碎屑颗粒岩,颗粒含量较高,反映了水动力作用较强[39],造礁珊瑚的纵向生长受到抑制,横向生长占优势,Fomichevella个体相对较小。另外可见角柱状复体珊瑚Kepingophyllum呈板丘状生长,其具有抵抗较高能水动力条件的能力。珊瑚礁建造过程中,珊瑚格架岩之间的泥晶含量显著增加,颗粒含量减少,反映了该时期水体加深,水动力条件较低[39]。丛状复体四射珊瑚Fomichevella比其他生长方式的珊瑚更快地占领生态位,在珊瑚礁建造过程中占据主导地位,搭建相对坚硬的生物格架。珊瑚礁上覆岩层的沉积微相类型为生物碎屑颗粒岩和生物碎屑泥粒岩,生物碎屑和亮晶方解石的含量显著增加,指示相对海平面降低和水动力作用增强,珊瑚礁停止发育。
-
早石炭世杜内期—早二叠世亚丁斯克期生物礁的发育与晚古生代冰期之间表现出较好的耦合关系[46](图10),冰期—间冰期旋回是控制古海洋温度变化和全球海平面变化的主要因素,二者对华南地区晚古生代后生动物礁系统演化起到至关重要的作用[46,57]。
晚古生代冰期开始于泥盆纪晚期,全球古温度、古气候及古海洋环境发生了巨大变化[5,63],在一定程度上控制了生物礁系统的发展[64⁃67]。早石炭世杜内期,受冰川作用的影响,海洋生物多样性处于一个较低的水平,进入维宪期后,冰川沉积物减少,全球海平面上升[64⁃67]。维宪期相对温暖的古气候是后生动物礁发育和繁盛的最主要原因和驱动力[51]。华南地区在早石炭世维宪期中期开始发育后生动物礁,直到维宪期晚期后生动物礁发育进入繁盛阶段,主要的造礁生物为珊瑚(包括双型珊瑚、丛管珊瑚和笛管珊瑚等)与苔藓虫[57,68]。该时期全球其他地区发育的生物礁系统,在造礁生物组成和礁体建造结构等方面相似性极强,指示了早石炭世维宪期后生动物礁的发育与演化具有全球一致性[36,51,68]。
谢尔普霍夫期—巴什基尔期,冰川作用显著增强,寒冷气候导致的大规模海退事件[1,4,67,69⁃72],对古海洋生态系统造成了剧烈的影响[73⁃74],生物礁规模变小的同时数量锐减。晚石炭世巴什基尔期晚期—莫斯科期,后生动物礁有了小范围的复苏,在美国、中国北方和日本等地发育以刺毛海绵类为主要造礁生物的生物礁/丘[75⁃78]。在此期间,华南地区主要发育叶状藻礁和微生物礁,后生动物骨架礁不甚发育[46,57]。直到晚石炭世卡西莫夫期晚期—格舍尔期,晚古生代冰川的范围和规模有所缩减[60,79],古海洋温度升高和海平面上升促进了华南地区珊瑚礁的发育,以笙丛状复体四射珊瑚Fomichevella为造礁生物的生物礁/丘/层普遍发育[40,80]。早二叠世阿瑟尔期—萨克马尔期最早期,冰川作用再次扩大,但是此次冰期并未对低纬度地区海洋环境和生物礁系统造成致命的冲击[81]。晚古生代冰川在萨克马尔期开始消融,萨克马尔期早—中期全球气候回暖,冰川作用减弱,普遍发育海侵地层[2,5,7,11⁃12,14],华南高寨地区珊瑚礁(本文)在这一时期得以生长发育。
值得注意的是,晚石炭世—早二叠世全球后生动物礁的发育和演化并不具有全球一致性,以Fomichevella为造礁生物的后生动物礁丘仅在华南地区普遍发育。这可能是由于在早石炭世—晚石炭世之交,位于欧美大陆和南方冈瓦纳大陆间的瑞亚克洋(Rheic Ocean)进一步闭合,导致古海洋洋流循环以及古海洋表面温度的改变,使得古特提斯洋和泛大洋的海洋生态系统之间产生了区域差异[23,82]。
-
(1) 黔南紫云地区高寨珊瑚礁发育于早二叠世萨克马尔期,造礁生物主要由丛状复体四射珊瑚Fomichevella、单体四射珊瑚Bothrophyllum、单体四射珊瑚Timania和角柱状复体珊瑚Kepingophyllum组成,附礁生物包括䗴、有孔虫、钙质藻类、微生物鲕粒、海百合、苔藓虫和腕足碎片等。微相类型主要有生物碎屑颗粒岩、生物碎屑泥粒岩、珊瑚格架岩、生物碎屑粒泥岩。
(2) 高寨珊瑚礁及其上下岩层微相类型和造礁珊瑚生长机制的分析显示,相对海平面变化导致的水动能强弱变化是控制珊瑚礁生长发育的主要原因。早二叠世(阿瑟尔期—萨克马尔期—亚丁斯克期),由晚古生代冰期导致的冰期—间冰期旋回是控制古海洋温度变化和全球海平面变化的主要因素,高寨珊瑚礁的发育为探究低纬度地区生物礁的发展演化与晚古生代冰期的耦合关系提供了重要的依据。
Basic Characteristics and Palaeoenvironmental Background of a Sakmarian Coral Reef in Southern Guizhou
-
摘要: 目的 黔南紫云地区广泛发育早二叠世浅水碳酸盐岩台地,是研究浅水海洋生物建造及其古环境背景的重要区域。 方法 以贵州省紫云县宗地镇高寨地区珊瑚礁为研究对象,从古生物学和沉积岩石学等角度进行系统研究。 结果 高寨珊瑚礁野外出露高度约3.0 m,宽度约23.6 m。礁内所产出的䗴类化石组合指示其发育的时代为早二叠世萨克马尔期早—中期。珊瑚礁主要由复体四射珊瑚福米切夫珊瑚(Fomichevella)建造而成,并发育单体四射珊瑚沟珊瑚(Bothrophyllum)、提曼珊瑚(Timania)和复体四射珊瑚柯坪珊瑚(Kepingophyllum)。珊瑚体保存较为完好,原位保存的珊瑚互相接触搭建格架形成珊瑚格架岩,格架内空间大多被珊瑚体障积的灰泥沉积物所充填。珊瑚礁内含有丰富的附礁生物,包括䗴、非䗴有孔虫、钙质藻类、微生物鲕粒、海百合、苔藓虫和腕足碎片等。通过对珊瑚礁及其上下岩层沉积微相的分析,划分出生物碎屑颗粒岩、生物碎屑泥粒岩、珊瑚格架岩和生物碎屑粒泥岩四种微相类型。珊瑚礁的基底以生物碎屑颗粒岩和生物碎屑泥粒岩为主。珊瑚礁内的微相类型主要为珊瑚格架岩,珊瑚格架间含有丰富的生物碎屑粒泥岩。珊瑚礁的顶部以生物碎屑泥粒岩为主要的微相类型。 结论 高寨珊瑚礁的生长发育主要受相对海平面波动导致的水动能强度变化所控制,这一研究为低纬度地区生物礁演化对晚古生代冰川作用的响应提供了重要证据。Abstract: Objective During the Early Permian, shallow water carbonate platforms were widely developed in Ziyun area, southern Guizhou, which is a significant region for studying the characteristics of bioconstructions and the implications to palaeoenvironment. Methods The methods of paleontology and sedimentary petrology were systematically used to study the Gaozhai coral reef in Zongdi town, Ziyun county, Guizhou province. The Gaozahi coral reef was meticulously measured in the field. The lithology, sedimentary structures, bed thickness and components were documented in detail. Results Based on field observations, the Gaozhai coral reef is exposed with a thickness of approximately 3.0 m and a lateral exposure of nearly 23.6 m. A total of 10 species in 8 genera fusulinids were recognized: Eoparafusulina parashengi,E. pararegularis,Mccloudiacontracta,Pseudofusulina cf. wulungensis,Rugosofusulinaparagregariformis,Triticites