高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

科研快讯 晚三叠世Wrangellia大火成岩省喷发驱动大陆化学风化作用增强

发布日期: 2024-02-02 阅读次数:
  • 分享到:

用微信扫码二维码

分享至好友和朋友圈


张培新 鲁静

 

二叠-三叠之交发生了地质历史时期上最大的生物危机事件,即二叠-三叠纪生物大灭绝事件(Permian-Triassic Mass Extinction,PTME,约252 Ma),该事件造成了大于81%的海洋物种和大于89%的陆地脊椎动物消失(Viglietti et al., 2021),并伴随着全球变暖、植物多样性下降、风化速率增加、全球性聚煤作用间断(图1)等异常现象(Dal Corso et al., 2022)。在此之后约18 Ma (234 Ma),晚三叠世初期地球迎来了一次持续约1Ma左右的湿润期,这就是著名的卡尼洪泛事件(Carnian Pluvial Episode,CPE),该事件被认为是现代生态系统的黎明和曙光(Dal Corso et al., 2020)。此次事件记录了生物灭绝、物种更替以及恐龙、哺乳动物、昆虫和现代针叶林辐射,伴随着全球变暖、湿润性气候盛行、多次碳循环波动、湿生植物和植物多样性增加(植物辐射)、全球性聚煤作用重新出现、酸盐工厂类型转换等异常现象(Simms and Ruffell, 1989; Dal Corso et al., 2020)(图1和2)。

图1晚三叠世卡尼阶全球古地理地图及Wrangellia大火成岩省喷发位置、湿生孢粉含量增多、湿润古土壤和聚煤作用重新出现。古地理底图修改自文献(Sun et al., 2016),Wrangellia大火成岩省位置和湿生孢粉含量、古土壤、煤的出现位置修改自文献(Dal Corso et al., 2020),地质历史期煤层分布位置修改自文献(Retallack et al., 1996)


图2 不同学者/文献限定的卡尼洪泛事件的时代限定(灰色阴影表示卡尼洪泛事件间隔)


研究表明,Wrangellia大火成岩省(LIP)的喷发是直接或者间接导致CPE期间环境-气候和植物变化的原因(Dal Corso et al., 2012; Lu et al., 2021; Mazaheri-Johari et al., 2021; Zhao et al., 2022; Jin et al., 2023)(图3)。Wrangellia大火成岩省通过释放大量轻碳同位素引起全球变暖、大气环流和水文循环的显著增强,导致全球气候从普遍干旱到潮湿的显著变化,影响了陆地植物多样性以及河流物质通量的变化(Simms and Ruffell, 1989; Kozur and Bachmann, 2010; Dal Corso et al., 2018; Baranyi et al., 2019)。

图3 晚三叠世卡尼洪泛事件(蓝色时间区间)期间碳同位素组成、Hg/TOC比值和Hg同位素组成的记录。济源盆地的d13Corg和Hg/TOC数据来自Lu et al. (2021);Devon的 d13CTOC数据来自Miller et al. (2017),湖北d13CTOC数据来自Li Q. et al. (2022),西北特提斯的d13CTOC数据来自Dal Corso et al (2018),Hg/TOC数据来自Mazaheri-Johari et al. (2021); 贵州的d13Ccarb和d13CTOC数据来自Sun et al. (2016),Hg/TOC比值和Hg同位素数据来自Zhao et al (2022);泛大洋的d13CTOC数据来自Tomimatsu et al. (2021),Hg/TOC比值和Hg同位素数据来自Jin et al. (2023)


