-
水溶组分元素Ca、Mg、Sr、Na和K的含量及变化见图3和表1。各元素的平均含量由大到小为Na>Ca>K>Mg>Sr。Na、Ca和Sr的变化趋势比较明显,总体较为一致。Na含量由钻孔底部至顶部先升高后降低,最高值位于盐湖阶段。Ca和Sr含量在淡水和咸水湖阶段的趋势与Na较为一致,但在盐湖阶段没有出现峰值。Mg和K的曲线没有明显的变化趋势。易溶盐离子总量(total)变化趋势与Na较为一致。Mg/Ca摩尔比仅在底部和750~800 m之间出现峰值,与沉积环境的变化没有关系,Sr/Ca摩尔比值在咸水湖环境中偶尔出现几个峰值。
表 1 YZK⁃3钻孔水溶元素含量变化范围(mg/g)
元素 最大值/(mg/g) 最小值/(mg/g) 平均值/(mg/g) Ca 16.30 0.006 3.80 Mg 2.54 0.000 3 0.33 Sr 0.39 0.000 3 0.08 K 3.04 0.008 0.47 Na 19.71 0.02 6.28 酸溶元素Ca、Mg、Sr和Fe含量分别为0.64~348.28 mg/g、0.25~69.44 mg/g、0.01~10.85 mg/g和0.02~3.33 mg/g,平均值分别为94.9 mg/g、8.57 mg/g、0.88 mg/g和0.71 mg/g(图4)。Ca为酸溶组分的主要元素,由于沉积物中出现多种碳酸盐矿物,Ca与常见的类质同象替代元素Mg、Sr等元素曲线之间,没有相似的变化趋势。Ca、Mg、Fe和Sr含量总和与碳酸盐含量呈显著正相关(图5,R2=0.789 17),说明这些元素主要来源于碳酸盐矿物。
-
全样碳酸盐的δ18O和δ13C多为负值,δ18O值介于-13.1‰~2.9‰,平均值为-6.78‰,最大变幅为10.2‰;δ13C介于-10.2‰~2.3‰,平均值为-6.37‰,最大变幅为6.7‰。碳氧同位素与总碳酸盐含量具有相似的变化趋势(图6)。阶段Ⅰ(1 157.08~1 153.38 m),δ18O和δ13C值较低,平均值分别为-7.3‰和-5.25‰;阶段Ⅱ(1 153.38~965.18 m),δ18O和δ13C值虽然较上一阶段偏正,但钻孔中δ18O最低值出现在该阶段;阶段Ⅲ(965.18~961.5 m),δ18O均为正值,δ13C值延续上阶段的波动,但波动幅度小;阶段Ⅳ(961.5~862.88 m),δ18O和δ13C变化较大,存在明显负漂;阶段Ⅴ(862.88~733.38 m),δ18O波动幅度降低,δ13C与上一阶段呈反向波动;阶段Ⅵ(733.38~635.38 m),δ18O和δ13C值均大幅降低,平均值分别为-6.02‰和-5.33‰,钻孔中δ13C最低值出现在该阶段。虽然碳氧同位素基本呈同步变化,但波动频繁且幅度较大。
图 6 YZK⁃3钻孔碳酸盐碳氧同位素及碳酸盐含量变化
Figure 6. Variation of carbon and oxygen isotopes for carbonate and its content in borehole YZK⁃3
细颗粒(<38 μm)碳酸盐碳氧同位素如表2。一般认为,粒径小于38 μm的碳酸盐矿物是自生的[13],自生碳酸盐碳氧同位素比全样数据偏正,但钻孔中的这四个细颗粒样品与全样碳酸盐的值相比,只有一个细颗粒样品比全样的值偏正(963.38 m,盐湖阶段),另外三个的均值比全样偏负(表2、图7)。
表 2 YZK⁃3钻孔沉积物全样与细颗粒(<38 μm)碳酸盐碳氧同位素对比
深度/m δ18O全样/‰ δ13C全样/‰ δ18O细颗粒/‰ δ13C细颗粒/‰ 699.38 -5.3 -4.5 -5.7 -4.2 881.38 -3.9 -2.2 -4.2 -2.3 963.38 0.8 -2.7 0.9 -2.1 1 155.38 -7.3 -7.0 -7.7 -7.0
Paleogene Environmental Changes Recorded by the Borehole in the Shanxian Basin, Southwestern Shandong
-
摘要: 鲁西南地区的单县盆地盐矿是新发现的小陆块盆地形成的大型盐类矿床,成矿时代为古近纪(主要是始新世中晚期至渐新世)。基于单县盆地YZK-3钻孔(521.7 m)元素和碳氧同位素的分析,探讨单县盆地在古近纪时期的古环境演化特征。研究表明:1)单县盆地YZK-3孔沉积物水溶元素和酸溶元素及比值的变化反映了湖泊的咸化和淡化过程;2)受热液补给和成岩作用影响,碳酸盐δ18O和δ13C的相关性不适合论湖泊的封闭与开放状态,但变化趋势仍具有古环境意义;3)始新世—渐新世,单县盆地古湖泊经历了淡水湖—咸水湖—盐湖—咸水湖—淡水湖的演化过程,其干旱化趋势明显。全球气候变化是成盐作用的主要驱动机制。Abstract: The salt deposit in the Shanxian Basin in southwestern Shandong is a large-scale salt deposit formed in a typical small continental basin. This salt deposit developed during the Paleogene period (mainly the Middle and Late Eocene-Oligocene). Based on the elements and carbon and oxygen isotopes (δ18O and δ13C) in borehole YZK-3 (521.7 m) in the Shanxian Basin, this study tried to reconstruct the paleoenvironmental evolution characteristics of the Shanxian Basin. The main conclusions are as follows: (1) The changes of water soluble and acid soluble element contents and ratios are basically consistent with the lake status as freshwater or salt water. (2) Due to hydrothermal inflow and diagenesis, the correlation between δ18O and δ13C of carbonate minerals is not useful in discussing the closure and open state of the lake. However, the trend of δ18O and δ13C still could be used to talk about the paleo-environmental changes. (3) From the Eocene to the Oligocene, the ancient lakes of the Shanxian Basin experienced the evolution process of freshwater lake⁃brackish water lake⁃salt lake⁃brackish water lake⁃freshwater lake. Global climate change is the main driving factor for the evaporate deposit.