daaoziensis,Zellia ex. gr. crassialveola,Sphaeroschwagerinaborealis,S. sp. indet., Boultoniawills. The fusulinids collected from the reef indicate an Early-Middle Sakmarian age. The Gaozhai coral reef is primarily composed of the in suit colonial rugose coral Fomichevella. A small quantity of solitary rugose coral Bothrophyllum, Timania and colonial rugose coral Kepingophyllum are also recognized. The coral framework is predominantly built by the branching colonial rugose coral Fomichevella preserved in situ. The great majority of corals are well-preserved, and the fragments are rare. The growth mechanism of Fomichevella is mostly attached to each other with asexual budding structure in branching forms and mostly occupies as much space as possible. The associated biotic compositions of the coral reef, including foraminifera, fusulinids, brachiopods, bryozoans, crinoids, ooids and calcareous algae, are abundant and spatially diverse. The differences in the composition of coral reef-dwellers reflect the temporal and spatial changes in the biotic constitutions of the coral reef. Four microfacies types have been identified, including bioclastic grainstone, bioclastic packstone, coral framestone and bioclastic wackestone. In the substrate of the Gaozhai coral reef, the microfacies types are predominantly characterized by bioclastic grainstone and bioclastic packstone, including the bioclasts of foraminifers, brachiopods, bryozoans and calcareous algae. In the core of the coral reef, the microfacies types are dominated by the coral framestone. Bioclastic wackestone is common in the interior of this coral reef, filling the spaces between coral skeletons. Bioclastic packstone is predominant in the cap of the coral reef. Conclusions Fasciculate corals have the highest growth rates among rugose corals, which can occupy ecologic niches much quicker than other forms and become relatively dominant at times. The dominance of the fasciculate colonial coral Fomichevella is more adaptable to the environment and could build a strong coral framework in the development of the reef. According to the growth of the reef-builder (corals) and microfacies analyses, relative sea-level changes are interpreted to control the development of the Gaozhai coral reef,which provides compelling evidence for the response of the reef evolution to the Late Palaeozoic glaciation at low latitudes. The development of the Gaozhai coral reef in South China was strongly coupled to the relative global deglaciation episode and associated sea-level rise during the Sakmarian.
-
Key words:
- coral reef /
- Sakmarian /
- biotic composition /
- microfacies /
- southern Guizhou
-
-
[1] Fielding C R, Frank T D, Birgenheier L P, et al. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society, 2008, 165(1): 129-140. [2] Fielding C R, Frank T D, Birgenheier L P, et al. Stratigraphic record and facies associations of the Late Paleozoic Ice Age in eastern Australia (New South Wales and Queensland)[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 41-57. [3] Fielding C R, Frank T D, Isbell J L. The Late Paleozoic Ice Age-A review of current understanding and synthesis of global climate patterns[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 343-354. [4] Gulbranson E L, Montañez I P, Schmitz M D, et al. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina[J]. GSA Bulletin, 2010, 122(9/10): 1480-1498. [5] Montañez I P, Poulsen C J. The Late Paleozoic Ice Age: An evolving paradigm[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 629-656. [6] Veevers J J, Powell C M. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica[J]. GSA Bulletin, 1987, 98(4): 475-487. [7] Isbell J L, Miller M F, Wolfe K L, et al. Timing of Late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems?[M]//Chan M A, Archer A W. Extreme depositional environments: Mega end members in geologic time. Boulder: Geological Society of America, 2003, 370: 5-24. [8] Korte C, Jasper T, Kozur H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224(4): 333-351. [9] Korte C, Jones P J, Brand U, et al. Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 269(1/2): 1-16. [10] Zeng J, Cao C Q, Davydov V I, et al. Carbon isotope chemostratigraphy and implications of palaeoclimatic changes during the Cisuralian (Early Permian) in the southern Urals, Russia[J]. Gondwana Research, 2012, 21(2/3): 601-610. [11] Montañez I P, Tabor N J, Niemeier D, et al. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation[J]. Science, 2007, 315(5808): 87-91. [12] Koch J T, Frank T D. The Pennsylvanian-Permian transition in the low-latitude carbonate record and the onset of major Gondwanan glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4): 362-372. [13] Haig D W, McCartain E, Mory A J, et al. Postglacial Early Permian (late Sakmarian-early Artinskian) shallow-marine carbonate deposition along a 2000km transect from Timor to west Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 409: 180-204. [14] Frank T D, Shultis A I, Fielding C R. Acme and demise of the Late Palaeozoic Ice Age: A view from the southeastern margin of Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 176-192. [15] Wilson J L. Carbonate facies in geologic history[M]. New York: Springer, 1975: 1-471. [16] Wood R. The ecological evolution of reefs[J]. Annual Review of Ecology and Systematics, 1998, 29: 179-206. [17] Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231. [18] Wu Y S, Fan J S. Quantitative evaluation of the sea-level drop at the end-Permian: Based on reefs[J]. Acta Geologica Sinica, 2003, 77(1): 95-102. [19] 吴亚生,范嘉松,姜红霞,等. 二叠纪末生物礁生态系绝灭的方式[J]. 科学通报,2007,52(2):207-214. Wu Yasheng, Fan Jiasong, Jiang Hongxia, et al. Extinction pattern of reef ecosystems in latest Permian[J]. Chinese Science Bulletin, 2007, 52(2): 207-214. [20] Flügel E. Pangean shelf carbonates: Controls and paleoclimatic significance of Permian and Triassic reefs[M]//Klein G O. Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Boulder: Geological Society of America, 1994, 288: 247-266. [21] 范嘉松,吴亚生. 世界二叠纪生物礁的基本特征及其古地理分布[J]. 古地理学报,2005,7(3):287-304. Fan Jiasong, Wu Yasheng. Main features of the Permian reefs of world and their palaeogeographic distribution[J]. Journal of Palaeogeography, 2005, 7(3): 287-304. [22] Kiessling W, Krause M C. PARED - An online database of Phanerozoic reefs[EB/OL]. 2022. https://www.paleo-reefs.pal.uni-erlangen.de. [23] Stanley S M, Powell M G. Depressed rates of origination and extinction during the Late Paleozoic Ice Age: A new state for the global marine ecosystem[J]. Geology, 2003, 31(10): 877-880. [24] Shi G R. Possible influence of Gondwanan glaciation on low-latitude carbonate sedimentation and trans-equatorial faunal migration: The Lower Permian of South China[J]. Geosciences Journal, 2001, 5: 57-63. [25] Wang X D, Wang X J, Zhang F, et al. Diversity patterns of Carboniferous and Permian rugose corals in South China[J]. Geological Journal, 2006, 41(3/4): 329-343. [26] 冯增昭,杨玉卿,金振奎,等. 