作为连接海洋/湖泊和地表系统的纽带,大陆风化作用的变化对地表系统的环境-气候变化起到了至关重要的作用(Shen et al., 2022; Zhang et al., 2023)。大陆风化作用对全球气候变化的反馈机制具有多方面的影响,包括碳循环的调节、地表形态的改变、生态系统的响应以及气候模式的调整等(Wang et al., 2020; Shen et al., 2022),这些反馈机制共同作用形成了一个复杂而动态的系统,对全球气候变化产生深远的影响(Wang et al., 2020)。因此,理解大陆风化作用对全球气候变化的反馈机制对于预测和应对气候变化具有重要的意义。在CPE期间,增强的大陆风化作用被认为是全球环境-气候变化的中枢和核心,在加速陆地径流和养分输入方面发挥了重要作用,最终推动水体缺氧和有机碳埋藏增加,为最初火山活动释放的轻碳同位素提供负反馈(Dal et al., 2015, 2020; Lu et al., 2021; Zhang et al., 2023)。然而,由于缺乏高分辨率记录的陆地记录,CPE期间大陆化学风化作用的过程及其主要控制机理仍不清晰,其对如此极端的气候变化的响应和调节机制仍未得到很好的解答。

为了解决上述科学问题,中国矿业大学(北京)邵龙义和鲁静教授团队利用特提斯东缘华北地台的高分辨率元素地球化学(CIA*值,校正后的CIA值)和矿物学(高岭石)等方法进行了研究(图4)。在排除了物源稳定性、沉积再循环、粒度分选以及后期成岩作用对目标泥质岩影响之后,探讨了晚三叠世卡尼洪泛事件期间陆地风化作用变化的原因及其对陆地环境变化的反馈机制(Zhang et al., 2024)。

图4 晚三叠世卡尼期济源盆地的地球化学和矿物风化指标、地表温度、d13Corg值、Hg/TOC比值、植被成分等纵向变化综合图


研究结果显示,CPE期间出现了4次大陆化学风化强度峰值(图4)。这些大陆化学风化峰值以升高的CIA*值和高岭石含量为特征,并与有机碳同位素组成负偏移和Hg/TOC比值富集异常(揭示了Wrangellia大火成岩省4次喷发脉冲)同步发生(图4)。利用地表温度和CIA的关系式,揭示了CPE期间地表温度变化在16-21℃之间,出现4次温度增加现象,增幅在3-4℃之间(图4)。这一结果与大气环流模型重建的济源盆地年均温度一致(Sellwood and Valdes, 2006)。结合研究区湿度增加的现象(从孢粉化石的主成分分析和非度量多维尺度分析结果推断,图5),我们的研究结果表明Wrangellia大火成岩省喷发显著改变了CPE期间的化学风化速率,从而响应了全球性气候条件的变暖和变湿。

图5 华北地台济源盆地孢粉资料的主成分分析(PCA)和非度量多维尺度(nMDS)的分析结果


根据华北地台济源盆地CPE期间同步的环境-气候和植物类型(湿生植物显著增加)的变化现象,重建了它们之间的联系和互馈机制(图6和7)。Wrangellia大火成岩省每次喷发脉冲都迅速释放出大量轻碳同位素,造成全球变暖和水文循环加剧,导致4次不同的大陆化学风化和径流增强。然而每次火山喷发以后碳同位素组成均表现出快速恢复,这是由于大陆化学风化作用增强、二氧化碳消耗增加、富营养化的水体条件促进了有机质的大量埋藏。我们的研究为Wrangellia大火成岩省、水文循环扰动和大陆风化作用增强之间的关系提供了关键的证据。研究结果为深入理解现代陆地生态系统早期演化及其驱动机制提供了重要理论指导。

6 晚三叠世卡尼期华北地台古环境、古气候、大陆风化、古生产力、氧化还原条件、d13Corg值、Hg/TOC比值、温度变化与全球地质事件的相关性


图7 Wrangellia大火成岩省对华北地台环境和气候影响的重建示意图

(a)随着Wrangellia大火成岩省喷发开始,地表温度、大陆化学风化速率和古生产力增加;(b)随着Wrangellia大火成岩省喷发减弱,地表温度、大陆化学风化速率和古生产力降低


该成果于近日发表在国际知名期刊《地球与行星科学通讯》(Earth and Planetary Science Letters)上https://www.sciencedirect.com/science/article/pii/S0012821X23005290?via%3Dihu。第一作者为中国矿业大学(北京)博士毕业生、河南城建学院青年教师张培新,通讯作者为中国矿业大学(北京)鲁静教授和英国伯明翰大学Jason Hilton教授。本文得到了国家重大专项(2022YFF0800203/01)、国家自然基金面上项目(4217219, 41772161, 41472131)、河南城建学院青年英才项目(K-Q2023019)以及英国自然环境委员会基金(NE/W009625/1)等项目共同资助。欲知更多详情,请参考文章全文和参考文献。