-
Key words:
- carbon and oxygen isotopes /
- elements /
- paleoenvironment /
- Paleogene /
- Shanxian Basin
注释:1) 脚注:1) 山东省地质科学研究院内部资料,2017.2) 脚注:2) 山东省地质科学研究院内部资料,2017.3) 脚注:3) 山东省地质科学研究院内部资料,2017. -
图 8 YZK⁃3钻孔矿物与元素之间的相关性
(a)方解石与石英含量相关性;(b)方解石与酸溶Ca含量相关性;(c)方解石和文石与酸溶Sr含量相关性;(d)酸溶Sr/(Ca+Mg)比值与Mg/Ca比值变化
Figure 8. Correlation between minerals and elements in borehole YZK⁃3
(a) correlation between calcite and quartz content; (b) correlation between calcite and acid⁃soluble Ca content; (c) correlation between calcite and acid⁃soluble Ca content; and (d) variation of acid⁃soluble Sr/(Ca+Mg) ratio and Mg/Ca ratio
表 1 YZK⁃3钻孔水溶元素含量变化范围(mg/g)
元素 最大值/(mg/g) 最小值/(mg/g) 平均值/(mg/g) Ca 16.30 0.006 3.80 Mg 2.54 0.000 3 0.33 Sr 0.39 0.000 3 0.08 K 3.04 0.008 0.47 Na 19.71 0.02 6.28 表 2 YZK⁃3钻孔沉积物全样与细颗粒(<38 μm)碳酸盐碳氧同位素对比
深度/m δ18O全样/‰ δ13C全样/‰ δ18O细颗粒/‰ δ13C细颗粒/‰ 699.38 -5.3 -4.5 -5.7 -4.2 881.38 -3.9 -2.2 -4.2 -2.3 963.38 0.8 -2.7 0.9 -2.1 1 155.38 -7.3 -7.0 -7.7 -7.0 -
[1] 李增学,张功成,李莹,等. 中国海域区古近纪含煤盆地与煤系分布研究[J]. 地学前缘,2012,19(4):314-326. Li Zengxue, Zhang Gongcheng, Li Ying, et al. The Paleogene coal-bearing basin and coal-measures distribution of China sea area[J]. Earth Science Frontiers, 2012, 19(4): 314-326. [2] 刘群,李银彩,闫东兰,等. 中国中、新生代陆源碎屑—化学岩型盐类沉积[M]. 北京:北京科学技术出版社,1987:1-154. Liu Qun, Li Yincai, Yan Donglan, et al. Mesozoic and Cenozoic terrigenous clastic-chemical rock salt deposits in China[M]. Beijing: Beijing Science and Technology Press, 1987: 1-154. [3] 刁海忠,王娟,王继国. 山东古近纪含膏盆地的断裂构控矿作用及成矿模式探讨[J]. 矿业工程,2019,17(4):8-11. Diao Haizhong, Wang Juan, Wang Jiguo. Discussion on ore-controlling of fracture structure and metallogenic model in Paleogene gypsum basin, Shandong province[J]. Mining Engineering, 2019, 17(4): 8-11. [4] 雷国良,张虎才,朱芸,等. 湖相沉积物酸溶与酸不溶组分常量元素的地球化学行为及其环境意义[J]. 山地学报,2013,31(2):174-183. Lei Guoliang, Zhang Hucai, Zhu Yun, et al. Geochemical behavior of acid soluble and insoluble fractions and their application to paleoenvironment reconstruction of lacustrine sediment[J]. Journal of Mountain Science, 2013, 31(2): 174-183. [5] Talbot M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chemical Geology: Isotope Geoscience Section, 1990, 80(4): 261-279. [6] 吴敬禄. 青藏高原RM孔自生碳酸盐稳定同位素组成及其古气候[J]. 地理科学,1997,17(1):19-24. Wu Jinglu. Compositions of 18O and 13C in various carbonates and the significance of core RM in the Zoie Basin[J]. Scientia Geographica Sinica, 1997, 17(1): 19-24. [7] Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811-831. [8] 吕凤琳,刘成林,焦鹏程,等. 罗布泊中更新世以来盐湖碳酸盐碳氧同位素组成及其古环境意义[J]. 地质学报,2018,92(8):1589-1604. Fenglin Lü, Liu Chenglin, Jiao Pengcheng, et al. Carbon and oxygen isotopic compositions of the lacustrine carbonate in Lop Nur since the Mid-Pleistocene and their paleoenvironment significance[J]. Acta Geologica Sinica, 2018, 92(8): 1589-1604. [9] Zhu G, Jiang D Z, Zhang B L, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. [10] 赵田,朱光,向必伟,等. 