中国南方二叠纪岩相古地理[J]. 沉积学报,1996,14(2):3-12. Feng Zengzhao, Yang Yuqing, Jin Zhenkui, et al. Lithofacies paleogeography of the Permian of South China[J]. Acta Sedimentologica Sinica, 1996, 14(2): 3-12. [27] 刘宝珺,许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京:科学出版社,1994:1-188. Liu Baojun, Xu Xiaosong. Atlas of the lithofacies and palaeogeography of South China (Sinnian-Triassic)[M]. Beijing: Science Press, 1994: 1-188. [28] 王立亭,陆彦邦,赵时久,等. 中国南方二叠纪岩相古地理与成矿作用[M]. 北京:地质出版社,1994:1-147. Wang Liting, Lu Yanbang, Zhao Shijiu, et al. Permian lithofacies paleogeography and mineralization in South China[M]. Beijing: Geological Publishing House, 1994: 1-147. [29] 沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):160-193. Shen Shuzhong, Zhang Hua, Zhang Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 49(1):160-193. [30] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社,1987:1-698. Bureau of Geology and Mineral Resources of Guizhou Province. Regional geology of Guizhou province[M]. Beijing: Geological Publishing House, 1987: 1-698. [31] Buggisch W, Wang X D, Alekseev A S, et al. Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze Platform), USA (Kansas) and Russia (Moscow Basin and Urals)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 301(1/2/3/4): 18-38. [32] 陈旭,王建华. 广西宜山地区晚石炭世马平组的䗴类[M]. 北京:科学出版社,1983:1-139. Chen Xu, Wang Jianhua. The fusulinids of the Maping limestone of the Upper Carboniferous from Yishan, Guangxi[M]. Beijing: Science Press, 1983: 1-139. [33] 史宇坤,杨湘宁,刘家润. 贵州南部宗地地区早石炭世—早二叠世的䗴类[M]. 北京:科学出版社,2012:1-271. Shi Yukun, Yang Xiangning, Liu Jiarun. Early Carboniferous to Early Permian fusulinids from Zongdi section in southern Guizhou[M]. Beijing: Science Press, 2012: 1-271. [34] Ross C A. Eoparafusulina from the Neal Ranch Formation (Lower Permian), West Texas[J]. Journal of Paleontology, 1967, 41(4): 943-946. [35] Skinner J W, Wilde G L. Permian biostratigraphy and fusulinid faunas of the Shasta Lake area, northern California[M]. Lawrence: The University of Kansas, 1965: 1-98. [36] Yao L, Wang X D, Lin W, et al. Middle Viséan (Mississippian) coral biostrome in central Guizhou, southwestern China and its palaeoclimatological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 179-194. [37] Gallagher S J. Controls on the distribution of calcareous foraminifera in the Lower Carboniferous of Ireland[J]. Marine Micropaleontology, 1998, 34(3/4): 187-211. [38] Diaz M R, Eberli G P. Decoding the mechanism of formation in marine ooids: A review[J]. Earth-Science Reviews, 2019, 190: 536-556. [39] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010: 1-1006. [40] Gong E P, Yang H Y, Guan C Q, et al. Unique recovery stage of reef communities after F/F event in a huge coral reef of Carboniferous, southern Guizhou, China[J]. Science in China: Earth Sciences, 2004, 47(5): 412-418. [41] 王向东. 新疆早二叠世阿克苏柯坪珊瑚(Kepingophyllum aksuense Wu et Zhou)的生长型式及环境意义[J]. 科学通报,1992,37(4):353-355. Wang Xiangdong. Increase pattern and environmental significance of Kepingophyllum aksuense Wu et Zhou from Early Permian, Xinjiang[J]. Chinese Science Bulletin, 1992, 37(4): 353-355. [42] 张雄华. 黔南、湘中地区早二叠世四射珊瑚生态环境分异研究[J]. 