 

主要参考文献:

[1]  Baranyi, V., Miller, C.S., Ruffell, A., Hounslow, M.W., Kürschner, W.M., 2019. A continental record of the carnian pluvial episode (CPE) from the mercia mudstone group (UK): Palynology and climatic implications. J. Geol. Soc. London. 176, 149–166.

[2]  Dal Corso, J., Bernardi, M., Sun, Y., Song, H., Seyfullah, L.J., Preto, N., Gianolla, P., Ruffell, A., Kustatscher, E., Roghi, G., Merico, A., Hohn, S., Schmidt, A.R., Marzoli, A., Newton, R.J., Wignall, P.B., Benton, M.J., 2020. Extinction and dawn of the modern world in the Carnian (Late Triassic). Sci. Adv. 6, eaba0099.

[3]  Dal Corso, J., Gianolla, P., Newton, R.J., Franceschi, M., Roghi, G., Caggiati, M., Raucsik, B., Budai, T., Haas, J., Preto, N., 2015. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the “Carnian Pluvial Event” in the Tethys realm (Late Triassic). Glob. Planet. Change 127, 79–90.

[4]  Dal Corso, J., Gianolla, P., Rigo, M., Franceschi, M., Roghi, G., Mietto, P., Manfrin, S., Raucsik, B., Budai, T., Jenkyns, H.C., Reymond, C.E., Caggiati, M., Gattolin, G., Breda, A., Merico, A., Preto, N., 2018. Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). Earth-Science Rev. 185, 732–750.

[5]  Dal Corso, J., Mietto, P., Newton, R.J., Pancost, R.D., Preto, N., Roghi, G., Wignall, P.B., 2012. Discovery of a major negative 13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40, 79–82.

[6]  Dal Corso, J., Song, H., Callegaro, S., Chu, D., Sun, Y., Hilton, J., Grasby, S.E., Joachimski, M.M., Wignall, P.B., 2022. Environmental crises at the Permian–Triassic mass extinction. Nat. Rev. Earth Environ. 3, 197–214.

[7]  Hornung, T., Brandner, R., Krystyn, L., Joachimski, M.M., Keim, L., 2007a. Multistratigraphic constraints on the NW Tethyan “Carnian crisis.” New Mex. Museum Nat. Hist. Sci. Bull. 41, 59–67.

[8]  Hornung, T., Krystyn, L., Brandner, R., 2007b. A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)? J. Asian Earth Sci. 30, 285–302.

[9]  Jin, X., Tomimatsu, Y., Yin, R., Onoue, T., Franceschi, M., Grasby, S.E., Du, Y., Rigo, M., 2023. Climax in Wrangellia LIP activity coincident with major Middle Carnian (Late Triassic) climate and biotic changes: Mercury isotope evidence from the Panthalassa pelagic domain. Earth Planet. Sci. Lett. 607, 118075.

[10] Kozur, H.W., Bachmann, G.H., 2010. The Middle Carnian Wet Intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 107–119.

[11] Li, L., Kürschner, W.M., Lu, N., Chen, H., An, P., Wang, Y., 2022. Palynological record of the Carnian Pluvial Episode from the northwestern Sichuan Basin, SW China. Rev. Palaeobot. Palynol. 304, 104704.

[12] Li, Q., Ruhl, M., Wang, Y., Xie, X., An, P., Xu, Y., 2022. Response of Carnian Pluvial Episode evidenced by organic carbon isotopic excursions from western Hubei, South China. Palaeoworld 31, 324–333.

[13] Lu, J., Zhang, P., Dal Corso, J., Yang, M., Wignall, P.B., Greene, S.E., Shao, L., Lyu, D., Hilton, J., 2021. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proc. Natl. Acad. Sci. U. S. A. 118, e2109895118.