郯庐断裂带起源机制的探讨[J]. 矿物岩石地球化学通报,2016,35(6):1120-1140,1071. Zhao Tian, Zhu Guang, Xiang Biwei, et al. Discussion on initial mechanism of the Tan-Lu Fault Zone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(6): 1120-1140, 1071. [11] 李守军,郑德顺,蔡进功,等. 鲁北和鲁西南地区古近纪盆地沉积特征与控制因素探讨[J]. 地质论评,2003,49(3):225-232. Li Shoujun, Zheng Deshun, Cai Jingong, et al. Sedimentary characteristics and controlling factors of basins in the north Shandong and southwest Shandong in Palaeogene[J]. Geological Review, 2003, 49(3): 225-232. [12] 王万奎,王玉玲,李艳双. 鲁西地区新生代非金属矿含矿沉积建造[J]. 山东地质,1996,12(2):77-91. Wang Wankui, Wang Yuling, Li Yanshuang. The Cenozoic ore-bearing sedimentary formations of nonmetallic minerals in western Shandong[J]. Geology of Shandong, 1996, 12(2): 77-91. [13] Fontes J C, Gasse F, Gibert E. Holocene environmental changes in Lake Bangong Basin (western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1/2): 25-47. [14] Liu W G, Li X Z, Zhang L, et al. Evaluation of oxygen isotopes in carbonate as an indicator of lake evolution in arid areas: The modern Qinghai Lake, Qinghai-Tibet Plateau[J]. Chemical Geology, 2009, 268(1/2): 126-136. [15] Murphy J T, Lowenstein T K, Pietras J T. Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak-Laney member transition zone[J]. Sedimentary Geology, 2014, 314: 75-91. [16] McCormack J, Nehrke G, Jöns N, et al. Refining the interpretation of lacustrine carbonate isotope records: Implications of a mineralogy-specific Lake Van case study[J]. Chemical Geology, 2019, 513: 167-183. [17] 张成君,郑绵平, Prokopenko A,等. 博斯腾湖碳酸盐和同位素组成的全新世古环境演变高分辨记录及与冰川活动的响应[J]. 地质学报,2007,81(12):1658-1671. Zhang Chengjun, Zheng Mianping, Prokopenko A, et al. The palaeoenvironmental variation from the high-resolution record of the Holocene sediment carbonate and isotopic composition in Bosten Lake and responding to glacial activity[J]. Acta Geologica Sinica, 2007, 81(12): 1658-1671. [18] Manuella F C, Ventura G D, Galdenzi F, et al. Sr-rich aragonite veins in Hyblean serpentinized peridotite xenoliths (Sicily, Italy): Evidence for abyssal-type carbonate metasomatism[J]. Lithos, 2019, 326-327: 200-212. [19] Dean W, Rosenbaum J, Skipp G, et al. Unusual Holocene and Late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA[J]. Sedimentary Geology, 2006, 185(1/2): 93-112. [20] Land L S. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3/4): 361-368. [21] 张亦凡,马怡飞,姚奇志,等. “白云石问题”及其实验研究[J]. 高校地质学报,2015,21(3):395-406. Zhang Yifan, Ma Yifei, Yao Qizhi, et al. “Dolomite problem” and experimental studies of dolomite formation[J]. Geological Journal of China Universities, 2015, 21(3): 395-406. [22] Yuan J Y, Huang C G, Zhao F, et al. Carbon and oxygen isotopic compositions, and palaeoenvironmental significance of saline lacustrine dolomite from the Qaidam Basin, western China[J]. Journal of Petroleum Science and Engineering, 2015, 135: 596-607. [23] Boles J R, Ramseyer K. Diagenetic carbonate in Miocene sandstone reservoir, San Joaquin Basin, California[J]. AAPG Bulletin, 1987, 71(12): 1475-1487. [24] Lovley D R, Chapelle F H. Deep subsurface microbial processes[J]. Reviews of Geophysics, 1995, 33(3): 365-381. [25] You X L, Sun S, Zhu J Q, et al. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, northwest China: Implications for the role of organic substrate on dolomite precipitation[J]. Terra Nova, 2013, 25(5): 387-395. [26] 张军涛,何治亮,岳小娟,等. 鄂尔多斯盆地奥陶系马家沟组五段富铁白云石成因[J]. 石油与天然气地质,2017,38(4):776-783. Zhang Juntao, He Zhiliang, Yue Xiaojuan, et al. Genesis of iron-rich dolostones in the 5th member of the Majiagou Formation of the Ordovician in Ordos Basin[J]. Oil & Gas Geology, 2017, 38(4): 776-783. [27] 张中欣. 热液改造白云石及其与油气的关系[J]. 辽宁化工,2011,40(1):72-75. Zhang Zhongxin. Hydrothermal alteration dolomitization and its relationship with oil and gas[J]. Liaoning Chemical Industry, 2011, 40(1): 72-75. [28] 杨一博. 柴达木盆地西部千米深钻元素地球化学记录的晚上新世以来古湖演化和干旱化[D]. 北京:中国科学院青藏高原研究所,2013:1-175. Yang Yibo. Palaolake evolution and climate drying in the western Qaidam Basin since the Late Pliocene archived by elemental geochemistry records in a 1000 m-long deep core[D]. Beijing: Institute of Tibetan Plateau Research, Chinese Academy of Science, 2013: 1-175. [29] 郭金春,马海州,宋恩玉,等. 湖泊碳酸盐在过去环境变化研究中的应用[J]. 盐湖研究,2008,16(2):66-72. Guo Jinchun, Ma Haizhou, Song Enyu, et al. Applications of lacustrine carbonate in paleoenvironment research[J]. Journal of Salt Lake Research, 2008, 16(2): 66-72. [30] 王云飞. 青海湖、岱海的湖泊碳酸盐化学沉积与气候环境变化[J]. 海洋与湖沼,1993,24(1):31-36. Wang Yunfei. Lacustrine carbonate chemical sedimentation and climatic-environmental evolution-A case study of Qinghai Lake and Daihai Lake[J]. Oceanologia et Limnologia Sinica, 1993, 24(1): 31-36. [31] 李世杰,区荣康,朱照宇,等. 24万年来西昆仑山甜水海湖岩心碳酸盐含量变化与气候环境演化[J]. 湖泊科学,1998,10(2):58-65. Li Shijie, Rongkang Ou, Zhu Zhaoyu, et al. A carbonate content record of Late Quaternary climate and environment changes from lacustrine core TS95 in Tianshuihai Lake Basin, northwestern Qinghai-Xizang (Tibet) Plateau[J]. Journal of Lake Science, 1998, 10(2): 58-65. [32] 蔡萌. 1.6万年以来泸沽湖沉积中碳酸盐和粒度变化及其环境指示意义[D]. 昆明:云南师范大学,2019:1-64. Cai Meng. Carbonate mineral and grainsize changes since 16 kyr BP in Lake Lugu and environmental indication[D]. Kunming: Yunnan Normal University, 2019: 1-64. [33] Gasse F, Fontes J C, Plaziat J C, et al. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene Lakes from North Sahara[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1987, 60: 1-46. [34] 曾承. 湖泊自生碳酸盐碳同位素在环境变化中的应用[J]. 盐湖研究,2010,18(2):1-6. Zeng Cheng. Carbon isotopic records from lacustrine authigenic carbonates as environmental change indicators[J]. Journal of Salt Lake Research, 2010, 18(2): 1-6. [35] 刘传联,赵泉鸿,汪品先. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J]. 地球化学,2001,30(4):363-367. Liu Chuanlian, Zhao Quanhong, Wang Pinxian. Correlation between carbon and oxygen isotopic ratios of lacustrine carbonates and types of oil-producing paleolakes[J]. Geochimica, 2001, 30(4): 363-367. [36] 伊海生,林金辉,周恳恳,等. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J]. 古地理学报,2007,9(3):303-312. Yi Haisheng, Lin Jinhui, Zhou Kenken, et al. Carbon and oxygen isotope characteristics and palaeo- environmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau[J]. Journal of Palaeogeography, 2007, 9(3): 303-312. [37] 朱敏,丁仲礼,王旭,等. 