现代地质,1992,6(1):23-29. Zhang Xionghua. Ecological-environmental differentiation of the Early Permian rugose corals in southern Guizhou and central Hunan[J]. Geoscience, 1992, 6(1): 23-29. [43] Oertli H J. The Venice System for the classification of marine waters according to salinity[J]. Pubblicazioni della Stazione Zoologioca di Napoli, 1964, 33(Suppl.): 611. [44] Chappell J. Coral morphology, diversity and reef growth[J]. Nature, 1980, 286(5770): 249-252. [45] Aretz M, Chevalier E. After the collapse of stromatoporid-coral reefs-the Famennian and Dinantian reefs of Belgium: Much more than Waulsortian mounds[M]//Álvaro J J, Aretz M, Boulvain F, et al. Palaeozoic reefs and bioaccumulations: Climatic and evolutionary controls. London: Geological Society of London, 2007, 275: 163-188. [46] 巩恩普,黄文韬,关长庆,等. 石炭纪生物礁与晚古生代冰期的耦合关系[J]. 地质学报,2021,95(6):1671-1692. Gong Enpu, Huang Wentao, Guan Changqing, et al. The coupled relationship between Carboniferous reefs and the Late Paleozoic Ice Age[J]. Acta Geologica Sinica, 2021, 95(6): 1671-1692. [47] Wood R. Reef evolution[M]. Oxford: Oxford University Press, 1999: 1-414. [48] Yao L, Aretz M, Chen J T, et al. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors[J]. Scientific Reports, 2016, 6: 39694. [49] Scrutton C T. The Palaeozoic corals, I: Origins and relationships[J]. Proceedings of the Yorkshire Geological Society, 1997, 51: 177-208. [50] Copper P. Silurian and Devonian reefs: 80 Million years of global greenhouse between two ice ages[M]//Kiessling W, Flügel E, Golonka J. Phanerozoic reef patterns. Tulsa: SEPM Society for Sedimentary Geology, 2002, 72: 181-238. [51] Yao L, Aretz M, Wignall P B, et al. The longest delay: Re-emergence of coral reef ecosystems after the Late Devonian extinctions[J]. Earth-Science Reviews, 2020, 203: 103060. [52] Leven E J. The Mid-Early Permian regression and transgression of the tethys[M]//Embry A F, Beauchamp B, Glass D J. Pangea: Global environments and resources. Culver City: CSPG Special Publications, 1994, 17: 233-239. [53] Scrutton C T. The Palaeozoic corals, II: Structure, variation and palaeoecology[J]. Proceedings of the Yorkshire Geological Society, 1998, 52: 1-57. [54] Ross C A, Ross J R P. Late Paleozoic transgressive-regressive deposition[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988, 42: 227-247. [55] Wu Y S, Fan J S. Calculating eustatic amplitude of Middle Permian from reefs[J]. Science in China: Earth Sciences, 2002, 45(3): 221-232. [56] Aretz M, Herbig H G, Somerville I D, et al. Rugose coral biostromes in the Late Viséan (Mississippian) of NW Ireland: Bioevents on an extensive carbonate platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(3/4): 488-506. [57] Yao L, Wang X D. Distribution and evolution of Carboniferous reefs in South China[J]. Palaeoworld, 2016, 25(3): 362-376. [58] Crowley T J, Baum S K. Estimating Carboniferous sea-level fluctuations from Gondwanan ice extent[J]. Geology, 1991, 19(10): 975-977. [59] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68. [60] Montañez I P, McElwain J C, Poulsen C J, et al. Climate, PCO2and terrestrial carbon cycle linkages during Late Palaeozoic glacial-interglacial cycles[J]. Nature Geoscience, 2016, 9(11): 824-828. [61] Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845. [62] Soreghan G S, Soreghan M J, Heavens N G. Explosive volcanism as a key driver of the Late Paleozoic Ice Age[J]. Geology, 2019, 47(7): 600-604. [63] Kaiser S I, Aretz M, Becker R T. The global Hangenberg Crisis (Devonian-Carboniferous transition): Review of a first-order mass extinction[M]//Becker R T, Königshof P, Brett C E. Devonian climate, sea level and evolutionary events. London: Geological Society of London, 2016, 423: 387-437. [64] Saltzman M R, González L A, Lohmann K C. Earliest Carboniferous cooling step triggered by the Antler orogeny?