[14] Mazaheri-Johari, M., Gianolla, P., Mather, T.A., Frieling, J., Chu, D., Dal Corso, J., 2021. Mercury deposition in Western Tethys during the Carnian Pluvial Episode (Late Triassic). Sci. Rep. 11, 17339.

[15] Miller, C.S., Peterse, F., da Silva, A.-C., Baranyi, V., Reichart, G.J., Kürschner, W.M., 2017. Astronomical age constraints and extinction mechanisms of the Late Triassic Carnian crisis. Sci. Rep. 7, 2557.

[16] Mueller, S., Krystyn, L., Kürschner, W.M., 2016. Climate variability during the Carnian Pluvial Phase — A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 198–211.

[17] Retallack, G.., Veevers, J.., Morante, R., 1996. Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming. Geol. Soc. Am. Bull. 108, 195–207.

[18] Sellwood, B.W., Valdes, P.J., 2006. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 190, 269–287.

[19] Shen, J., Yin, R., Zhang, S., Algeo, T.J., Bottjer, D.J., Yu, J., Xu, G., Penman, D., Wang, Y., Li, L., Shi, X., Planavsky, N.J., Feng, Q., Xie, S., 2022. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition. Nat. Commun. 13, 299.

[20] Simms, M.J., Ruffell, A.H., 1989. Synchroneity of climatic change and extinctions in the Late Triassic. Geology 17, 265–268.

[21] Sun, Y.D., Wignall, P.B., Joachimski, M.M., Bond, D.P.G., Grasby, S.E., Lai, X.L., Wang, L.N., Zhang, Z.T., Sun, S., 2016. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Earth Planet. Sci. Lett. 444, 88–100.

[22] Tomimatsu, Y., Nozaki, T., Sato, H., Takaya, Y., Kimura, J.I., Chang, Q., Naraoka, H., Rigo, M., Onoue, T., 2021. Marine osmium isotope record during the Carnian “pluvial episode” (Late Triassic) in the pelagic Panthalassa Ocean. Glob. Planet. Change 197, 103387.

[23] Viglietti, P.A., Benson, R.B.J., Smith, R.M.H., Botha, J., Kammerer, C.F., Skosan, Z., Butler, E., Crean, A., Eloff, B., Kaal, S., Mohoi, J., Molehe, W., Mtalana, N., Mtungata, S., Ntheri, N., Ntsala, T., Nyaphuli, J., October, P., Skinner, G., Strong, M., Stummer, H., Wolvaardt, F.P., Angielczyk, K.D., 2021. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl. Acad. Sci. 118, e2017045118.

[24] Wang, P., Du, Y., Yu, W., Algeo, T.J., Zhou, Q., Xu, Y., Qi, L., Yuan, L., Pan, W., 2020. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Science Rev. 201, 103032.

[25] Zhang, P., Yang, M., Lu, J., Jiang, Z., Zhou, K., Xu, X., Wang, Y., Wu, L., Chen, H., Zhu, X., Guo, Y., Ye, H., Shao, L., Hilton, J., 2023. Floral response to the Late Triassic Carnian Pluvial Episode. Front. Ecol. Evol. 11, 1199121.

[26] Zhang, P., Yang, M., Lu, J., Jiang, Z., Vervoort, P., Zhou, K., Xu, X., Chen, H., Wang, Y., He, Z., Bian, X., Shao, L., Hilton, J., 2024. Four volcanically driven climatic perturbations led to enhanced continental weathering during the Late Triassic Carnian Pluvial Episode. Earth Planet. Sci. Lett. 626, 118517.

[27] Zhao, H., Grasby, S.E., Wang, X., Zhang, L., Liu, Y., Chen, Z.Q., Hu, Z., Huang, Y., 2022. Mercury enrichments during the Carnian Pluvial Event (Late Triassic) in South China. GSA Bull. 134, 2709–2720.

  • 分享到:

用微信扫码二维码

分享至好友和朋友圈

发布日期: 2024-02-02 阅读次数:
x 关闭 永久关闭