南阳盆地PETM事件的高分辨率碳同位素记录[J]. 科学通报,2010,55(24):2400-2405. Zhu Min, Ding Zhongli, Wang Xu, et al. High-resolution carbon isotope record for the Paleocene-Eocene thermal maximum from the Nanyang Basin, central China[J]. Chinese Science Bulletin, 2010, 55(24): 2400-2405. [38] Higgins J A, Schrag D P. Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 523-537. [39] Dickens G R, O'Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 965-971. [40] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615. [41] Secord R, Gingerich P D, Lohmann K C, et al. Continental warming preceding the Palaeocene-Eocene thermal maximum[J]. Nature, 2010, 467(7318): 955-958. [42] 江湉,贾建忠,邓丽君,等. 古近纪重大气候事件及其生物响应[J]. 地质科技情报,2012,31(3):31-38. Jiang Tian, Jia Jianzhong, Deng Lijun, et al. Significant climate events in Paleogene and their biotic response[J]. Geological Science and Technology Information, 2012, 31(3): 31-38. [43] Lear C H, Elderfield H, Wilson P A, et al. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287(5451): 269-272. [44] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. [45] Zhang C X, Guo Z T. Clay mineral changes across the Eocene-Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411: 18-29. [46] Sun J M, Ni X J, Bi S D, et al. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 2014, 4(1): 7463. [47] Fang X M, Zan J B, Appel E, et al. An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift[J]. Geophysical Journal International, 2015, 201(1): 78-89. [48] 昝立宏,程捷. 新疆吐鲁番盆地古近纪气候事件的研究[J]. 古地理学报,2008,10(6):647-656. Zan Lihong, Cheng Jie. Study on the Paleogene climatic events in Turpan Basin, Xinjiang[J]. Journal of Palaeogeography, 2008, 10(6): 647-656. [49] 王健,彭捷,操应长,等. 东营凹陷中晚始新世古气候演化特征及其意义:以Hk1井为例[J]. 沉积学报,2022,40(4):1059-1072. Wang Jian, Peng Jie, Cao YingChang, et al. Mid-late Eocene paleoclimate characteristics and significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059-1072. [50] 朱猛. 山东省大汶口盆地盐类矿床的地质成因探讨[J]. 山东国土资源,2015,31(1):27-30. Zhu Meng. Stuty on the origin of salt deposit in Dawenkou Basin in Shandong province[J]. Shandong Land and Resources, 2015, 31(1): 27-30. [51] Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268. [52] Cung T C, Geissman J W. A review of the paleomagnetic data from Cretaceous to Lower Tertiary rocks from Vietnam, Indochina and South China, and their implications for Cenozoic tectonism in Vietnam and adjacent areas[J]. Journal of Geodynamics, 2013, 69: 54-64. [53] Akhmetiev M A. Paleocene and Eocene floristic and climatic change in Russia and northern Kazakhstan[J]. Bulletin of Geosciences, 2010, 85(1): 77-94. [54] Chen H, Xie X N, van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest sub-basin, South China Sea[J]. Marine Geology, 2014, 355: 36-53. [55] Quan C, Liu Z H, Utescher T, et al. Revisiting the Paleogene climate pattern of East Asia: A synthetic review[J]. Earth-Science Reviews, 2014, 139: 213-230. [56] Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.