[J]. Geology, 2000, 28(4): 347-350. [65] Saltzman M R, Groessens E, Zhuravlev A V. Carbon cycle models based on extreme changes in δ13C: An example from the Lower Mississippian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 213(3/4): 359-377. [66] Qie W K, Zhang X H, Du Y S, et al. Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the Late Paleozoic glaciation[J]. Science China Earth Sciences, 2011, 54(1): 84-92. [67] Wang X D, Qie W K, Sheng Q Y, et al. Carboniferous and Lower Permian sedimentological cycles and biotic events of South China[M]//Gąsiewicz A, Słowakiewicz M. Palaeozoic climate cycles: Their evolutionary and sedimentological impact. London: Geological Society of London, 2013, 376: 33-46. [68] Yao L, Aretz M. Upper Visean (Mississippian) metazoan-microbial reefs from Guangxi, South China: Insights regarding reef recovery after the end-Devonian extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 109994. [69] Rygel M C, Fielding C R, Frank T D, et al. The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis[J]. Journal of Sedimentary Research, 2008, 78(8): 500-511. [70] Henry L C, Isbell J L, Limarino C O. Carboniferous glacigenic deposits of the proto-Precordillera of west-central Argentina[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 131-142. [71] Isbell J L, Cole D I, Catuneanu O. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 71-82. [72] Mory A J, Redfern J, Martin J R. A review of Permian-Carboniferous glacial deposits in western Australia[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 29-40. [73] Sepkoski Jr J J. Patterns of Phanerozoic extinction: A perspective from global data bases[M]//Walliser O H. Global events and event stratigraphy in the Phanerozoic. Berlin: Springer, 1996: 35-51. [74] McGhee G R, Sheehan P M, Bottjer D J, et al. Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (Early Carboniferous) crisis had a greater ecological impact than the end-Ordovician[J]. Geology, 2012, 40(2): 147-150. [75] West R R. Temporal changes in Carboniferous reef mound communities[J]. Palaios, 1988, 3(2): 152-169. [76] Nakazawa T. Carboniferous reef succession of the Panthalassan open-ocean setting: Example from Omi limestone, central Japan[J]. Facies, 2001, 44(1): 183-210. [77] Suchy D R, West R R. Chaetetid buildups in a Westphalian (Desmoinesian) cyclothem in southeastern Kansas[J]. Palaios, 2001, 16(5): 425-443. [78] Zhang Y L, Gong E P, Wilson M A, et al. Palaeoecology of Late Carboniferous encrusting chaetetids in North China[J]. Palaeobiodiversity and Palaeoenvironments, 2018, 98(2): 205-223. [79] Chen J T, Montañez I P, Zhang S, et al. Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(19): e2115231119. [80] Wang L F, Gong E P, Yang Z Y, et al. Controlling of the Late Palaeozoic glaciation on reef evolution: A case study of a Late Kasimovian coral reef in southern Guizhou, South China[J]. Geological Journal, 2023, 58(4): 1656-1672. [81] Angiolini L, Jadoul F, Leng M J, et al. How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells[J]. Journal of the Geological Society, 2009, 166(5): 933-945. [82] Mii H S, Grossman E L, Yancey T E. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation[J]. Geological Society of America Bulletin, 1999, 111(7): 960-973. -